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Abstract. Distance metrics are at the core of many processing and machine learning algo-
rithms. In many contexts, it is useful to compute the distance between data using multiple
criteria. This naturally leads to consider vector-valued metrics, in which the distance is no
longer a real positive number but a vector. In this paper, we propose a principled way to
combine several metrics into either a scalar-valued or vector-valued metric. We illustrate
our framework by reformulating the popular structural similarity (SSIM) index and a simple
case of the Wasserstein distance used for optimal transport.
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1. Introduction

Data comparison lies at the core of many data processing tasks, such as classifi-

cation, clustering, data mining or image quality assessment. To quantify similarity

between data of any type, a natural approach is to consider them as elements of

some metric space, in which distance between points represents the degree of dissim-

ilarity. Metrics induce a topology on the space that satisfies helpful properties for

its analysis. Metric spaces are useful for bounding errors, proving convergence, and

similarity searching.

Distance metrics are often based on some underlying norm. For example, a dis-

tance between two vectors x, y in a real normed vector space (e.g., Euclidean

space Rn) can be defined as

d(x, y) = ‖x− y‖
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with ‖·‖ being an lp-norm with 1 6 p 6 ∞. In such cases, we have that for any two
vectors u, v in that space with ‖u‖ = ‖v‖:

d(x, x + u) = d(x, x + v).

An example, inspired by [18], is depicted in Fig. 1. Here, an original signal x is

combined with two different signals u and v with the same energy, resulting in two

different distorted signals: x + u looks perceptually the same as x, whereas x + v

looks different.

Figure 1. The original signal (bottom left) is added to each distortion signal (top) to gen-
erate two distorted signals (bottom middle and right): one ‘looks similar’ to the
original (bottom middle) whereas the other ‘looks different’.

We can account mathematically for such phenomena by decomposing signal x into

a component along u and a component orthogonal to u:

x = 〈x, u〉 u

‖u‖2 + x′,

where x′ is orthogonal to u. We can then define a new norm, e.g.,

(1.1) ‖x‖′ = κ|〈x, u〉|+ ‖x′‖,

where κ is a constant. In this way, by choosing an appropriate decomposition and

distance measure able to capture structure that correlates with human perception,

signals can be compared in a more perceptual way.

The choice of an optimal basis for signal representation and the distance or sim-

ilarity measure to use remains a challenging problem that is ubiquitous in the field

of signal and image processing. Naturally, the question arises of what is optimal,

which depends on the signal and task at hand. Indeed, distance metric learning (i.e.,

choosing an appropriate distance learned from the data) has shown to greatly im-

prove the performance of distance-based algorithms. Recently, several deep learning

based models have been explored for metric learning. For example, convolutional

neural networks have been used to learn distance metrics for face recognition [12],

image classification [16], image segmentation [13], and image quality assessment [9].
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On the other hand, in many contexts, it is useful to compute the distance between

signals using multiple criteria. This naturally leads to consider vector-valued metrics,

in which the distance is no longer a real positive number but a vector. In this paper,

rather than focusing on developing a new (dis)similarity measure, we propose a prin-

cipled way to combine several metrics into either a scalar-valued or vector-valued

metric. We show how some well-known (dis)similarity measures can be reformulated

within this framework. The groundwork laid here may facilitate future advances

in quantitative performance metrics, in particular in the context of signal or image

processing when signals should be compared at multiple levels of resolution or using

multiple criteria to provide complementary insights. For example, in image quality

assessment (see, e.g., [2] for a survey of numerous approaches), different concurrent

distortions may require different quality evaluation methods.

2. Generalized metrics

2.1. Formal framework. Let V be a vector space with subspaces Vj , j =

1, . . . , J , which together span the entire space. Let Pj be projections on V with

range Vj . Note that we do not assume that spaces Vj are disjoint or that projec-

tions Pj are orthogonal. We say that the family Π = {Pj}Jj=1 is total if for x ∈ V ,

Pjx = 0 ∀ j = 1, . . . , J ⇒ x = 0.

If Π is total and Φ: R
J → R+ is a norm, we can define a norm ‖·‖Π on V as

(2.1) ‖x‖Π = Φ (j 7→ ‖Pjx‖j),

where ‖·‖j is a norm on Vj . For example, ‖x‖Π =
J
∑

j=1

‖Pjx‖j is a norm. The norm Φ

is said to be monotone if for any u, v ∈ R
J
+,

Φ(u+ v) > Φ(u).

This holds, for instance, for all weighted lp-norms

Φ(u) =

( J
∑

j=1

wj |uj |p
)1/p

with 1 6 p < ∞ and wj > 0 for all j = 1, . . . , J .

The following theorem shows that if Φ is monotone, we can use it to define a dis-

tance metric on V from a vector of distance metrics, which is not necessarily the

induced distance metric from norm ‖·‖Π.
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Theorem 2.1. Let {Vj}Jj=1 be subspaces spanning a vector space V and Π =

{Pj}Jj=1, with each Pj : V 7→ Vj , being a family of projections that is total. Let Φ

be a norm that is monotone on RJ , and {dj}Jj=1 be distance metrics on, respectively,

{Vj}Jj=1. Then the mapping D
Π : V × V 7→ R+ given by

(2.2) DΠ(x, y) = Φ (j 7→ dj(Pjx, Pjy))

defines a distance metric on V for all x, y ∈ V .

P r o o f. If x = y, then dj(Pjx, Pjy) = 0 for all j = 1, . . . , J , and thus DΠ(x, y) =

Φ(0) = 0. On the other hand, ifDΠ(x, y) = 0, since Φ is a norm, dj(Pjx, Pjy) = 0 for

all j = 1, . . . , J . This implies that Pjx = Pjy, since dj is a metric. Thus, Pj(x−y) = 0

for all j = 1, . . . , J , and since the family {Pj} is total, x = y. Therefore, DΠ(x, y) =

0 ⇔ x = y. The symmetry property is straightforward. The triangle inequality

property remains to be proved. Let d(x, y) ∈ R
J
+ be the vector whose components

are dj . Since dj , j = 1, . . . , J , are metrics, they satisfy the triangular inequality and

from the assumption that Φ is monotone, we have that for any x, y, z ∈ V ,

Φ(d(x, y)) 6 Φ((d(x, z) + d(z, y)) 6 Φ(d(x, z)) + Φ(d(z, y)).

�

R em a r k 2.1. Set ̺j(x, y) := dj(Pjx, Pjy). Then the family {̺j}Jj=1 is a sepa-

rating family of pseudometrics, i.e., for any x, y ∈ V , if x 6= y, then ̺j(x, y) > 0 for

some j ∈ {1, . . . , J}.
NormΦ: R

J → R+ can be seen as a scalarization mapping of the vector of distance

metrics:

(2.3) d(x, y) = (d1(P1x, P1y), . . . , dJ (PJx, PJy)).

Scalarization methods are an important tool in the study of vector optimization.

They allow combining different measures into a single one, which in turn allows a sim-

ple and total ordering among vectors. However, for certain applications, it may be

desirable to work directly with a vector-valued function d. In this case, the standard

ordering 6 of real numbers is replaced by a partial ordering � defined on space RJ
+

(or another vector space). For example, for a, b ∈ R
J
+, the coordinate-wise ordering is

defined as: a � b ⇔ b−a ∈ R
J
+ (i.e., aj 6 bj for all j = 1, . . . , J). Thus, unlike in the

real case, distances of pairs of elements may not be comparable. We need the order

to be total so that any two elements are comparable (i.e., either a � b or b � a).

2.2. Vector metrics. The concept of (distance) metric can be extended by re-

placing the set of real numbers R in the codomain of the metric by an arbitrary

partially ordered set. Such metric spaces have been defined under various names
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(vector-valued metric space, generalized metric space, K-metric space, cone metric

space, topological ordered vector cone metric space, etc). Huang et al. [8] popular-

ized the notion of cone metric space, where R is replaced by Banach spaces. Next,

we present a short review on the concepts of cone metric spaces.

Definition 2.1. An ordered vector space E is defined as a vector space endowed

with a partial ordering � if for all x, y, z ∈ E it satisfies

(1) x � y =⇒ x+ z � y + z;

(2) x � y =⇒ αx � αy for any α ∈ R+.

Any partial order � defines a convex cone C ⊂ E by C = {x ∈ E | 0 � x}, and
any convex cone defines a partial ordering by x � y ⇔ y−x ∈ C for all x, y ∈ C. For

example, the cone representing the component-wise order in E = R
n is the positive

orthant Rn
+.

Definition 2.2. Let E be a real Banach space equipped with the partial or-

dering � with respect to cone C ⊂ E. A cone metric on a set V is a mapping

d : V × V 7→ C satisfying for all x, y, z ∈ V :

(1) d(x, y) � 0 and d(x, y) = 0 ⇔ x = y;

(2) d(x, y) = d(y, x);

(3) d(x, y) � d(x, z) + d(z, y).

Then (V, d, E) is called a cone metric space.

We focus on the particular case where this Banach space is RJ
+, with the coor-

dinate wise order x � y ⇔ xj 6 yj for all j = 1, . . . , J . This cone metric is also

called (J-dimensional) vector-valued metric. Note that the component-wise ordering

corresponds to giving the same importance to all vector components. This could be

too restrictive in some applications in which it is convenient to assign priorities to

some of the components; e.g., by imposing a lexicographic ordering x � y ⇔ ∃ j > 0

so that for all i < j we have that xi = yi and xj < yj . That is, x � y if one of

the terms xj < yj and all preceding terms are equal. This ordering yields the famil-

iar sorting used in dictionaries. It is complete in the sense that any two elements

in R
J are comparable (i.e., either x � y or y � x). The lexicographic cone of RJ is

defined as the set of all vectors whose first nonzero coordinate (if any) is positive:

Clex = {0} ∪ {x ∈ R
J | x1 = . . . = xk = 0, xk+1 > 0 for some k ∈ {1, . . . , J − 1}}.

It has been shown that a cone metric space is metrizable [1], [10]. In other words,

a cone metric d can be scalarized using a suitable mapping Φ so that D(x, y) =

Φ(d(x, y)) results in a distance metric in the usual scalar-valued sense, i.e., D : V ×
V 7→ R+, that induces the same topology as the cone metric topology induced by d.

Theorem 2.1 provides a particular procedure of scalarization.
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E x am p l e 2.1. Function d : R
J × R

J 7→ R
J
+ given by

d(x, y) = (α1|x1 − y1|, . . . , αJ |xJ − yJ |)

with αj ∈ R+ (for all j = 1, . . . , J) is an J-dimensional vector-valued metric. The

(possibly weighted) l1-norm of this vector defines a scalar distance metric

D(x, y) =

J
∑

j=1

wjαj |xj − yj |

with wj > 0 for all j = 1, . . . , J . Note that this is a particular case of Theorem 2.1,

where Φ is the weighted l1-norm, Pj is the projection on coordinate j, and dj(a, b) =

|a− b| for any a, b ∈ R.

E x am p l e 2.2. Consider an image x whose domain is divided into (possibly

overlapping) square windows w ∈ W , and define projection Pwx = x|w , where x|w
denotes the image x evaluated on window w. Denote the range by Vw and decom-

pose it as

Vw = Vw,0 ⊕ Vw,1,

where Vw,0 is the space spanned by uw, the function identically one on w, and ⊕
denotes direct sum. The projection on Vw,0 gives the average xw,0 = x̄w, whereas

the projection on Vw,1 gives the zero-mean image xw,1 = xw − x̄w.

We can compare two images x, y by measuring their distance in these two projec-

tions for each windowed region. That is, for each Vw, define the vector-value metric

dw : V × V 7→ R
2
+ as

dw(xw , yw) = (dw,0(x̄w , yw), dw,1(xw − x̄w, yw − yw)),

where dw,i, i = 0, 1 is a distance metric on Vw,i, and define a distance metric over

the whole image as

DΠ(x, y) = Φw(w 7→ Φi(i 7→ dw,i(xw,i, yw,i)).

For example, Φi (for i = 0, 1) could be the l2-norm and Φw a weighted l1-norm, so

that it computes the mean or assigns a spatially varying weight to different windows:

DΠ(x, y) =
1

|W |
∑

w∈W

(d2w,0(x̄w, yw) + d2w,1(xw − x̄w, yw − yw))
1/2,

where |W | is the cardinality of W , i.e., the number of windows.
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3. Application to data comparison

3.1. SSIM revisited. We show that the well-known structural similarity index

(SSIM) proposed by Wang et al. [17], [19] can be reformulated within the framework

in Section 2.1. We first briefly review the SSIM index.

Given two images x and y in R
n
+, let x̄ denote the mean of x, σ

2
x be the variance

of x, and σxy be the covariance between x and y. The SSIM index is defined as

(3.1) SSIM(x, y) =
2x̄y + c1

x̄2 + y2 + c1
· 2σxσy + c2
σ2
x + σ2

y + c2
· σxy + c3
σxσy + c3

,

where c1, c2, and c3 are small constants that account for the saturation effects of the

visual system at low luminance and contrast, and which guarantee stability when the

denominators are close to zero. The first component in (3.1) measures the average

luminance distortion and has a dynamic range of [0, 1]. The second component mea-

sures the contrast (variance) distortion and its range is also [0, 1]. The third factor

in (3.1) is the correlation coefficient between x and y, referred to as structural term.

The maximum value SSIM(x, y) = 1 is achieved when x and y are identical. Thus,

SSIM is a measure for the similarity of two images and takes values between−1 and 1.

Since image signals are generally non-stationary, it is appropriate to measure the

SSIM index over local regions and then combine the different results into a single

measure. In [17] the authors propose to use a sliding window approach: starting

from the top-left corner of the two images x, y, a sliding window of fixed size moves

pixel by pixel over the entire image until the bottom-right corner is reached. For

each window w, the local quality index SSIM(x, y | w) is computed for the image
patches whose pixels lie in the sliding window w. Finally, the overall image quality

index is computed by pooling, e.g., averaging, all local quality indices:

(3.2) SSIM(x, y) =
1

|W |
∑

w∈W

SSIM(x, y | w),

where W is the family of all windows and |W | is the cardinality of W .
Wang et al. [19] compared (under several types of distortions) their quality index

with existing image measures, such as the mean squared error (MSE), as well as

with subjective evaluations. Their main conclusion was that SSIM outperforms MSE

due to the index’s ability of measuring structural distortions, in contrast to MSE,

which is highly sensitive to the l2-norm of errors. Over the years, SSIM has gained

widespread popularity as a tool to assess the quality of images or as an objective

function in optimization problems, and several variants of the SSIM index have

been proposed, e.g., using a multiscale [20] or a gradient-based [5] formulation, or

including texture [11]. SSIM has even been used as a loss function for deep learning

systems [21], and it is included in platforms such as Tensorflow.
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SSIM is not a distance metric. However, as shown in [3], it can be reformulated by

considering cone-metric distances in which the cone is the positive orthant. Given

x, y ∈ R
n
+ and choosing c3 = c2/2, the SSIM index (3.1) can be decomposed as

SSIM(x, y) = S1(x, y)S2(x, y),

where S1(x, y) is the luminance distortion term defined as

S1(x, y) =
2x̄y + c1

x̄2 + y2 + c1
,

and S2(x, y) is the product of the contrast and structural distortion terms:

S2(x, y) =
2σxy + c2

σ2
x + σ2

y + c2
.

Then d1(x, y) =
√

1− S1(x, y) and d2(x, y) =
√

1− S2(x, y) are distance metrics

on R
n, and d = (d1, d2) ∈ R

2
+ is a cone-metric distance on R

n. Thus,

SSIM(x, y) = (1− d21(x, y))(1 − d22(x, y)).

Moreover, it can be shown that d1(x, y) = d1(x̄, y) and d2(x, y) = d2(x − x̄, y − y),

as in Example 2.2. In particular,

d1(x, y) =
|x̄− y|

√

x̄2 + y2 + c1
= d1(x̄, y),(3.3a)

d2(x, y) =
‖(x− x̄)− (y − y)‖

√

‖x− x̄‖2 + ‖y − y‖2 + (n− 1)c2
= d2(x− x̄, y − y),(3.3b)

which can be seen as normalized root mean square errors. This is interesting, since

it suggests a link with MSE, which was already noticed experimentally and theo-

retically by Horé and Ziou [7], and Dosselman and Yang [6]. Indeed, S2 essentially

computes the MSE between normalized patches (i.e., using (x− x̄)/σx instead of x).

Such a normalization—similar to a divisive normalisation [15]—accounts for the

contrast masking effect in the visual system.

3.2. Wasserstein distance between Gaussian distributions revisited. For

some image processing tasks, it is more relevant to compare probability density

functions rather than the intensity levels themselves. One way of doing so is by

Monge-Kantarovich optimal transport and the associated Wasserstein distance met-

ric [14]. Here, we focus on the simple case where the probability distributions are
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Gaussians and reformulate the 2-Wasserstein distance using the proposed framework

in Section 2.1.

Let X ∼ (µx,Σx), Y ∼ (µy,Σy) be two Gaussian distributions on R
n, n > 1. The

2-Wasserstein distance between distributions X and Y has a closed-form expression

(3.4) W 2
2 (X,Y ) = ‖µx − µy‖2 + d2B(Σx,Σy),

where dB is the Bures metric proposed in quantum information geometry [4] and is

defined as

d2B(A,B) := tr(A+B − 2(A1/2BA1/2)1/2)

for semi-definite positive matrices A,B, where tr(·) is the trace operator. We can
rewrite the Wasserstein distance in (3.4) as

W2(X,Y ) = Φ(d(X,Y )) = Φ(d1(µx, µy), d2(Σx,Σy)),

where Φ is the l2-norm, d1 is the l
2-distance, and d2 corresponds to the Bures dis-

tance. Furthermore, d1(µx, µy) = d1(P1x, P1y) with P1 being the expectation oper-

ator, and d2(Σx,Σy) = d2(P2x, P2y) with P2 being the covariance operator. If the

covariance matrices are diagonal, i.e., Σx = diag σx,Σy = diag σy , the Bures distance

reduces to the Hellinger metric, i.e., d2(σx, σy) = ‖√σx −√
σy‖.

4. Conclusions

In this work, we propose to use vector-valued distance metrics to simultaneously

consider several metrics, and we provide a principled way to combine them into

a single-valued metric. This naturally arises in many contexts of signal and image

processing tasks, where signals are compared at multiple levels of resolution or using

multiple criteria to provide complementary insights, or when dealing with images

of higher dimensions, such as color and hyperspectral images. We illustrate the

framework by reformulating the popular SSIM index for image comparison and the

2-Wasserstein distance between Gaussian distributions.
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