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Abstract. The main purpose of the present paper is to study the asymptotic behavior
(when ε → 0) of the solution related to a nonlinear hyperbolic-parabolic problem given in
a periodically heterogeneous domain with multiple spatial scales and one temporal scale.
Under certain assumptions on the problem’s coefficients and based on a priori estimates
and compactness results, we establish homogenization results by using the multiscale con-
vergence method.
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1. Introduction

We study the asymptotic behavior, when ε → 0, of the solution uε in relation to

the nonlinear hyperbolic-parabolic problem

(1.1)











αεu′′ε + βεu′ε − div(Aε(x, t)∇uε) + F ε(x, uε) = f in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),

uε(x, 0) = g(x), αε(x)u′ε(x, 0) =
√

αε(x)̺(x) in Ω,

where Ω is a bounded open subset of RN with a Lipschitz-continuous boundary, T is

a real positive number and u′ = ∂u/∂t. Here div denotes the divergence operator

in Ω and we assume that (f, g, ̺) ∈ L2(ΩT )×H1
0 (Ω)×L2(Ω), αε, βε, Aε and F ε are

functions of the form

αε(x) = α
( x

ε1
,
x

ε2
, . . . ,

x

εm

)

, βε(x) = β
( x

ε1
,
x

ε2
, . . . ,

x

εm

)

, x ∈ Ω,

Aε(x, t) = A
( x

ε1
,
x

ε2
, . . . ,

x

εm
,
t

ε′1

)

, (x, t) ∈ Ω× (0, T ),
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and

F ε(x, λ) = F
( x

ε1
,
x

ε2
, . . . ,

x

εm
, λ

)

, a.e. x ∈ Ω and ∀λ ∈ R,

respectively, where α, β, A, and F are functions satisfying a certain hypothesis.

Here εi, 1 6 i 6 m, and ε′1 are positive scales of ε > 0, which converge to zero

as ε tends to zero and satisfy

(1.2) lim
ε→0

1

ε1

(ε′1
ε1

)

= 0, lim
ε→0

1

ε′1

(ε2
ε′1

)

= 0 and lim
ε→0

1

εk

(εk+1

εk

)

= 0

for 2 6 k 6 m− 1. Using the multiscale convergence method, it is shown that under

the above assumptions, when ε → 0, the sequence (uε)ε>0 of the solutions of the

problem (1.1) converges to u0 strongly in L
2(0, T ;L2(Ω)) and u0 is the solution of

a problem of the same type as (1.1).

In literature, several problems similar to ours have been studied. For example, the

linear case, where F ε ≡ 0, was studied by Bensoussan, Lions and Papanicolaou [2]

in 1977. In 1996 Migorski [10] was the first to address the homogenization problem

for hyperbolic-parabolic equations in perforated domains using the energy method,

too. Yang, Zhao [13] in 2016 treated the same problem as Migorski using the peri-

odic unfolding method. One year later, Douanla, Tetsadjio [6] considered the same

problem as Bensoussan by means of reiterated homogenization in domains with tiny

holes.

In this paper, we use multiscale convergence method to treat the homogenization

of our problem. This method was developed in 1996 by Allaire and Briane [1] as

a generalisation of the two-scale convergence [11]. Two-scale convergence was used

in 2005 by Holmbom [9] to homogenize linear parabolic problems with both spatial

and temporal microscale.

Here, we prove new results for homogenization of a hyperbolic-parabolic problem

with multiple spatial scales and one temporal scale, when we take a nonlinear term F

and consider the matrix Aε to be depending only on space and time.

The paper is organized as follows: In Section 2, we specify the assumptions about

our problem and we give results about the multiscale convergence method, and then

we give a result about the existence and uniqueness of the homogenized problem. In

Section 3, we state and prove the main results of this paper and finish by comments

and perspectives.

In this paper, we use the following notations:

⊲ Ω× (0, T ) is denoted by ΩT ,

⊲ (·, ·)2 (‖·‖2, respectively) denotes the scalar product in L2(Ω) (the norm of

L2(Ω), respectively),

⊲ 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω),
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⊲ ifX is a Banach space, then we denote by L2(ΩT , X) the Banach space of vector

valued functions v : ΩT → X which are measurable and ‖v(x, t)‖X ∈ L2(ΩT )

with the norm ‖v‖2L2(ΩT ,X) =
∫

ΩT
‖v(x, t)‖2X dxdt,

⊲ E is a fundamental sequence (it means any ordinary sequence of real numbers

0 < εn 6 1 such that εn → 0 as n→ ∞),
⊲ Y = (0, 1)N is the unit cube in R

N and T = (0, 1),

⊲ B(RN ) is a given function space,

⊲ Bper(R
N ) is the space of functions in Bloc(R

N ) which are Y -periodic,

⊲ B#(R
N ) is the space of functions v ∈ Bper(R

N ) such that
∫

Y v(y) dy = 0,

⊲ Yk = Y , Y m = Y1 × . . .× Ym, y
m = (y1, . . . , ym) and dym = dy1 . . . dym,

⊲ MY m(ϕ) =
∫

Y m ϕ(ym) dym for ϕ ∈ L1(Y m),

⊲ ⊗ is the tensor product defined as follows: for the function spaces B(ΩT ),

B(Y1), . . . , B(Ym) and B(T ), B(ΩT )⊗B(Y1)⊗ . . .⊗B(Ym)⊗B(T ) stands for

the space of linear combinations of elements ψ0 ⊗ψ1 ⊗ . . .⊗ψm+1 such that for

every (x, t, ym, τ) ∈ Ω× (0, T )× Y m × T , we have

(ψ0 ⊗ ψ1 ⊗ . . .⊗ ψm+1)(x, t, y
m, τ) = ψ0(x, t)ψ1(y1) . . . ψm(ym)ψm+1(τ),

⊲ c and C denote generic constants which do not depend on ε.

2. Assumptions, multi-scale convergence and preliminary result

2.1. Assumptions. Let Ω ⊂ R
N be an open and bounded set with Lipschitz

continuous boundary. We consider the nonlinear hyperbolic-parabolic problem (1.1)

and we assume that:

(A.1) αε and βε are functions defined as αε(x) = α(x/ε1, . . . , x/εm) and βε(x) =

β(x/ε1, . . . , x/εm) with α(ym) ∈ L∞(RmN ), β(ym) ∈ L∞(RmN ) that satisfy

α(ym) > 0 a.e. in R
mN ,

β(ym) > β0 > 0 a.e. in R
mN .

(A.2) The mapping (ym, τ) 7→ aij(y
m, τ) satisfies the following properties:

(i) A(ym, τ) = (aij(y
m, τ))16i,j6N ∈ (L∞(RmN+1))N×N is real and symmet-

ric matrix.
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(ii) there exist positive constants µ1, µ2 with 0 < µ1 6 µ2 such that

Aξiξj > µ1|ξ|2 for a.e. (ym, τ) ∈ R
mN+1 and all ξ ∈ R

N ,

‖aij‖L∞(RmN+1) 6 µ2 ∀ 6 i, j 6 N.

(iii) for almost every ym ∈ R
mN and for all 1 6 i, j 6 N , the function

τ → aij(y
m, τ) admits a time derivative ∂aij/∂τ which is a measurable

function and there exist η0 > 0 and a positive constant µ3 such that

η
∣

∣

∣

∂aij
∂τ

(ym, τ)
∣

∣

∣
6 µ3 ∀ η > η0 and a.e. (y

m, τ) ∈ R
mN+1.

(A.3) The periodicity of sum functions:

(i) For any 1 6 i, j 6 N, the function (ym, τ) 7→ aij(y
m, τ) is Y m × T -

periodic.

(ii) The functions ym 7→ α(ym), β(ym) are Y m-periodic and the function α

satisfies

MY m(α) > 0.

(iii) The function ym 7→ F (ym, ·) is Y m-periodic.

(A.4) For all λ ∈ R and for all ym ∈ R
mN , the function (ym, λ) 7→ F (ym, λ) from

R
mN+1 to R is continuous, monotonously non-decreasing with respect to λ for

any ym and satisfies:

(i) F (ym, 0) = 0 for any ym ∈ R
mN .

(ii) There exists a constant q satisfying q > 0 if N = 1, 2 and if N > 3,

0 < q < 2/(N − 2) and there exists a positive constant c0 such that

|F (ym, λ)| 6 c0(1 + |λ|q+1) a.e. in R
mN ∀λ in R.

(iii) For any ym ∈ R
mN and λ1, λ2 ∈ R there exists c1 > 0 such that

|F (ym, λ1)− F (ym, λ2)| 6 c1|λ1 − λ2|.

(iv) (·, λ) 7→ G(·, λ) =
∫ λ

0 F (·, s) ds is a non-negative function for any λ ∈ R.

R em a r k 2.1. For each ε fixed, Theorems 1 and 2 in [4] prove the existence and

uniqueness of (1.1). See also [5] and [14]. The assumptions on the data assure the

existence and uniqueness of the solution uε related to the problem (1.1) such that:

(i) uε ∈ L∞(0, T ;H1
0 (Ω)),

(ii) u′ε ∈ L2(0, T ;L2(Ω)).
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2.2. Multi-scale convergence method. As mentioned above, the homoge-

nization of the problem (1.1) is obtained by using the (m + 1, 2)-scale conver-

gence method. In this section, we recall the definition and some results related to

this method.

Note that according to (1.2), the lists {ε1, . . . , εm} and {ε′1} of spatial and temporal
scales, respectively, are jointly well-separated in sense of Definition 2 in [7]. Then,

the followings results are direct consequences of Definition 1 in [7], Proposition 2

in [8] and Theorem 2.10 in [12], respectively.

Definition 2.1. A sequence (uε) in L
2(ΩT ) is said to (m + 1, 2)-scale converge

to a limit v ∈ L2(ΩT × Y m × T ) (denoted by uε
(m+1,2)
⇀ v) if, as ε→ 0,

(2.1) lim
ε→0

∫

ΩT

uε(x, t)ϕ
(

x, t,
x

ε1
, . . . ,

x

εm
,
t

ε′1

)

dxdt

=

∫

ΩT

∫

Y m

∫

T

v(x, t, ym, τ)ϕ(x, t, ym, τ) dτ dym dxdt

for all ϕ ∈ L2(ΩT ; Cper(Y m × T )).

Proposition 2.1. Suppose that ϕ ∈ L2(ΩT ; Cper(Y m × T )). Then

ϕ
(

x, t,
x

ε1
, . . . ,

x

εm
,
t

ε′1

)

(m+1,2)
⇀ ϕ(x, t, ym, τ),

as ε goes to zero.

Theorem 2.1. Let (uε)ε be a bounded sequence in L
2(0, T ;H1

0 (Ω)) with (∂tuε)ε

bounded in L2(0, T ;H−1(Ω)). Then, up to a subsequence, as ε→ 0,

uε → u0 in L2(ΩT ),

uε ⇀ u0 in L2(0, T ;H1
0(Ω)),

∇uε
(m+1,2)
⇀ ∇u0 +

m
∑

i=1

∇yi
ui,

where u0 ∈ L2(0, T ;H1
0 (Ω)), ∂tu0 ∈ L2(0, T ;L2(Ω)), u1 ∈ L2(ΩT × T ;H1

#(Y1)) and

uk ∈ L2(ΩT × Y k−1 × T ;H1
#(Yk))), 2 6 k 6 m.

R em a r k 2.2. If (uε)ε ⊂ L2(ΩT ) and v ∈ L2(ΩT × Y m × T ) are such that

uε
(m+1,2)
⇀ v, then (2.1) still holds for ϕ ∈ C(ΩT ;L

∞
per(Y

m × T )).
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2.3. Preliminary results. Let V = {v ∈ L2(0, T ;H1
0 (Ω)): v

′ ∈ L2(0, T ;L2(Ω))}
be the Banach space with the norm

‖v‖V = ‖v‖L2(0,T ;H1
0 (Ω)) + ‖v′‖L2(0,T ;L2(Ω)).

So, the space

V0 =
{

v ∈ V : v(0) = g and v′(0) =
MY m(

√
α)

MY m(α)
̺
}

is a Banach space with the relative topology on V . Introduce the space

V = V0 × L2(ΩT ;H
1
#(Y1))× . . .× L2(ΩT ;L

2(Y m−1 × T ;H1
#(Ym)))

with the norm

‖u‖2V = ‖u0‖2V0
+ ‖∇y1u1‖2L2(ΩT ;L2(Y1))

+ ‖∇y2u2‖2L2(ΩT ;L2(Y 2×T ))

+ . . .+ ‖∇ym
um‖2L2(ΩT ;L2(Y m×T )), u = (u0, u1, . . . , um) ∈ V ,

and set

E = D(Ω) ⊗D(]0, T [), E1 = E ⊗ C∞
# (Y1)

and

Ek = E ⊗ C∞
per(Y1)⊗ . . .⊗ C∞

# (Yk)⊗ C∞
per(T ), 2 6 k 6 m.

Then V is a Banach space and further E × E1 × . . .× Em is dense in V .
Consider the following variational problem:

(2.2)



































Find u = (u0, . . . , um) ∈ V : MY m(α)(u′′0 , v0)L2(ΩT )

+MY m(β)(u′0, v0)L2(ΩT )

+

∫ T

0

a(u(t), v(t)) dt+ (H(u0), v0)L2(ΩT )

= (f, v0)L2(ΩT ) ∀ v = (v0, . . . , vm) ∈ V ,
where the bilinear form a and the function H are defined as

(2.3)

a(u, v) =

N
∑

i,j=1

∫

ΩT

∫

Y m

∫

T

aij∂ju∂iv dxdy
m dτ and H(λ) =

∫

Y m

F (ym, λ) dym

for u, v ∈ V , λ ∈ R and

∂jw =
∂w0

∂xj
+

m
∑

k=1

∂wk

(∂yk)j

for w = (w0, w1, . . . , wm) ∈ V .

Lemma 2.1. The variational problem (2.2) has at most one solution.
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P r o o f. The variational problem (2.2) is equivalent to the system consisting of

the following equations:



























u0 ∈ V0 : MY m(α)

∫

ΩT

u′′0v0 dxdt+MY m(β)

∫

ΩT

u′0v0 dxdt

+

∫

ΩT

H(u0)v0 dxdt+

∫

ΩT

∫

Y m

∫

T

A(ym, τ)∇u∇v0 dτ dym dxdt

= (f, v0)L2(ΩT ) ∀ v0 ∈ V0,

(2.4)







u1 ∈ L2(ΩT ;H
1
#(Y1)) :

∫

ΩT

∫

Y m

∫

T

A(ym, τ)∇u∇y1v1 dτ dy
m dxdt = 0

∀ v1 ∈ L2(ΩT ;H
1
#(Y1)),

(2.5)

and

(2.6)



















uk ∈ L2(ΩT ;L
2(Y k−1 × T ;H1

#(Yk))) :
∫

ΩT

∫

Y m

∫

T

A(ym, τ)∇u∇yk
vk dτ dy

m dxdt = 0

∀ vk ∈ L2(ΩT ;L
2(Y k−1 × T ;H1

#(Yk))), 2 6 k 6 m,

where ∇u = ∇u0 +
m
∑

k=1

∇yk
uk. Setting k = m in (2.6) and taking vm = ϕ0 ⊗ ϕ1 ⊗

. . .⊗ ϕm ⊗ ψ with ϕ0 ∈ D(ΩT ), ϕk ∈ C∞
per(Yk) (1 6 k 6 m− 1), ϕm ∈ C∞

# (Ym) and

ψ ∈ C∞
per(T ), we obtain, for almost all (x, t, ym−1, τ) ∈ ΩT × Y m−1 × T , that the

function ym 7→ um(x, t, ym−1, ym, τ) solves the equation

(2.7) −divym
(A∇ym

um) =

(

∇u0 +
m−1
∑

i=1

∇yi
ui

)(

divym

∑

j

aij · ej
)

in Ym,

where ej ∈ R
N is the j-th canonical unit vector having 1 in its j-th component and

zeros elsewhere. Moreover, if u1m and u
2
m are two solutions to (2.7), then u

1
m − u2m is

the solution of

(2.8)

∫

Ym

A∇ym
(u1m − u2m)∇ξ dym = 0 ∀ ξ ∈ H1

per(Ym).

Let ξ = u1m − u2m in (2.8). Then, the properties of the matrix A give

µ1‖∇ym
(u1m − u2m)‖L2(Ym) 6 0.

So, ∇ym
(u1m − u2m) = 0 almost everywhere in Ym. Then u

1
m − u2m is constant in Ym.

But MYm
(u1m − u2m) = 0 which implies that u1m − u2m = 0 in Ym. By the same

methodology, we deduce that each problem in (2.6) and also the problem (2.5)

have a unique solution. Note that if u10 and u
2
0 are solutions to (2.4), then, by
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the uniqueness of uk, 1 6 k 6 m, we can suppose that u1 = (u10, u1, . . . , um) and

u2 = (u20, u1, . . . , um) are solutions to (2.2). Then w = (u10 − u20, 0, . . . , 0) is the

solution to

(2.9) (MY m(α)w′′
0 +MY m(β)w′

0 +H(u10)−H(u20), ϕ)L2(ΩT )

+

∫

ΩT

∫

Y m

∫

T

A(ym, τ)∇w0∇ϕdτ dym dxdt = 0 ∀ϕ ∈ V0,

where w0 = u10 − u20. Taking ϕ ∈ E in (2.9), we obtain the equation

MY m(α)w′′
0 +MY m(β)w′

0 − div(A∗∇w0) + (H(u10)−H(u20)) = 0 in E ′,

where A∗ :=
∫

Y m

∫

T
A(ym, τ) dym dτ . Multiplying the above equation by w′

0, inte-

grating over Ω and then integrating by parts, we get

1

2

∂

∂t

(

MY m(α)‖w′
0‖22 +

∫

Ω

A∗∇w0∇w0 dx

)

+MY m(β)‖w′
0‖22 + (H(u10)−H(u20), w

′
0)2 = 0.

Integrating the above equation over ]0, t[, t > 0, with the fact that w0(0) = 0 and

w′
0(0) = 0 gives

MY m(α)
1

2
‖w′

0(t)‖22 +MY m(β)

∫ t

0

‖w′
0(s)‖22 ds+

1

2

∫

Ω

A∗∇w0∇w0 dx

= −
∫ t

0

(H(u10(s))−H(u20(s)), w
′
0(s))2 ds.

Assumption (A.4) (iii), the Hölder and Poincaré inequalities imply that
∣

∣

∣

∣

∫ t

0

(H(u10(s)) −H(u20(s)), w
′
0(s))2 ds

∣

∣

∣

∣

6
c1
2

∫ t

0

‖w0(s)‖22 ds+
c1
2

∫ t

0

‖w′
0(s)‖22 ds

6
c1cΩ
2

∫ t

0

‖∇w0(s)‖22 ds+
c1
2

∫ t

0

‖w′
0(s)‖22 ds

and by assumption (A.2) we have
∫

Ω

A∗∇w0∇w0 dx > µ1

∫

Ω

|∇w0(t)|2 dx.

We deduce the existence of a real number C > 0 depending only on Ω and c1 such that

MY m(α)
1

2
‖w′

0(t)‖22 + µ1

∫

Ω

|∇w0(t)|2 dx 6 C

∫ t

0

(‖∇w0(s)‖22 + ‖w′
0(s)‖22) ds.

Applying Gronwalls lemma in the last inequality we obtain w0 = 0, i.e.,

u10 = u20 a.e. in ΩT .

�
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3. Homogenization results

We can now state the main results of this paper.

Theorem 3.1. Assume that the hypotheses (A.1)–(A.4) hold. Let (uε)ε>0 be

the sequence of solutions to (1.1), E being a fundamental sequence. Then, there

exist m+ 1 functions (u0, u1, . . . , um) ∈ V such that, as ε → 0, uε converges weakly

to u0 in L
2(0, T ;H1

0 (Ω)) and ∇uε (m + 1, 2)-scale converges to ∇u0 +
m
∑

k=1

∇yk
uk,

(u0, u1, . . . , um) is the unique solution to (2.2). The functions u1, uk (2 6 k 6 m−1)

and um are defined as the solutions of the elliptic equations

(3.1)



















































−divy1

(
∫

Y2

. . .

∫

Ym

∫

T

(

A

(

∇u0 +
m
∑

i=1

∇yi
ui

))

dy2 . . . dym dτ

)

= 0,

−divyk

(
∫

Yk+1

. . .

∫

Ym

(

A

(

∇u0 +
m
∑

i=1

∇yi
ui

))

dyk+1 . . . dym

)

= 0,

2 6 k 6 m− 1,

−divym

(

A

(

∇u0 +
m
∑

i=1

∇yi
ui

))

= 0,

respectively.

Corollary 3.1. The function u0 is also the unique solution of the homogenized

problem

(3.2)







MY m(α)u′′0 +MY m(β)u′0 − div(A∗∇u0) +H(u0) = f in ΩT ,

u0(x, 0) = g(x), u′0(x, 0) =
MY m(

√
α)

MY m(α)
̺(x) in Ω,

where the matrix A∗ is defined by

A∗ξ =

∫

Y1

. . .

∫

Ym

∫

T

A(y1, . . . , ym, τ)

(

ξ +

m
∑

j=1

∇yj
uj

)

dym dτ

for all ξ ∈ R
N with uk (1 6 k 6 m) are functions defined in (3.1). The nonlinear

term H is defined in (2.3).

To prove the main results, we need to establish the limits of some terms in (1.1)

in order to obtain the problem (2.2). To begin with we formulate the following

preliminary results.
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Proposition 3.1. Under the hypotheses (A.1)–(A.4), the following estimates

hold:

‖uε‖L∞(0,T ;H1
0 (Ω)) 6 C,(3.3)

‖u′ε‖L2(0,T ;L2(Ω)) 6 C,(3.4)
∥

∥

√
αεu′ε

∥

∥

L∞(0,T ;L2(Ω))
6 C,(3.5)

‖F ε(·, uε)‖L2(0,T ;L2(Ω)) 6 C,(3.6)

where C is a positive constant which does not depend on ε.

P r o o f. The variational formulation of (1.1) is

(3.7)











Find uε ∈ L∞(0, T ;H1
0(Ω)) and

√
αεu′ε ∈ L∞(0, T ;L2(Ω)) such that:

〈αεu′′ε (t), v〉 + (βεu′ε(t), v)2 + (Aε(t)∇uε,∇v)2
+(F ε(x, uε(t)), v)2 = (f(t), v)2 in D′(]0, T [) ∀ v ∈ H1

0 (Ω).

Let t ∈ ]0, T [. Taking v = u′ε(t) in (3.7) and using (A.4) (iv), we obtain

(3.8)
∂

∂t

[

1

2

∥

∥

√
αεu′ε

∥

∥

2

2
+

1

2

∑

i,j

∫

Ω

aεij(t)
∂uε
∂xi

∂uε
∂xj

dx+

∫

Ω

Gε(x, uε) dx

]

+ (βεu′ε, u
′
ε)2

=
1

2ε′1

∫

Ω

(∂A

∂τ

)ε

(t)∇uε∇uε dx+ (f, u′ε)2,

where Gε(x, v) = G(x/ε1, . . . , x/εm, v) > 0 (v ∈ R). Using assumption (A.2) (iii),

we get

(3.9) ∃ ε0 > 0 :
1

ε′1

∣

∣

∣

(∂A

∂τ

)ε

(x, t)
∣

∣

∣
6 µ3 ∀ 0 < ε′1 6 ε0 and a.e. (x, t) ∈ ΩT .

Integrating the inequality (3.8) over the interval ]0, t[ and using (3.9), (A.1) and the

fact that Gε > 0, we obtain

1

2

∥

∥

√
αεu′ε(t)

∥

∥

2

2
+ β0

∫ t

0

‖u′ε(s)‖22 ds+
1

2

∑

i,j

∫

Ω

aεij(t)
∂uε
∂xi

∂uε
∂xj

dx

6
µ3

2

∫ t

0

‖∇uε(s)‖22 ds+
∫ t

0

(f(s), u′ε(s))2 ds+
1

2
‖̺(x)‖22

+

∫

Ω

Gε(x, g(x)) dx+
1

2

∫

Ω

Aε(x, 0)∇g(x) · ∇g(x) dx.

162



Since (f, g, ̺) ∈ L2(ΩT ) × H1
0 (Ω) × L2(Ω), by the continuous embedding theorem,

the Hölder inequality and assumption (A.2), we have

1

2

∥

∥

√
αεu′ε(t)

∥

∥

2

2
+ β0

∫ t

0

‖u′ε(s)‖22 ds+
µ1

2
‖∇uε(t)‖22

6
µ3

2

∫ t

0

‖∇uε(s)‖22 ds+
β0
2

∫ t

0

‖u′ε(s)‖22 ds

+ µ2‖∇g(x)‖2L2(Ω) + c‖g‖q+2
H1

0(Ω)
+K

with β0 being the constant defined in (A.1). Since g ∈ H1
0 (Ω), then

1

2

∥

∥

√
αεu′ε(t)

∥

∥

2

2
+
β0
2

∫ t

0

‖u′ε(s)‖22 ds+
µ1

2
‖∇uε(t)‖22 6 c

∫ t

0

‖∇uε(s)‖22 ds+ C.

Gronwall’s inequality implies that there exists a constant C which is independent of

ε such that
∥

∥

√
αεu′ε(t)

∥

∥

2

2
+

∫ t

0

‖u′ε(s)‖22 ds+ ‖uε(t)‖2H1
0 (Ω) 6 C

for all t ∈]0, T [, which implies that the estimates (3.3)–(3.5) hold. Moreover, in view
of part (ii) of assumption (A.4) and the continuous embedding theorem, we have

‖F ε(x, uε)‖L2(0,T ;L2(Ω)) 6 ‖c0(1 + |uε|q+1)‖L2(0,T ;L2(Ω))

6 cΩ,T + c0

(
∫ T

0

‖uε(t)‖q+1
(L2(q+1)(Ω))

dt

)1/2

6 cΩ,T + c0cΩ

(
∫ T

0

‖uε(t)‖q+1
H1

0 (Ω)
dt

)1/2

6 C,

where C is a constant independent of ε. Then, we have the estimate (3.6). �

In the following, we present a result about the convergence of the problem (1.1).

Proposition 3.2. Let (uε)ε>0 be the sequence of solutions to (1.1), E being

a fundamental sequence and let F : R
mN ×R → R be a function satisfying assump-

tions (A.3) (iii) and (A.4) (ii)–(iii). Then, up to a subsequence, as E ∋ ε→ 0,

uε → u0 in L2(ΩT ),(3.10)

u′ε⇀u′0 in L2(ΩT ),(3.11)

∇uε
(m+1,2)
⇀ ∇u0 +

m
∑

k=1

∇yk
uk,(3.12)

F ε(x, uε)
(m+1,2)
⇀ F (ym, u0),(3.13)

where u0 ∈ L2(0, T ;H1
0 (Ω)), ∂tu0 ∈ L2(0, T ;L2(Ω)), u1 ∈ L2(ΩT × T ;H1

#(Y1)) and

uk ∈ L2(ΩT × Y k−1 × T ;H1
#(Yk)), 2 6 k 6 m.
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P r o o f. The inequalities (3.3), (3.4) and Theorem 2.1 imply that there exists

(u0, u1, . . . , um) ∈ L2(0, T ;H1
0(Ω)) × L2(ΩT × T ;H1

#(Y1))× . . .× L2(ΩT × Y m−1 ×
T ;H1

#(Ym)) such that (3.10)–(3.12) hold as E ∋ ε → 0. By assumptions (A.3) (iii),

(A.4) (ii) and the continuous embedding theorem, it follows that F (ym, u0(x, t)) lies

in L2(ΩT ; Cper(Y m)) which implies, by Proposition 2.1, that

F ε(x, u0(x, t))
(m+1,2)
⇀ F (ym, u0(x, t)),

and for all ψ ∈ L2(ΩT ; Cper(Y m)) we can write

∫

ΩT

F ε(x, uε)ψ
ε dxdt−

∫

ΩT

∫

Y m

F (ym, u0(x, t))ψ dym dxdt

=

∫

ΩT

(F ε(x, uε)− F ε(x, u0))ψ
ε dxdt+

∫

ΩT

F ε(x, u0)ψ
ε dxdt

−
∫

ΩT

∫

Y m

F (ym, u0(x, t))ψ dym dxdt.

The convergence (3.10) and Assumption (A.4) (iii) imply that the auxiliary re-

sult (3.13) holds. �

Lemma 3.1. The function u1 given by Proposition 3.2 lies in L2(ΩT ;H
1
#(Y1))

(i.e., the function u1 is independent of τ).

P r o o f. Let ϕ be the mapping of ΩT × R
N × R into R given by

ϕ(x, t, y1, τ) = ϕ1(x, t)ϕ2(y1)ϕ3(τ), (x, t) ∈ ΩT , y1 ∈ Y1, τ ∈ T ,

with ϕ1 ∈ D(Ω)⊗D(]0, T [), ϕ2 ∈ C∞
# (Y1) and ϕ3 ∈ C∞

per(T ). We consider the function

ϕε ∈ D(ΩT ) where

ϕε(x, t) =
(ε′1)

2

ε1
ϕ
(

x, t,
x

ε1
,
t

ε′1

)

, (x, t) ∈ ΩT ,

and ϕ ∈ D(ΩT ) ⊗ C∞
# (Y1) ⊗ C∞

per(T ). Multiplying the equation (1.1) by ϕε and

integrating over ΩT , we get

(3.14)

∫

ΩT

αεu′′εϕ
ε dxdt+

∫

ΩT

(βεu′ε + F ε(x, uε)− f)ϕε dxdt

+

∫

ΩT

Aε∇uε∇ϕε dxdt = 0.
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At first, by the Hölder inequality we have

∫

ΩT

(βεu′ε + F ε(x, uε)− f)ϕε dxdt 6
(ε′1)

2

ε1
‖βεu′ε + F ε(x, uε)− f‖L2(ΩT )‖ϕ‖L2(ΩT )

and
∫

ΩT

Aε∇uε∇ϕε dxdt =

∫

ΩT

Aε∇uε
( (ε′1)

2

ε1
∇ϕ+

(ε′1
ε1

)2

∇y1ϕ
)

dxdt

6 ‖Aε∇uε‖L2(ΩT )

( (ε′1)
2

ε1
‖∇ϕ‖L2(ΩT ) +

(ε′1
ε1

)2

‖∇y1ϕ‖L2(ΩT )

)

.

As E ∋ ε → 0, the separation of the scales ε1 and ε
′
1 in (1.2), assumptions (A.1)

and (A.2) (i), and a priori estimates (3.3) and (3.6) give that the second and the

third term in the left-hand side in (3.14) converge to zero. Concerning the first term

in (3.14), we observe that

∫

ΩT

αεu′′εϕ
ε dxdt =

∫

ΩT

[ (ε′1)
2

ε1
αεuε

(∂2ϕ

∂t2

)ε

+2
ε′1
ε1
αεuε

( ∂2ϕ

∂t∂τ

)ε

+αε uε
ε1

(∂2ϕ

∂τ2

)ε]

dxdt.

Using Theorem 2.6 in [3], (1.2), (3.3) and Theorem 7 in [7] we obtain
∫

ΩT

αεu′′εϕ
ε dxdt→ 0 +MY m(α)

∫

ΩT

∫∫

Y1T

u1(x, t, y1, τ)
∂ϕ

∂τ2
dτ dy1 dxdt.

Then,

MY m(α)

∫

ΩT

∫

Y1

ϕ1(x, t)ϕ2(y1)

(
∫

T

u1(x, t, y1, τ)
∂ϕ3

∂τ2
(τ) dτ

)

dy1 dxdt = 0.

It results from the arbitrariness of ϕ1, ϕ2 and assumption (A.3) (ii) that

∫

T

u1(x, t, y1, τ)
∂2ϕ3

∂τ2
(τ) ds = 0 ∀ϕ3 ∈ C∞

per(T ).

Choosing ϕ3(τ) = e−2iπlτ (l ∈ Z \ {0}), we obtain that

(3.15)

∫

T

u1(x, t, y1, τ)e
−2iπlτ dτ = 0 ∀ l ∈ Z \ {0}.

The properties of the Fourier series expansion and the periodicity of the function

u1 : T → R give

u1(x, t, y1, τ) =
∑

l∈Z

ale
2iπlτ where al =

∫

T

u1(x, t, y1, τ)e
−2iπlτ dτ.

Thanks to (3.15) this gives al = 0 for all l ∈ Z\{0}, so u1 = a0 =
∫ 1

0 u1(x, t, y1, τ) dτ.

That means that the function u1 does not depend on the variable τ . �
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P r o o f of Theorem 3.1. According to Lemma 3.1 we can use the test functions

of the form

vε(x, t) = v0(x, t) + ε1v1

(

x, t,
x

ε1

)

+

m
∑

k=2

εkvk

(

x, t,
x

ε1
, . . . ,

x

εk
,
t

ε′1

)

with (v0, v1, . . . , vm) ∈ E × E1 × . . .× Em. Multiplying the equation (1.1) by vε, and
integrating over ΩT , we obtain

(3.16)

∫

ΩT

αεuεv
′′
ε dxdt+

∫

ΩT

βεu′εvε dxdt+

∫

ΩT

Aε∇uε∇vε dxdt

+

∫

ΩT

F ε(x, uε)vε dxdt =

∫

ΩT

fvε dxdt.

The first term in the left-hand side of this equality is expanded as

(3.17)

∫

ΩT

αεuεv
′′
ε dxdt =

∫

ΩT

αεuεv
′′
0 dxdt+

m
∑

k=1

εk

∫

ΩT

αεuε(v
′′
k )

ε dxdt

+ 2

m
∑

k=2

εk
ε′1

∫

ΩT

αεuε

(∂2vk
∂t∂τ

)ε

dxdt

+

m
∑

k=2

1

ε′1

(εk
ε′1

)

∫

ΩT

αεuε

(∂2vk
∂τ2

)ε

dxdt.

Taking into account the separatedness of the scales in (1.2) and using Theorem 2.6

in [3], (3.12) we get, by passing to the limit in (3.17) as E ∋ ε→ 0,

∫

ΩT

α
( x

ε1
, . . . ,

x

εm

)

uεv
′′
ε dxdt→ MY m(α)

∫

ΩT

u′′0v0 dxdt.

The third term in the left-hand side of (3.16) is equal to

(3.18)

∫

ΩT

Aε∇uε
(

∇v0 +
m
∑

k=1

∇yk
vk

)

dxdt+

m
∑

k=1

εk

∫

ΩT

Aε∇uε∇vk dxdt

+

∫

ΩT

Aε∇uε
( m
∑

k=2

k−1
∑

j=1

εk
εj

∇yj
vk

)

dxdt.

Using the separatedness of scales in (1.2) and using (3.12), Theorem 2.6 in [3] and

Remark 2.2, we conclude that as E ∋ ε→ 0, (3.18) converges to

∫

ΩT

∫

Y m

∫

T

A(ym, τ)

(

∇u0 +
m
∑

k=1

∇yk
uk

)

·
(

∇v0 +
m
∑

k=1

∇yk
vk

)

dym dτ dxdt.
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For the second and the fourth term in the left-hand side of (3.16), as E ∋ ε → 0,

(3.11), (3.13), Theorem 2.6 in [3] and Remark 2.2 imply that
∫

ΩT

βεu′εvε dxdt+

∫

ΩT

F εvε dxdt → MY m(β)

∫

ΩT

u′0v0 dxdt+

∫

ΩT

H(u0)v0 dxdt.

Finally, the right-hand term of (3.16) tends to
∫

ΩT

f(x, t)v0 dxdt.

Thus, by passing to the limit in (3.16) as E ∋ ε→ 0, we find that (u0, u1, . . . , um) ∈ V
is the solution of problem

(3.19) MY m(α)

∫

ΩT

u′′0v0 dxdt+MY m(β)

∫

ΩT

u′0v0 dxdt

+

∫ T

0

a(u, v) dt+

∫

ΩT

H(u0)v0 dxdt

=

∫

ΩT

fv0 dxdt ∀ v = (v0, v1, . . . , vm) ∈ E × E1 × . . .× Em,

where a(u, v) and H are defined in (2.3). The uniqueness of the solution to (3.19)

and the arbitrariness of the fundamental sequence E in the limit passage prove that

we have uε → u0 in L
2(ΩT ) for the whole generalised sequence ε. �

P r o o f of Corollary 3.1. The equation in (3.2) is a direct consequence of (2.4).

Hence, it remains to determine the initial condition. So, multiplying the equa-

tion (1.1) by ψ(x)ξ(t), where ψ ∈ D(Ω) and ξ ∈ D([0, T ]) with ξ(T ) = 0, and

integrating over ΩT , we obtain

−
∫

ΩT

αεu′εξ
′(t)ψ(x) dxdt−

∫

Ω

√
αε̺(x)ψ(x)ξ(0) dx

+

∫

ΩT

βεu′εψ(x)ξ(t) dxdt+

∫

ΩT

Aε∇uε∇ψ(x)ξ(t) dxdt

+

∫

ΩT

F ε(x, uε)ψ(x)ξ(t) dxdt =

∫

ΩT

f(x, t)ψ(x)ξ(t) dxdt.

Passing to the limit as ε→ 0 and using the same arguments as above we get

(3.20) −MY m(α)

∫

ΩT

u′0(x, t)ξ
′(t)ψ(x) dxdt−MY m(

√
α)

∫

Ω

̺(x)ψ(x)ξ(0) dx

+MY m(β)

∫

ΩT

u′0ψ(x)ξ(t) dxdt+

∫

ΩT

A∗∇u0.∇ψ(x)ξ(t) dxdt

+

∫

ΩT

H(u0)ψ(x)ξ(t) dxdt =

∫

ΩT

f(x, t)ψ(x)ξ(t) dxdt.
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Integrating by parts with respect to the variable t in the first term of (3.20) and

using the equation in (3.2), we obtain

∫

Ω

MY m(α)u′0(x, 0)ψ(x)ξ(0) dx−MY m(
√
α)

∫

Ω

̺(x)ψ(x)ξ(0) dx = 0.

By the arbitrariness of ψ and ξ, we get

MY m(α)u′0(x, 0) = MY m(
√
α)̺(x) in Ω.

In a similar way, choosing ψ ∈ D(Ω), ξ ∈ D([0, T ]) with ξ(T ) = ξ(0) = ξ′(T ) = 0,

integrating by parts twice and passing to the limit again, we get

u0(0) = g in Ω.

�

R em a r k 3.1. The example, when the scales εk(ε), 1 6 k 6 m, ε′1(ε) are de-

fined as

εk = εrk and ε′1 = εr
′

1 ,

where 0 < 2r1 < r′1 < 0.5r2 and rk < rk+1, 2 6 k 6 m, can be taken as an

application of our results.

Comments and perspectives

The main result of this paper is not achieved in the absence of imposing the

separation of the scales in (1.2) due to the difficulty of passing to the limit in the

relations (3.17) and (3.18). Even in the linear case, there is a very limited study of

these equations, for example, Douanla, Tetsadjio [6] considered homogenization of

hyperbolic-parabolic equations in porous media with tiny holes and with a special

case of spatial and temporal scales. In case of studying:

⊲ multiscale homogenization of nonlinear hyperbolic-parabolic equations with po-

tentially arbitrary finite number of both spatial and temporal scales

(∗) αεu′′ε + βεu′ε −∇ · (a(x/ε1, . . . , x/εn, t/ε′1, . . . , t/ε′m)) + F ε(uε) = f,

⊲ multiscale homogenization of (∗) in a periodically perforated domain,
⊲ multiscale stochastic homogenization of quasilinear hyperbolic-parabolic problems,

they are not addressed or resolved in approximation theory. We hope to study these

equations in the future when possible.
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