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SYSTEMS OF DIFFERENTIAL EQUATIONS MODELING
NON-MARKOV PROCESSES

Irada Dzhalladova and Miroslava Růžičková

Abstract. The work deals with non-Markov processes and the construction
of systems of differential equations with delay that describe the probability
vectors of such processes. The generating stochastic operator and properties
of stochastic operators are used to construct systems that define non-Markov
processes.

1. Introduction concepts

In recent years, studies of the non-Markovian dynamics of open systems have
become increasingly popular, with a diverse range of researchers involved. The
theory of non-Markovian random processes is constantly developing and meets
modern requirements. This interest arose from the fundamental problem of defining
and quantifying memory effects in the quantum realm, how to use and develop
applications based on them, and also because of the question of what are the
ultimate limits for controlling the dynamics of open systems.

In addition, there are many important control problems that are not naturally
formulated as Markov decision processes. For example, if the agent cannot directly
observe the state of the environment, then it is more appropriate to use a partially
observable Markov model of the decision process. Even with complete observability,
the probability distribution over the next states may not depend only on the current
state.

Some postulated problems and also models with non-Markov parameters using
fractional dynamics, predictive control or stabilization are considered in [2].

In the presented work, constructions of certain non-Markovian random processes
are proposed using stochastic operators, which are called generating operators.
Naturally, other methods of constructing non-Markov random processes can be
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proposed. In any case, these processes will be determined by equations with a
delayed argument.

In the constructions proposed by us, the stochastic operator plays an important
role, so we will present its definition and some basic properties. For a deeper
understanding of this term see works [1, 4].

Definition 1.1. Let on the probability space (Ω, F , P ) be defined two random
variables x ≡ x(ω) : Ω → R and y ≡ y(ω) : Ω → R with probability density
functions f1(x) and f2(y) respectively. Then the operator L : f1(x)→ f2(y),

f2(y) = Lf1(x) ,

is said to be the stochastic or generating operator.

Theorem 1.2 ([1]). Let on the probability space (Ω,F ,P) be defined two ran-
dom variables x, y with probability density functions f1(x) and f2(y) respecti-
vely. Let g : R→ R be differentiable monotonically increasing function such that

lim
x→−∞

g(x) = −∞ , lim
x→+∞

g(x) = +∞. Then

f1(x) = f2(g(x))dg(x)
dx

.

It should be noted that, in general, there is considered a set S of functions
f(x), x = (x1, x2, . . . , xm) ∈ Rm such that

f(x) ≥ 0,
∫

Rm

f(x)dx = 1 ,

and the operator L is mapping a set S to the itself.
If f1(x) ∈ S implies f2(y) = Lf1(x) ∈ S, then the operator L is stochastic.

A similar statement as Theorem 1.2 can also be formulated if f1, f2 are vector
functions. For this we will use the following notation

det Dg(x)
Dx

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g1(x)
∂x1

∂g1(x)
∂x2

· · · ∂g1(x)
∂xm

∂g2(x)
∂x1

∂g2(x)
∂x2

· · · ∂g2(x)
∂xm

...
...

. . .
...

∂gm(x)
∂x1

∂gm(x)
∂x2

· · · ∂gm(x)
∂xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
6= 0 ,

where g : Rm → Rm is a continuously differentiable function.

Theorem 1.3 ([1]). Let g : Rm → Rm be continuously differentiable function for
which there exists the inverse function h : Rm → Rm to g, i. e., y = g(x), x = h(y),

det Dh(y)
Dy

6= 0, and lim
‖x‖→∞

‖g(x)‖ =∞, lim
‖x‖→∞

‖h(x)‖ =∞. If on the probability

space (Ω,F ,P) are defined two random variables x : Ω → Rm, y : Ω → Rm with
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probability density functions f1(x), f2(y), respectively, x, y ∈ Rm, f1, f2 ∈ S, such
that y = g(x), x = h(y), then

f1(x) = f2(g(x))
∣∣∣∣det Dg(x)

Dx

∣∣∣∣ ,
f2(y) = f1(h(y))

∣∣∣∣det Dh(y)
Dy

∣∣∣∣ ·
First, we show a possible construction of a differential equation determining

some random process using a stochastic operator (for details see [5, 6]).
Let Lτ (t, ε) be a stochastic operator that depends on the parameter ε and is defined
for an m-dimensional probability vector P (t+ τ), τ < 0, such that there exists the
limit

lim
ε→0

Lτ (t, ε)P (t+ τ) = P (t) .

In addition, for any continuous vector function P there exists an operator

Aτ (t)P (t+ τ) = lim
ε→∞

Lτ (t, ε)P (t+ τ)− P (t)
ε

= lim
ε→0

∂Lτ (t, ε)
∂ε

P (t+ τ) .

Then the difference equation
P (t+ ε) = Lτ (t, ε)P (t+ τ), ε > 0, τ ≤ 0 ,

determines the vector of probabilities of some random process ξ(t) = ξ(t, ω),
ω ∈ Ω. This equation can be written in the form

P (t+ ε)− P (t)
ε

= Lτ (t, ε)P (t+ τ)− P (t)
ε

.

If ε→ 0 in this relation, assuming that the vector P (t) is differentiable, we obtain
a system of differential equations

(1.1) dP (t)
dt

= Aτ (t)P (t+ τ) ,

which describes some random process ξ(t) = ξ(t, ω), ω ∈ Ω.
The operator Aτ (t) in system of differential equations (1.1) is so called the gene-
rating (stochastic) operator.

2. Main results

Using the properties of stochastic operators given in Theorems 1.2 and 1.3
(see [1] for other properties), we show some constructions of generating operators
that can be used to construct systems of differential equations whose solutions are
non-Markov stochastic processes.

Theorem 2.1. Let Aτ (t) be a generating operator and let 0 < α(t) ≤ c, c ∈ R+.
Then α(t)Aτ (t) is also a generating operator.

Proof. The difference equation

P

(
t+ ε

α(t)

)
= Lτ (t, ε)P (t+ τ), 0 < α(t) ≤ c
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determines the probability vector of some random process. This equation we
rewritten into the form

P (t+ εα−1(t))− P (t)
ε

= Lτ (t, ε)P (t+ τ)− P (t)
ε

and if ε→ 0, we obtain the system of differential equations
dP (t)
dt

= α(t)Aτ (t)P (t+ τ) ,

which corresponds to equation (1.1). This proves the theorem. �

Theorem 2.2. Let A(1)
τ (t), A(2)

τ (t) be generating operators. Then A
(1)
τ (t) +A

(2)
τ (t)

is also a generating operator.

Proof. Let A(k)
τ (t), k = 1, 2 be generating operators such that

lim
ε→∞

ε−1
(
L(k)
τ (t, ε)P (t+ τ)− P (t)

)
= A(k)

τ (t)P (t+ τ) .

The difference equation

P
(
t+ ε

2

)
= 1

2

2∑
k=1

L(k)
τ (t, ε)P (t+ τ) ,

determines the probability vector of some random process. This equation we
rewritten into the form

ε−1
(
P
(
t+ ε

2

)
− P (t)

)
= 1

2

2∑
k=1

ε−2
(
L(k)
τ (t, ε)P (t+ τ)− P (t)

)
.

If ε→ 0 than we obtain the system of differential equations

dP (t)
dt

=
2∑
k=1

A(k)
τ (t)P (t+ τ) .

This proves the theorem. �

Theorem 2.3. Let A(k)
τ (t), k = 1, 2, . . . , N be generating operators and let func-

tions αk(t), k = 1, 2, . . . , N satisfy the conditions 0 < αk(t) ≤ c, c ∈ R+. Then
N∑
k=1

αk(t)A(k)
τ (t)

is also a generating operator.

Proof. The proof follows from Theorems 2.1, 2.2.
�

Now, as a consequence of Theorem 2.2, we consider possible options for construc-
ting systems of differential equations that describe the probability vector of various
random processes.
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Corollary 2.4. Let A0(t) be an m×m matrix with elements ajs(t), j, s = 1, 2, . . . ,m
such that

(2.1)
m∑
j=1

ajs(t) = 0, ajs(t) ≥ 0, j 6= s, ajj(t) ≤ 0 , j, s = 1, 2, . . . ,m .

If the elements ajs(t), j, s = 1, 2, . . . ,m are bounded, then the operator

Lτ (t, ε)P (t+ τ) ≡ P (t) +A0(t)P (t)

will be stochastic for sufficiently small values of ε > 0, where the matrix A0(t)
defines the generating operator, and the system of differential equations

dP (t)
dt

= A0(t)P (t)

determines the vector of probabilities of the finite-valued Markov process.

Corollary 2.5. Let Π(t) be an arbitrary stochastic matrix. The operator given by
the equality

Lτ (t, ε) = (1− ε)P (t) + εΠ(t)P (t− τ(t)) , τ(t) ≥ 0 ,

is stochastic when 0 ≤ ε ≤ 1. Then the system of linear differential equations
dP (t)
dt

= Π(t)
(
P (t− τ)− P (t)

)
, τ(t) ≥ 0

determines the vector of probabilities of some non-Markov random process.

Corollary 2.6. Let elements ajs(t), j, s = 1, 2, . . . ,m of matrix A0(t) satisfy (2.1)
and 0 ≤ αk(t) ≤ c, c = const, τk(t) ≥ 0, Πk(t) ∈ Lτ , k = 0, 1, 2, . . . , N . Then the
system of differential equations

(2.2) dP (t)
dt

= A0(t)P (t) +
N∑
k=0

αk(t)
(
Πk(t)P (t− τk(t))− P (t)

)
determines the vector of probabilities of some non-Markov random process.

Corollary 2.7. Let α(t, τ) ≥ 0, t ≥ 0, τ ≥ 0,
∞∫
0
α(t, τ)dτ ≤ c, c = const,

Π(t, τ) ∈ Lτ , and elements ajs(t), j, s = 1, 2, . . . ,m of matrix A0(t) satisfy (2.1).
Then, if N →∞, system (2.2) yields the system of integro-differential equations

dP (t)
dt

= A0(t)P (t) +
∫ ∞

0
α(t, τ)

(
Π(t, τ)P (t− τ)− P (t)

)
dτ ,

which determines the vector of probabilities of some non-Markov random process.

Corollary 2.8. Let F (t, x) be a vector of partial probability densities

F (t, x) =
(
f1(t, x), . . . , fn(t, x)

)
, fk(t, x) ≥ 0, k = 1, 2, . . . , n,∫

Rm

n∑
k=1

fk(t, x)dx = 1 ,
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and let Lτ (t, ε) be a stochastic operator that depends on ε ≥ 0 and is defined for
the vector F (t+ τ, x) at τ ≤ 0. We assume that lim

ε→0+
Lτ (t, ε)F (t+ τ, x) = F (t, x)

and there exists an operator Aτ (t) such that

Aτ (t)F (t+ τ, x) = lim
ε→0+

1
ε

(
Lτ (t, ε)F (t+ τ, x)− F (t, x)

)
= lim
ε→0+

∂Lτ (t, ε)
∂ε

F (t+ τ, x) .

Then the operator equation F (t+ ε, x) = Lτ (t, ε)F (t+ τ, x) determines the partial
densities of the distribution of some non-Markov random process when ε > 0.

Remark 2.9. Assuming differentiation F (t, x) with respect to t, if ε→ 0+ in the
equation

ε−1(F (t+ ε, x)− F (t, x)
)

= ε−1(Lτ (t, ε)F (t+ τ, x)− F (t, x)
)
,

we obtain a system of differential equations

(2.3) ∂F (t, x)
∂t

= Aτ (t)F (t+ τ, x)

that describes the partial distribution densities of some random process.

Theorem 2.10. Let A(k)
τ (t), k = 1, 2, . . . , N be generating operators and let

functions αk(t), k = 1, 2, . . . , N satisfy the conditions 0 < αk(t) ≤ c, c ∈ R+. Then
the system of differential equations

∂F (t, x)
∂t

=
N∑
k=0

αk(t)A(k)
τ (t)F (t+ τ, x)

determines the partial distribution densities of some random process.

Proof. It follows from Theorem 2.3, the operator

ατ (t) =
N∑
k=0

αk(t)A(k)
τ (t)

is also a generating operator. The statement then follows from (2.3). �

Corollary 2.11. Let Π be an arbitrary stochastic matrix. The generating operator
Aτ (t)F (t+ τ, x) = ΠF (t+ τ, x)− F (t, x) , τ(t) ≥ 0

corresponds to the stochastic operator
Lτ (t, ε)F (t+ τ, x) = εΠF (t+ τ, x) + (1− ε)F (t, x) , τ(t) ≥ 0 ,

and the generating operator

Aτ (t)F (t+ τ, x) = F
(
t+ τ,Ψ(t, x)

) ∣∣∣∣DΨ(t, x)
Dx

∣∣∣∣− F (t, x) , τ(t) ≥ 0

corresponds to the stochastic operator

Aτ (t, x)F (t+ τ, x) = εF
(
t+ τ,Ψ(t, x)

) ∣∣∣∣DΨ(t, x)
Dx

∣∣∣∣+ (1− ε)F (t, x), τ(t) ≥ 0,
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where y = Ψ(t, x) is differentiable vector function defined for x ∈ Rm, t ≥ 0.

Corollary 2.12. Let Πk, k = 0, 1, 2, . . . , N be n× n stochastic matrices, and let
y = Ψk(t, x), k = 0, 1, 2, . . . , N be differentiable vector functions which mutually
uniquely map Rm to Rm. Then the system of differential equations

∂F (t, x)
∂t

=
N∑
k=0

αk(t)
(

ΠkF
(
t− τk(t),Ψk(t, x)

) ∣∣∣∣det DΨk(t, x)
Dx

∣∣∣∣− F (t, x)
)
,

τk(t) ≥ 0, k = 0, 1, 2, . . . , N ,

determines the partial densities of the distribution of some non-Markov process.
When τk(t) ≡ 0, k = 0, 1, 2, . . . , N , the random process will be Markov.

Corollary 2.13. Let f(t, x) be differentiable vector function with respect to t, x and
let y = Ψ(t, x) be differentiable vector function with respect to x with projections
φk(t, x), k = 1, 2, . . . ,m. If ε→ 0, then the stochastic operator

L(1)f(t, x) = f
(
t, x+ εΨ(t, x)

)
det
(
E + ε

DΨ(t, x)
Dx

)

reduces to the generating operator

A(1)f(t, x) = div
(
f(t, x),Ψ(t, x)

)
=

m∑
k=1

∂
(
f(t, x)φk(t, x)

)
∂xk

.

Corollary 2.14. Let the stochastic operator

L(2)f(t, x) = 1
4f
(
t, x+

√
2εΦ(t, x)

)
det
(
E +

√
2εDΦ(t, x)

Dx

)
+ 1

4f
(
t, x+

√
2εΦ(t, x)

)
det
(
E −

√
2εDΦ(t, x)

Dx

)
+ 1

2f
(
t, x+ ε

2Φ(t, x)
)

det
(
E −

√
2εDΦ(t, x)

Dx

)

be given, where Φ(t, x) is a vector-function twice differentiable with respect to x,
with projections

ϕk(t, x) = grad
(
ϕk(t, x),Φ(t, x)

)
=

m∑
s=1

∂ϕk(t, x)
∂xs

ϕk(t, s) , k = 1, 2, . . . ,m .
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Then the corresponding generating operator takes the form

A(2)(t)f(t, x) = div
(

Φ(t, x)div
(
f(t, x)Φ(t, x)

))
= 1

2f(t, x)

=
(
div Φ(t, x)

)2 + 1
2

(
grad div Φ(t, x)Φ(t, x)

)
+ div Φ(t, x)

(
gradf(t, x) + 1

2

m∑
k,s=1

∂2f(t, x)
∂xk∂xs

ϕk(t, x)ϕs(t, x)
)

+ 1
2

m∑
k,s=1

∂f(t, x)
∂xk

(
gradϕk(t, x)Φ(t, x)

)
.

3. Conclusion and further research direction

The paper shows possible procedures for constructing stochastic operators
that can be used to construct differential equations with delay for analytically
given non-Markov processes. In our opinion, in the situation developing in the
modern world, when modeling with the study of decision making under uncertainty,
non-Markovian processes will dominate.

There are still many unsolved questions in the field of the construction of
non-Markovian models. Although non-Markov models describe events more realis-
tically in many situations, there is a need to focus on building such models that
will be even more personalized by incorporating domain knowledge.

The results presented here, in particular Theorem 2.3, make it possible to
construct systems of differential equations with delay of the Kolmogorov-Feller
type (see [3]), which can be used to construct moment equations for systems of
differential equations, as well as differential equations with non-Markov coefficients.
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