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Abstract. We study existence, uniqueness, continuous dependence, general decay of so-
lutions of an initial boundary value problem for a viscoelastic wave equation with strong
damping and nonlinear memory term. At first, we state and prove a theorem involving local
existence and uniqueness of a weak solution. Next, we establish a sufficient condition to get
an estimate of the continuous dependence of the solution with respect to the kernel function
and the nonlinear terms. Finally, under suitable conditions to obtain the global solution,
we prove the general decay property with positive initial energy for this global solution.
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1. INTRODUCTION

In this paper, we study the following Dirichlet problem for a wave equation with
strong damping and nonlinear memory:

0? t 2
e = Ntar = 55 (ot ) + [ gt =5) 5 it s, (e 5) ds
(1.1) = f(@, b u, g, gy Uge), 0<a <1, 0<t<T,

u(0,t) = u(l,t) =0,
u(z,0) = to(z), w(x,0) =t (x),

where A > 0 is a given constant and f, g, u, [i, g, @1 are given functions.
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Problem (1.1) is a type of viscoelastic problems, the Volterra integral in the
first equation of (1.1) is a memory term, so-called viscoelastic term, responsi-
ble for viscoelastic damping. The wave equations with memory terms are arised
in studies about viscoelastic materials, which possess a capacity of storage and
dissipation of mechanical energy. The dynamic properties of viscoelastic mate-
rials are of great importance and interest as they appear in many applications
to natural sciences, for literatures on this topic, see [10]-[20] and references
therein.

The viscoelastic problem of the form (1.1) has been studied by many au-
thors, for example, we refer to [4], [15], [16], [22]-[24], [26]-[32], [34]. By using
different methods together with various techniques in functional analysis, sev-
eral results concerning the existence/global existence and the properties of solu-
tions of viscoelastic problems such as blow-up, decay, stability have been estab-
lished.

For more details, there have been a lot of investigations dedicated to the following
viscoelastic wave equation:

t
(1.2) Uy — Au + / g(t — s)Au(z, s)ds — Muy + yh(ug) = F(z, t, u),
0

where the kernel g and the source f are C' functions satisfying some appropriate
hypotheses, and & is a linear or nonlinear function of ;.

In general, the most common forms of the nonlinear damping h and the source F
in (1.2) are exponential types, especially h = |us|™ 2u; and F = |u[P~2u. In [4],
Cavalcanti et al. proved that, as A = 0, v = 0, F = 0 and together with non-
linear boundary damping, the energy of solutions of the corresponding problem
goes uniformly to zero at infinity. In [29], Messaoudi considered (1.2) with A = 0,
v = 0, F = |u[P"2u, and showed that, for certain class of relaxation functions
and certain initial data, the solution energy decayed at a similar rate of decay
of the relaxation function, which was not necessarily decaying in a polynomial
or exponential fashion. In [28], Messaoudi studied (1.2) in the case of A = 0,
h = alu /™ %uy, F = blu[P~%u, and proved a blow-up result for solutions with
negative initial energy if p > m and a global existence result for p < m. Latterly,
Kafini and Messaoudi [22] also obtained a blow-up result of a Cauchy problem for
a nonlinear viscoelastic equation in the form (1.2) with m = 2. In [27], Mesloub
and Boulaaras studied a viscoelastic equation for more general decaying kernels
and established some general decay results, from which the usual exponential and
polynomial rates are only special cases. In the presence of the strong damping —Auy,
and the linear damping u; (m = 2), Li and He [24] proved the global existence
of solutions and established a general decay rate estimate for the corresponding
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problem given by
t
(1.3) up — Au + / g(t — 8)Au(z, s)ds — Auy + up = ulul|P 2,
0

where the relaxation ¢ is a C' function satisfying some suitable hypotheses.

On the other hand, the finite-time blow-up results of solutions with both negative
initial energy and positive initial energy were also obtained. In [23], with addition
of the dispersion —Auy, Kafini and Mustafa also investigated (1.3) on the whole
space R™, and the authors proved a blow-up result by imposing conditions on the
kernel g. For more results related to (1.2) and (1.3), such as general decay or blow
up in finite time, one can refer to [15], [16], [31], [34].

In [26], Long et al. studied a specific form of (1.2) with A = 0,y = 1, h = |us|™ uy,
i.e., the authors considered the viscoelastic equation

t
(1.4) Ut — Ugg + / g(t — $)uge(z, s)ds + a|ut|p_2ut = F(z,t,u),
0

associated with mixed nonhomogeneous conditions. Under a certain local Lips-
chitzian condition on the source F and certain class of relaxation functions and
suitable initial datum, a global existence was proved and an asymptotic behavior of
solutions as ¢ — oo was studied. Recently, Quynh et al. [34] has considered (1.4),
in which an N-order recurrent sequence has been established and its convergence to
the unique solution of (1.4) satisfying an estimation of convergent rate in N-order
has been proved. Furthermore, by using finite-difference approximation, the authors
constructed an algorithm to find numerical solutions via the 2-order iterative scheme.

However, to the best of our knowledge, there are relatively few works devoted
to the study of partial differential equations with nonlinear memory, for example
[7], 18], [18], [21], [32], [35]. In the paper published in 1985 [18], Hrusa considered

a one-dimensional nonlinear viscoelastic equation of the form

(1.5) it — Ctigg + / gt — $)(W(uy(z, 8)))a ds = f(a. 1),

the author established several global existence results for large data and proved an

5 and VU satisfies some

exponential decay result for strong solutions when g(s) = e~
conditions. In [35], Shang and Guo proved the existence, uniqueness, and regularity
of the global strong solution and gave some conditions of the nonexistence of global
solution to the one-dimension pseudoparabolic equation with the nonlinear memory

term fot g(t—s)(o(u(x, s),ug(x,s)))s ds. In [32], Ngoc et al. proved the local existence
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of the wave equation with strong damping and nonlinear viscoelastic term as follows:

(16) e — Nz — - fa o e, ), )% e (1))

o [ att = 515 a9, )P e 5) ) ) s
= Pty un, () s (1)),

0 <2 < 1,0 <t < T, associated with Robin-Dirichlet boundary conditions
and initial conditions, where A > 0 is a constant, pi, po, g, f are given func-

tions which satisfy certain conditions and the norm ||-|| is defined by |u(t)||?> =

fol u?(x,t)dz.  Moreover, the authors established an asymptotic expansion of
solutions, i.e., the solutions of (1.6) can be approximated by an N-order poly-
nomial in small parameter. Recently, Kaddour and Reissig [21] have proved
the global (in time) well-posedness results for Sobolev solutions to the following
Cauchy problem for a damped wave equation with nonlinear memory on the right-

hand side:

wn {utt —AuAt (L+t) uy = [y (t —7) u(r,2)[Pdr, (t,2) € (0,00) x R",
' w(0,2) = uo(x), ue(0,z) = uy(x), xz € R™,

where r € (—1,1) and v € (0,1). Moreover, for another investigation of (1.7) given
n [21], they have also proved a blow-up result for local (in time) Sobolev solu-
tions.

On the other hand, it seems that there are no results relating to continuous de-
pendence and general decay of solutions of initial boundary value problems with
nonlinear memory term. The topic of continuous dependence on datum has received
important attention since 1960 with the earlier works of Douglis [9] and John [20].
After that, Benilan and Crandall [2] discussed the continuous dependence on the
nonlinearities of solutions of the Cauchy problem for the equation

ug — Ap(u) =0 in R™ x RT,
(1.8) {t o(u)

u(z,0) = uo(z), =€ R™

The authors defined the continuous dependence of solutions in the sense (see [2],
page 162)

|t (t) = oo (t) || L1 (rn) = 0 @S m — Yoo With @, instead of ¢,

where ¢,,: R — R are continuous and nondecreasing functions, ¢,,(0) = 0, and uy,
are solutions of the Cauchy problem (1.8). In [33], Pan proved the following estima-
tion which showed the continuous dependence of solutions for the parabolic equation
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with exponential nonlinearity

e8] 1
/ / lu(z,t,m) — u(x,t,mo)|dt de < C*|m — my],
o Jo

where u is a solution of the proposed problem, 0 < m, mg < 1 and C* is an explicit
constant. Recently, Bayraktar and Giir [1] have studied the continuous dependence of
solutions on dispersive ¢ and r and dissipative b coefficients of the damped improved
Boussinesq equation

Ut — bAU — 5Autt — ’I"Aut - A(_u|u|p72)’

in which the effects of small perturbations of parameters on solutions have been
obtained. For similar results, we refer to [5], [14].

Motivated by the above-mentioned inspiring works, in this paper, we consider
Problem (1.1) and we first prove the existence and uniqueness of solutions for this
problem (Theorem 3.6) by applying the linearization method together with Faedo-
Galerkin method and the weak compact method. Next, we consider the continuous
dependence of solutions on the nonlinearities of Problem (1.1). Precisely, if u =
u(p, B, f,9) and u; = u(pj, i, f;,9;) are the solutions of Problem (1.1) respectively
depending on the datum (u, i1, f, 9) and (u;, fij, fj, 95), such that

sup max || DPpu; — Dﬁl,I/HCO(AJM) —0 asj— oo,

M>018I<3

sup max || DPfi; — DPfil|co(a,,) — 0 as j — oo,
(1.9) M>o\6|<3H ! leocann

sup max ||D%f; — D¢ iy — 0 asj— oo,

s 0 1% = Dl 0 w5

l9; = gllz0,7+) = 0 as j — 0o,

where T is fixed positive constant, Ay, Ay are compact sets depending on a positive
constant M, D®f are partial derivatives with order less than or equal ||, then u;
converges to u in W1(T') as j — oo (Theorem 4.1).

Finally, we consider a specific case of Problem (1.1) with p = u(t,u), @ = u,
f=-2u+ flu) — %D%u(t,u)uﬁ + F(z,t), and we prove the general decay of
solutions to Problem (1.1) in this case (Theorem 5.6). It is well known that in order
to assure the general decay of solutions, the essential assumption for the relaxation
function g usually satisfies a relation of the form

(1.10) q'(t) < —=€(t)g(),

where ¢ is a differentiable nonincreasing positive function, see [11], [15], [30]. Re-
cently, condition (1.10) has been relaxed by Mesloub and Boulaaras [27], Boumaza
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and Boulaaras [3], Conti and Pata [6]—the kernel g does not have to be necessarily
decreasing. In the present paper, the relaxation function g also satisfies (1.10), how-
ever, it is necessary to set some assumptions for the nonlinear quantity u; we shall
give an example in which p satisfies a relatively wide class of C3-functions.

We also note that the decay property is a form of asymptotic behavior/stability
in which the energy of solutions tends to zero at infinity. For topic on asymptotic
behavior of solutions, there have been many interesting results for models related
to (1.1) with memory term, for example, we refer to [19], [17], [24] and the refer-
ences therein.

The paper consits of five sections. In Section 2, we present some preliminaries.
In Section 3, we state and prove the theorem of the existence and uniqueness of
Problem (1.1). Sections 4 and 5 are devoted to the continuous dependence and the
general decay of solutions of Probblem (1.1). The results obtained here may be
considered as relative generalizations of those in [28]-[30], [34].

2. PRELIMINARIES

In this section, we present some notations and materials in order to present the
main results. Let Q& = (0,1), Qr = (0,1) x (0,7) and we define the scalar product
in L? by

(u,v) = /01 u(z)v(z) dx,

and the corresponding norm ||-||, i.e., ||ul|> = (u,u). Let us denote the standard
function spaces by C™(Q), L? = LP(Q) and H™ = H™(Q) for 1 < p < oo and
m € N. Also, we denote that || - || x is a norm in a Banach space X, and L?(0,T; X),
1 < p € oo, is the Banach space of real functions u: (0,7) — X measurable with
the corresponding norm || - || 1»(o,7,x) defined by

T 1/p
HUHLP(QT;X) = (/ Hu(t)Hg( dt) < oo forl < p <o,
0

and

l[wll Lo (0,75x) = esssup [Ju(t)||x  for p = oo.
o<t<T
On H', we use the norm
(2.1) vl = (v))* + [[o2]1?)'/2.

The following lemma is known.
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Lemma 2.1 (see [25]). The imbeddings H' — C°(Q) and H} — C°(Q) are
compact and

V2|l Vv e HY,
[[vzl Vv € Hy,

(2.2) 0]l o @)

<
[vllcog) <

where H} = {v € H': v(0) = v(1) = 0}.

Remark 2.2. By (2.1) and (2.2), it is easy to prove that on H{, the two norms
v = ||Jv||gr and v — ||vg|| are equivalent.

Throughout this paper, we write u(t), v/(¢t) = w(t) = u(¢), u”(t) = uu(t) =
U(t), ug(t) = yu(t), ug(t) = Au(t), to denote u(z,t), %“t‘ (z,t), 2 5z (z,1), gg(x t)
gi (z,t), respectively. With f € C*([0, 1] [0, 7] x RY), f = f(x,t,y1,--,¥4), W
deﬁnele—ax,Dgf—dt,Dg_Hf—ay,z—l .4 and D*f = D" . DO“‘f7
a:(al,...,a6)€Z+, la| = a1 + ... +ag < k; DO ’O)f f Slmllarly,wrchue
C*([0,1]x [0, T*] x R), pu = p(x,t,y), we define Dy = 8 L Doy = at , D3y = ” and
DPpu=DY .. D, B=(pr,..., Bs) € 13, |B] = Bi +...+ B3 < k; DO ’O)ufu.

3. LOCAL EXISTENCE AND UNIQUENESS

In this section, we consider the local existence and uniqueness of Problem (1.1).
By using the linearization method together with Faedo-Galerkin method, we prove
that there exists a recurrent sequence which converges to the weak solution of (1.1).
Let T* > 0. We make the following assumptions:

(Hl) g, U1 € H? ﬂH&;

(Hg) p, i € C3([0,1] x [0,7*] x R) and Dzu(z,t,y) = pe > 0 for all (x,t,y) €
[0,1] x [0,T*] x R;

(Hy) g€ H'(0,T*);

(Hy) f € CH[0,1] x [0,T*] x R?), such that
(i) £(0,t,0,0,93,54) = f(1,%,0,0,y3,y4) = 0 for all (t,y3,y4) € [0,T*] x R,
(ii) there exists a positive constant o such that o < /ii./(3v/2), with ji, =

min{1, p«, 2A} and

||D6f||CO(A~]W) o VM > Oa

where Ay = [0,1] x [0,T*] x [-M, M]? x [—v2M,/2M]>.
A typical example for the function f satisfying assumption (Hy) is
2

0Y7
1+ y?

f(xvtaylv"'ay4):fl(xvtayla"'7y3)+ Siny47
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(x,t,y1,...,94) € [0,1] x [0,T*] x R*, where f; € C*([0,1] x [0,T*] x R®), such that
fl(oat70a07y3) = fl(]-vtaovoay?)) =0 V(t,y,yg) € [O,T*] X Rv
and 0 < 0 < /Jix/(3V/2), with fi, = min{1, ., \}.
One can easily verify that f € C1([0,1] x [0,7*] x R*) and (Hy) (i) is fulfilled. By
oy}
1+yf

|Def(z,t, 91, ya)| = | cosya| <

for all (z,t,1,...,ys) € Ay for all M > 0, it follows that D6 fllco 4,y < o for all
M > 0. Then condition (Hy) (ii) also holds.

Definition 3.1. A function u is called a weak solution of the initial-boundary
value problem (1.1) if

uw€Wr={uecL>®0,T; H*NH}): v € L=(0,T; H* N HY),
u” € L*(0,T; Hy) N L>=(0,T; L?)},

and u satisfies the variational equation

(3.1) (" (t),v) + Nug(t), va) +alt; u(t), v) =/Otg(t—s)a(s u(s),v) ds+ (flul(t), v)
for all v € H}, a.e. t € (0,T), together with the initial conditions

(3.2) w(0) = tg, u'(0) =uy,

where

flul(z,t) = f(a,t,u(@, t),u' (2, 1), ue (x, 1), u)y (2, 1)),

ats u(0), 0) = (o (e, u(1))) v ) = Dyt (0) + Doat, u(t) e (1) ),

s (0), v) = (o (e, u(t))), v ) = (D17t u(0) + Dot u(t)us(1), ).

Let T* > 0 be fixed. For M > 0 we put

KM(M) = ||M||C3(AJ\/I) - ‘%lli};”DﬂM”CO(AM)v

KM(ﬁ) = ||ﬂ||CS(AJ\/I) = ‘Igi};”Dﬂﬂ”CO(AM)?

I?M( = ||f||cl(AM) = max D% fll co (An)

||M||CO(AJ\/I) = Sup |,LL((E,t,y)|,
(zt,y)EAM
”f”CO(AM) = sup |f(x7tay17"'7y4)|a

(@t y1,...,y4) EAM
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where Ay = [0,1] x [0,T*] x [-M, M] and Ay = [0,1] x [0,T%] x [-M, M]?
[—V/2M,+/2M)?. For any T € (0,T*] we consider the set

Ve ={ve L>®0,T; H* N Hy): v € L>®(0,T; H* N Hy), v" € L*(0,T; Hy)}.
Then Vr is a Banach space with respect to the norm (see Lions [25])
[vllve = maX{HUHLoo(o,T;H?anw ||UI||Loo(o,T;H2mH3)a ||U”||L2(0,T;Hg)}-
Also, we define the sets

(3.3) {W(M’ T)={ve Vr: |jvllv, <M},

Wi (M,T) = {veW(M,T): v € L*(0,T; L?)}.

In the following, we shall establish a linear recurrent sequence {u,,} by choosing
the first iteration ug = g, and suppose that

(3.4) Um—1 € W1 (M, T).
Then we shall find w,, in Wi (M,T) satisfying the problem
(um (1), v) + Mt (), va) + am (t; um(t), v)

(3.5) :/0 gt — 8)am(8;Um(s),v)ds + (Fp(t),v) Yo € HE,

Fo(2,t) = flum—1](z,t)
= fa, tyum—1(2,t), up,_q (2, 1), Vim—1(2,t), Vug, _(2,1)),
(50, v) = (D1p(t, um—1(t)) + Dap(t, tm—1(t)) sz, vz),
A (t;u,0) = (D1 fi(t, U1 (t)) + D3fi(t, tm—1(t))te, v2), u,v € HE.

Note that a,,(t;u,v), @m(t;u,v) can be rewritten in the form

(U, 0) = A (B 1, ) + (pam (t), V),

&m(t;u,v) = Am(t;uav) + <ﬂ1m(t),’l)m>, u, v € H(%a

where

Am(t;uav) = </J3m(t)u:c7vx>; Am(t§uvv) = <ﬂ3m(t)uxavx> u,v € H&,
M?)m(xvt) = D3,u'(xatvum71(xvt))a ,Uflm(x t) Dllu(x t Upp,— 1(1‘ t))
ﬂ?)m(xvt) = D3ﬁ(xatvumfl(xvt))a ,L_le(xvt) = Dlﬁ(xatvumfl(xvt))'
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Then Problem (3.5) is equivalent to
(urn (1), v) + Mt (8), v2) + A (t um (t), v)
¢
(3.6) - / 9t — 8) Ay (53 wm(s), v) ds + (P (), 0) Vo € HL,
0

um(0) = to, u,(0) = 11,
where ﬁm(t): H} — R is a linear continuous functional on Hg, which is defined by

~

(3.7) (Fm(t),v) = (Fm(t),v) —<u1m(t),vz>+/0 9t = 8){fium(s), vz) ds, v € Hy.

The existence of u,, is assured by the following theorem.

Theorem 3.2. Under assumptions (H;)—(Hy), there exist positive constants M, T
such that for uy = o there exists a recurrent sequence {u,,} C Wi (M,T) defined
by (3.4), (3.6), and (3.7).

Proof of Theorem 3.2. The proof consists of several steps.

Step 1. The Galerkin approzimation. Consider a special orthonormal basis {w;}
on H}: wj(z) = V2sin(jnz), 7 € N, formed by the eigenfunctions of the Laplacian
“A =2 Put

2"

uP ) =3 ety

Jj=1
(k)

where the coefficients c,,; satisfy the system of linear integrodifferential equations

(i) (), wy) + Maghr (£), wie) + A (tuln) (t), w))

t
(3.8) - / 9t = ) Am(s:u) (), w;) ds + (Fu(t), wy), 1< <k,

ulh(0) = dio, 4 (0) = dig,

in which
k
Uog = Z oz;k)wj — @p strongly in H2N Hg,
j=1
(3.9) .
U = Zﬂj(k)wj — 4y strongly in H? N H{.
j=1

System (3.8) is equivalent to the system of linear intergal equations which can be

rewritten in the form

ng,) = U[ng)]v
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where

cgn) (c (k) C(k) )

)R,
Ule] = (U], ., Uklet]),
U;[e®)(t) = FP [e®)(t) + &P ),

k) _
]:j( / / A (r= S)ZAWJ s)dsdr

k
/// —AN (= q) (s—1) Zfl 7)dr dsdr,

(k)
G;k) (t) ;k) + i/\ e~ M t / / =2\ (r— s) (s),wj>ds dr,

= A (twi,w;), ,7=1,...,k 0<t<T.

Using Banach’s contraction principle, which is similar to the one used in [32], it is
not difficult to prove that the above fixed-point equation admits a unique solution
B e C(]0,T]; R¥), so let us omit the details.

Step 2. A priori estimate. Put

S0 = [ OI + (45O + IV s Ouiil 0]
IV R OAUR @) + Al a0

+2A/<||um( 2+ 1AG) (s)]2 ds+2/ 18, (s) 2 ds,

then it follows from (3.8) that

5}
(3.10)  SE(t) = S(0) + 2(pt30m(0)lok, Ato) +2( 5~

/ ds / o (,5) ([, )2 + 180D (2, 5)[2) da

(143m (0)Tokz ), Aﬂ1k>

m(siul) (), uly) (t)) ds

\ \
@4.

I

CIJ

/\ D>|
Q3|QJ

E

>

<

=

_|_

>

<

=
Ny

o,

Vo)

~24(0) / A (50 (5), u® () ds
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+2/t<88;<u3m<>< ), i ()

— 2(pama (0u8)0), Al (1)) = 2{ - (ram (Dl (0), Al (1))
#2 [ (Fnls) il () as 42 [ Fulo) 200 o) as
-+2[jgv() 2B (s)) ds

= Sﬁrlf) (0) + 2<M3m9c (0)’0,0]%7 Aﬂ0k>
9 _
+ 2<%(M3m(0)uom Aulk> Z J;.

We shall estimate the terms J; on the right-hand side of (3.10) as follows. First,
we need the following lemma, whose proof is proved in Section 6.

Lemma 3.3. Put
@.11) () = [ O + U017 + 1A O + [ + 8 @)
t
+ [ 1@ as+ [ a6
0

Then the following estimations are admitted:
(@) |l (2, 1) < (14 M) Eng(p), i = 1,3,
(i) ||t (0] < (1 + M)K (), i = 1,3,
(iil) |pima(x,t)] < (L+2M)Kp (1), i = 1,3,
() [l ttima (O] < 1+ M)Kar(p), i = 1,3,
(V) (2, 0)] < (14 5M +2M?)Kpr(p), i = 1,3,
(V) (|t (O] < (14 BM + M) K g (p), i = 1,3,
(Vi) [ (55 0 (), 02 ()] < Kar(@llalh) a0,
(viii) [[Auts’ (£) + Adg) ()] < V2y/SR (),
)
)

(i) [Jutnr (0|2 < 2aora | + 27 i S (s) ds,
(X
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(x1) | 2 (Hame (E)uime (D) < (2+TM + 2M2) Kar (1)) S9 (1),
(xii) | 527 (Ham (D)usma ()| < 22+ 4M + M2)EKnr (1)) St ().

Moreover, inequalities (i)—(xii) are also valid with replacing u by .

By Lemma 3.3, the terms J1—Jg on the right-hand side of (3.10) are estimated as
follows:

Using the inequality S(k)( t) > m?&,’? (t), where i, = min{l, u.,2A} and 2ab <
Ba? + B2 for all a,b € R with 8 = B, = %ﬂ*, the terms J1—Jy are, respectively,
estimated by

t 1
(312) Jy = / ds / o (2, 8) ([0 (2, 9)]2 + |Au® (2, ) ) da
0 0
t t
<(1+M)KM(H)/ §$§)(s)ds:Cl(M)/ 59 (s) ds,
0 0
t
Jo :2/ gt — 8) A (s;ul® (s),ul™ (1)) ds
0
t
< Nokall® + (T + 2K2, () 19]2200.1)) / 58 (s) ds
t
= Hﬁom||2+C2(M)/ S (s)ds
t 8 0
Ja=2 [t = )5 (ran(s)uifh(s)). Auf(0) + Aald) (1)) ds
0
t
< B5W(t ”E(”M) K2 (09200, / 50 (s) ds
t
= B.3W() + C5(M) / 50 (s) ds,
t a 0
I = 2000 [ (GG ()l 9. Aulf)s) + AaF)(5)) ds
0
< 4V2(1 4+ MK ()|g(0 |/5<’f> Yds = Cy(M /S(k)
Js = —29(0 /A (510l (s), u®) (5)) ds
t
< 209(0)| Kt (1) / S0 (s)ds = Cs (M) / 50 (s) ds
0 0
t T
Je = —2/ dT/ g/(T—s)flm(s;u,(ﬁ)(s),u,(ﬁ)(r)) ds
0 0
t t
<2KM(ﬂ)VT*H9/||L2(o,T*)/ g%)(s)dSZCG(M)/ ?ﬁ,’f)(s)ds
0 0
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_ —2/ dT/ (r =) (ugm( ul(s)), Aul(r) + Aald (7)) ds
<4\/5(1+M)KM(ﬂ)\/ﬁ||g'||L2(O,T*)/O 50 () ds
/5<k>
Js f2/ (2 (s () (), Al (5)) di

2(2+ 7TM + 2M*)K (1) /t Sk (s)ds = Cg(M) /t Sk (s)ds
0 0

70 =2 [ (om0l ) s

4(2 +4M + M*)K (1) /t S (s)ds = Cy(M) /t S (s)ds

0 0

In order to estimate the terms Jjo and Jy1, we use the following lemma, whose
proof can be found in Section 6.

Lemma 3.4. The following estimations are valid:

t
(i) [AulP ()] < [|Ador|| + / VS (s) ds
0

(i) | t3ma (), (O] < || t3mae (0)ione|
+ (24 7TM +2M?*)K (1) / VS (s) ds
0

| < || 2 s O)i0r)

+2(24+4M + M) K pr(p) /t /5% (s) ds
0

Using Lemma 3.4 and the inequality (a + b)? < 2a? + 2b2 for all a,b € R, the
terms Jyg, J11 are estimated as follows:

) | s (uE (1)

(313) J10 - - 2<M3mx (t)ug;zc (t)v AU&S) (t)>
2(”N3mx(0)a0kx”2 + ||Aa0k||2)

+ 2T 1+ (2+TM + 2M>)*K3,(p / Sk

= 2(|| 3ma (0)fioka ||* + | Adior[|?) + ClO(M)/ S (s)ds
0
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T = =2 S (ram (L (0), il (1))
<m%%ﬂ§ﬂ§um®%m2

+58 (2 +4M + M?*)’K / Sk (s

*

= 8,300 + | 5 (ram (O

+ C11 / S(k)

The terms Ji2—J14 are also estimated as above. By the fact that

~

(Fn (), ) (1) = (Fn (1), 03 (£)) = (s (1), a0 (1)) +/0 g(t = 8)(Aum(s), abn (1) ds,

we have

~

[(Fn(0), 0 ()] < (Kar(F) + Kar () + Knr(@llglzro.r) Y 5in (1)

Cra(M) /S (1).
Then
— e s u(k) s (k)
(3.14) Jio 2/0<Fm( ), (s))ds < TCa(M /S
We also have
(o (1), = A0 () = (P (8), = A0 (£)) — (pama (£), AulE) (1))
— ) {[h1ma(S), uﬁﬁ) s,

+ [ ot =) nnts). M )

(P (), — A (1)) < {IIFm(t)II + [ pma (1) | +/0 Ig(t—S)Illmmx(S)lldS] [Aal ()]

< [Rar(f) + (1 4+ MY(Eng () + Kar(@)gllpr 0.0)]y S% (8)

Ci3(M) S ().

Then
t R t .

(3.15) Jiz =2 / (Fon(s), —Aut® (s)) ds < TCys(M) + / 55 () ds.
0 0
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Similarly,
(Fon (1), = AR (6)) = (Frnar (1), i (1)) — %<N1mx(t)v NG (1)) + (hma (1), Ai) (2)
+ 55 = 9 (5), M8 ) ds = 0)rr (0. A0 1)

- / ¢t — ) fm (s), A (1)) ds,

thus,
t o~
Jig =2 / (Ep(s), AP (s)) ds
0

= 2(p1ma(0), Atirg) + 2/0 (Fina(s), ug,]fg)c(s» ds — 2(p1ma(t), Aﬂgrlf) ()

+2 / (Hyma (), A (s)) ds + 2 / ot — 8){fiame (5), A (1)) ds

m
0

~29(0) / (it (5), AP (s)) ds

t T
—2/ dT/ g (1 = 8)(fima (s), Aul® (1)) ds
0 0
= 2(p1m=(0), Alyg) + 1 + ... + g6

In order to estimate q1, ..., s, we use the following inequalities:

1Foma ()| < (L +4M) K (f),

t

1 ()| < [|p1me (0)]] +/ |13z (8) |1 ds < [[pama (0)]| + T (1 4+ 3M + M?) Knr(p).
0

Then

G =2 / (Fona(s), 0% (5)) ds

*

G2 = —2pima (t), i) (1)

<z T+ AME3(f) + B.SP (1) = Tar(M) + B.SP (1),

_ 2 2T
< BSE (1) + B—Hulmz(mu? + 6—T(1 +3M + M?)’K2,(p)

- 2
= BS0) (8) + 2 lli1ma (0)]* + Tg2(M),

t
G =2 / (Mo (3), AT (s)) ds
0

t t
<T(1+3M+ M?*)2K3,(n) +/ S (s)ds = Tgz(M) +/ S () ds,
0 0
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gzq[awgwmwwmwst

< AW + T+ MR ()9l -y = 555 () + Tas(00),
q5—-—nxoyé?ﬂhmxﬁ,Auﬁks»ds

< Tg*0)(1+ M) K3 (i / S (s)ds = Tgs(M) + /Otsg’f)(s)ds,
%—aéﬂhf@v—mMm@meMMs

<1f§§wwh+av”a+»wVK&umgwémyw

t
=/ 55 (7)dr + Tqs(M).
0

Thus, Ji14 is estimated by
(3.16)

2 _ t_
Jia < 2{i1ma(0), Ading) + — || ft1ma(0)]|> + TCra(M) + 38,5 (t) + 3 / S (s) ds,
* 0

where C14(M) = Zi:q( ).
(3.1

Combining (3.12)—(3.16), it follows from (3.10) and (3.11) that

t
(3.17) S0 (1) < SO 4 7Dy (M) + Da(M) / S0 (s) ds
0

where

_ 2 4 5 5 - 2
W&5@=T%WHiwmmeMmeMWMM+;MMQ

fis

4,0 . N 4 - _
+ (g (om O)0ka). Adian )+ = (me O)ione | + | Aok |

B am O + im0,

S (0) = l[aakl® + llaakall® + v/ 1zm (0) ok ||
+ 1V p3m (0) Adior |12 + Al Adia |1,

DM@:%WMMHCMMHCmMm

Dy(M) = %(5+§Cj(M)>-



The convergences given by (3.18) show that there exists a positive constant M
independent of k and m such that

(3.19) s <My ken

The local existence is obtained by choosing 7' small enough as in the following
lemma.

Lemma 3.5. Suppose that there exists a positive constant M satisfying (3.19).
For any T € (0,T*], put

(3.20) kr =34/ Di(M,T)exp(TD;(M)),

where

12T

2 (0 + WTRu(f) + 2 (14 M) (K3, (1) + K3y (@) llgl 72 0,7-)

i

T .
+ ﬂ—(l + M)*(|g(0)| + VT*|| gl L2(0,7+)) K nr (1),

DY (M, T) =

D3(M) = —[1 4+ (1+ M)Kns (1) + 4(1g(0)] + VT*g' | L20.00)) K v ()]

*

6 _
+ ?Kﬁ(M)HQHH(O,T*)'

*

Then T can be chosen small enough such that

(3.21) (M2

- +TD1(M))eTD2(M) < M? and kr < 1.

Proof. By the assumption 0 < o < \/i»/(3v/2), it is easy to get that

: : . . L, ]2
TILH(L kr = Tlg& 31/ Dy (M, T)exp(TD5(M)) =3 ﬂ*a <1

and

M2 M2
lim (— + TDl(M)>eTD2(M) _ M
T—04 \ 2

< M?.
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It follows from (3.17) and (3.21) that
ST () < M2e=TP2(M) 4 Dy(M) /0 t SH) () ds.
By using Gronwall’s Lemma, we deduce from the above inequality that
S (1) < M2e~TD2(M)tD2(M) ¢ pp2
for all t € [0,T] for all m, k € N. Therefore we have
(3.22) u™ e Wi (M, T) ¥Ym and keN.

Step 8. Limiting process. By (3.22), there exists a subsequence of {uﬁ,’f)} with the
same symbol, such that

u = up, in L°°(0,T; H?> N H}) weakx,
alk) - ul, in L°°(0,T; H?> N H}) weakx,
T ulh in L2(0,T; HY) weak,

Um € W(M,T).

(3.23)

Passing to the limit in (3.8) and (3.9), we have u,, satisfying (3.6) and (3.7) in
L2(0,T).
On the other hand, we deduce from (3.6); and (3.23)4 that

0
’Ltlv/n = )‘u;n:c:c + %(Mlm (t) + H13m (t)um’c (t))

t
0
= [t = ) i1 () + o (5) s s)) s+
0
= F,, € L=(0,T; L?).
Thus, ty,, € Wi (M, T). Theorem 3.2 is proved. O

By using Theorem 3.2 and the compact imbedding theorems, we shall prove the
existence and uniqueness of weak local solutions to Problem (1.1). We first introduce
the Banach space (see Lions [25]) as

Wi(T) = {u € C°([0,T]; Hy) N C*([0, T}; L*): u' € L*(0,T; Hy)},

with respect to the norm ||ullw, (7) = |[ullcoo,73;m2) + 1@l coo, 1 p2) + 10| L2 0,712 -
Then we have the following theorem.
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Theorem 3.6. Suppose that assumptions (Hy)—(H4) hold. Then the recurrent
sequence {un, } defined by (3.8)—(3.9) strongly converges to u in Wi (T'). Furthermore,
u is a unique weak solution of Problem (1.1) and w € W1 (M, T). On the other hand,
the following estimation is valid:

Hum—unl(T) < CT]g%n Vm eN,

where kr € [0,1) is defined as in (3.20) and Cr is a constant depending only on T,
f7 G, 1y [y 1107 '&;1-

Proof of Theorem 3.6. First, we prove the local existence of Problem (1.1). We
begin by proving that {u,,} (in Theorem 3.2) is a Cauchy sequence in W7 (T'). Let
Wy, = Upt1 — U Then w, satisfies the variational problem

(wr, (£),0) + MWy (1), v2) + Bm (L, v)

(3.24) = /Ot g(t — 8)Bp(s,v)ds + (Frpi1(t) — Frp(t),v) Yov € Hy,
wim (0) = w},, (0) =0,

where

m(tv) = Gma1(t Ums1(t),0) — am (b um (1), v),

m(t,0) = et (8 Um1(1),0) = @ um (1), 0), v € Hy.

Taking v = w/, (¢) in (3.24); and then integrating in ¢, we get
(3.25)

o5 (0) <2 [ (Fa(5) = Fo(s). 0] () d

t 1
[ as [ (e da

9 / 3 1(5) = r5m (5)]tima () + fi1m11(5) — piam(5), Wy (5)) dis

(e}
&

_|_

2/ g(t — 8) B (s, 0 (t ))ds—Zg(O)/O B (8, wm(s))ds

(=)

2/ d’T/ g (T — 8) B (s, wn (7)) ds

0

(e}

Il
e
~I
.

1

ECH
I

where fi, = min{l, ., A} and
t
(3.26) S () = [l (8)]12 + lfwma ()17 + / e (5)] .
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Next, the integrals on the right-hand side of (3.25) are estimated as follows. By
the inequalities

11 () = Frn (Ol < 2Kns(H)l[wm—1llws 7y + 0| Ve, (1),

t 1/2 ~
< / ||Fm+1<s>—Fm<s>||2ds) < @VTR () + o)l i),

lims1 (2, ) — pim (2, 1)] M (1) [ —1 (2, )|

<K
g KM(/'[/)me—lHWl(T)a 1= 1537

the terms I, I, I3 are estimated by
t
327) T) =2 / (Foi1(s) — Fn(s), 0, (5)) ds
0
t
< @VTRu () + 0P [wnr By + [ Snls)ds,
0
_ t 1 t _
To= [ ds [ by (o 9)udao9)do < (1 M)Kas() [ Sinls) s,
0 0 0

I3 = _2/0 ([H3m+1(8) = K3m (8)]tuma () + p1m+1(8) — f1m(8), Whyy(8)) ds

6
Sm(t) + —T(1+ M)’ K3 (1) w13y, 1) -

*

\

ﬁ__
6

For the integral 14, Is, I, we note that

Bon(s, (1)) = (fiam+1(5) 0 (5), W (1))
([ 41(5) = Figm ()1t (5) + Bt (5) = vm(5), (1),
hence,
B, wn ()] < Kt (1) [\ Sm(5) + (14 M) w1 llwi )|/ Som(1):

Then

tUI

(3.28) I, = 2/0 g(t — s)Bm (s, wm(t))ds

w|?'

“Bonlt) + T (1 M () B0
6
+ o nwmwl/s

k:—mwAB@wMD® 41g(0)| K (i /s

Wm—1 ”%/Vl(T)

\_/ t‘|®

1
+ 5 T19(0) K n (i )L+ M)?|[wn—1[f, ()
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To = _z/ot dT/OTg/(T—S)Em(S,wm(T))dS

t
<AK M (VTG |20 / 5, (s) ds
0

1 _
+ ET(l + M)’ Ep(m)VT*|\g' |l 20,7+ wm—1||%V1(T)-

Combining estimations (3.27) and (3.28), we deduce from (3.26) that
¢
S (t) < DY (M, T) w1y, (1) + 2D§(M)/O Sm(s)ds,

where DY (M, T), D5(M) are defined as in Lemma 3.5.
Using Gronwall’s lemma, we get from (3.26) that

(3.29) Son(t) < DY (M, T) 113, oy exp(2T DE(M)).
Hence, it leads to
lwmllwy () < krllwm-1llw, () YmeN,

where the constant k7 € [0,1) is defined as in (3.20), which implies that

2M
[tmtp = Um|lw, 7y < ka VYm, peN.

It follows that {u.,} is a Cauchy sequence in W1 (T'). Then there exists u € W1 (T)
such that

(3.30) U — u strongly in Wi (T).

Note that u,, € W(M,T), then there exists a subsequence {u,,} of {u,} such
that

U, = U in L°°(0,T; H> N H}) weakx,
U, — ' in L°>°(0,T; H> N H}) weakx,
(3.81) Upy,, — u”’ in L2(0,T; HE) weak,
ue W(M,T).
Since
(3.32) | Fon = flulll2(@r) < (0 + VT Ky (f)) [ tm-1 — ullw, (1)

by (3.30) and (3.32), we have
(3.33) Fp, — flu] strongly in L*(Qr).
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On the other hand, using the equality

am (b5 um (t),v) — a(t; u(t),v) = (pam () uma (t) — palu] (Q)ua(t) + pam () — pa[u)(t), va)
= (p3m () [ma (1) — ua ()] + [H3m (1) — ps[u](t)]ux(t), va)
+ (pam (t) — pa[u] (), va)

and the inequality

m(p)|um—1(z,t) — u(z,t)]

m(p)|[tm—1 = ullw, (), i=1,3,

|pim1 (2, 1) = pilul(z, )] < K
<K

we get
|am (8 wm (1), v) — a(t; u(t), v)]
< Ku()llum = wllwy oy + (1 + M)l[um—1 = ullw, @)zl
Hence,
(3.34) U (5 U (1), ) = a(t;u(t),v) in L°(0,T) weaks Vv € Hi.

Similarly,

(3.35) /Otg(t—s)am(s e ds—)/ (t — s)a(s; u(s), v) ds

in L°°(0,T) weakx for all v € H{.

Passing to the limit in (3.8) and (3.9) as m = m; — oo, it follows from (3.33),
(3.34) and (3.35) that there exists u € W(M, T) satisfying (3.1), (3.2).

On the other hand, we derive from (3.1) and (3.31)4 that

2 t 2 ~
W = Nt st )= [ alt=3) 5 s, u(s)) s ) = F e 100,73 12),

Thus, u € W1 (M, T). The proof of the existence is completed.

Finally, we need to prove the uniqueness of solutions. Let uy, us € Wi (M,T)
be two weak solutions of Problem (1.1). Then u = u; — us satisfies the variational
problem

(u”(t), v) + Mug (1), vz) + B(t, v)

(3.36) :/Og(t—s) (5,0) ds + (Fa(t) — Fa(t),v) Vv e HL,
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where

]
+ (pa [ua](t) — pafu2](t), vz ),
B(t,v) = (ps[u1] (O)ue(t) + [As[ua](t) — fis[ua] (t)]uze (), va)
+ (I [ur](t) = ffu2)(t),vz), v € Hy,
pilul(z,t) = Dip(, t,u(, t)),
gilu)(z,t) = Dz, t,u(z,t), i=1,3,
Fj(t) = flu)(t), j=12

Taking v = /(t) in (3.36); and integrating in time from 0 to ¢, we get
(3.37)

nz0< [ s / (e, ), 5)
=2 [ {fushnl(s) ~ sl 5usa(s) ) s
—2 [ Gnl(5) — (51w o)) s+ 2 [ (e = )Bls.u(t) s
-2(0) | B(s, u(s)) ds -2 / Car / "/ (r — 9)B(s, u(r)) ds
w2 [[(Filo) - Falohal (o) s,
where Z(t) = [/ (0112 + (@) + I, (s)]12ds.

Through similar calculations as in the proof of Theorem 3.2, we obtain from (3.37)
that

t

(339) (1.~ 20 = 29)2(0) < n(M.1) [ Zs)ds
0

for all v > 0, where

(M, ) = 1+16K3,(f) + (1 + M)Ku(p)
+2(2+ M)Kn(2)(l9(0)] + VT*(lg'llL2(0,7+))
1 _
+ ;[(1 + MK, (1) + (2 + M2 K3 ()| 9ll720,7+))-
Since 0 < o < \/Ji=/(3V/2), it follows that fi, — 20> > 0. Then, by choosing v > 0
such that fi, — 202 — 2y > 0 and using Gronwall’s lemma, we deduce from (3.38)

that Z(t) =0, i.e., u = u; — ug = 0.

Therefore, the uniqueness is proved. The proof of Theorem 3.6 is done. O
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4. CONTINUOUS DEPENDENCE

In this section, we assume that A\ > 0 and o, 4; € H? N H}. By Theorem 3.6,
Problem (1.1) admits a unique solution u depending on the datum pu, fi, f, g

U = u(/”'?l_j” f’g)’

where p, @i, f, g satisfy assumptions (Hg)—(Hy).
First, we note that if the data (u, i, f, ), (145, fi5, fj, g;) satisfy (Hz)—(Hs) and in
addition, the condition

(4.1)  di(uj,p) = Sup max 1DPp; — DPpllcoan) — 0,

di (@i, i) = sup max ||D’6uj D’Bﬂ”CO(AM) — 0,
M>018]<

d(fjvf) = SU>P lr;n\ax | D f; — DafHCO(AM) -0, g — 9||H1(0,T*) —0

as j — oo is fulfilled, then there exists jo € N (independent of M) such that

IDPjllcocany < L+ D pllcoay) VB EZL, |BI <3, VM >0,Vj> jo,
IDPijllcocan) < L+ 1D fillcoca,y VB EZL, Bl <3, VM >0,V > jo,
1D fillco i,y S 1+ IDfllcoca,) V€ 7%, la| <1, VM >0,VYj > jo,
llgill ez o,y < 1+ gl 0,7 Vi = jo-

By setting the constants K (u), K(fi), Ka(f) and (Hs), we deduce from the
above estimation that

Kun(pg) <14 Ky (p) VM >0,Y5 > jo,
K (i) < 14+ Ky () VM >0,Yj > jo,
Ku(f;) <1+ Ku(f) VM >0,V > jo,
lgillzr 0,y < 1+ llgll 0,17 Vi = jo

Thus, the Galerkin approximation sequence {u(k)} corresponding to (u, [, f,g) =
(5,5, fj,95), J = jo also satisfies the a priori estimates as in Theorem 3.2 and

u™ e Wi (M, T) ¥Ym and ke N,

where M, T are constants independent of j. Indeed, in the process, we can choose the
positive constants M and 7" as in (3.19) and (3.21) with replacing Kas (1), Kar(ft),
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Kn(£)s 190)]s 11ma (0)], [t3ma (0)] by 14+ Kar(p), 1+ K (i), 1+ Kn(f), 1+1g(0)],
L+ |pt1ma (0)], 1 4 |pt3ma(0)], respectively.

Hence, the limitation u; of {uﬁ’f)}, as k — oo and m — oo later, is the unique weak
solution of Problem (1.1) corresponding to (u, i, f) = (15, iy, fj), J = jo satisfying

u; € Wl(M,T) Vi = Jo.

Moreover, by the same argument as used in Theorem 3.6, we can prove that the
limitation u of {u;} as j — oo is the unique weak solution of Problem (1.1) and
u e W (M, T)

Consequently, we have the following theorem.

Theorem 4.1. For any A > 0, g, 41 € H? N H{, suppose that (Hy)—(H4) and
condition (4.1) hold. Then there exists a positive constant T' such that the solution
of Problem (1.1) is continuous dependency on the data p, i, f, g, i.e., if (i, i, f,9)
and (pj, fij, f5,9,) satisty (Ho)—(H4) and (4.1), then

uj = u(py, iy, fj,9;) = w strongly in W1 (T') as j — oo.
Moreover, we have the estimation
luj — ullw, () < Cr(da(pg, 1) + da (i, 1) + d(f5, f) + 195 = gllm o) Vi = o,

where Cr is a constant depending only on T, f, g, p, I, G and ;.

Proof of Theorem 4.1. Setting

9i =95 — 9
Fi(x,t) = fjlugl(x,t) — flu)(z,1),
Filwil(@, ) = fi(@, touj (@, 0), (2, 1), uje (2, 1), ), (2, 1),
Flul(@,t) = fa,tuz,t), o (2,1), ug (2, 1), ul (2, 1),

w; = uj — u satisfies the variational problem

(W (£),v) + Mwjy (8), ve) + a;(tu;(8), v) — alt; u(t), v)

- / 95t — ) (535 (5),0) — g(t — 8)a(s; u(s), v)] ds

+(Fj(t),v) Vv e Hg,

w;(0) = w}(0) =0,
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where

aj(t;uj(t),v) = (Dap(t uj(t))uje (1), va) + (Drpj(t, w;(t)), vz),
a(t; u(t),v) = (Dap(t, u(t))ug (), vo) + (Dr1p(t; u(t)), vz),

aj(t;uj(t),v) = (Dafi(t uj(t))uje (1), va) + (D1fj(t, u;(t)), va),
a(t;u(t), v) = (Dap(t, u(t))ue (1), vz) + (Drja(t, ult)), ve)-

On the other hand, by the equalities

a;(t;u;(t),v) — a(t; u(t),v)
= (Dap;(t, uj(t)wjz (), va) + ([Daps(t, us(t)) — Daplt, u(t))]us(t), va)
+ (D1pj(t, uj(t)) — Dip(t, u(t)), va),
a;(s;ui(s),v) — a(s;u(s),v)
= (D3 fi;(8,u;(8))wjz (s), va) + ([Daf;(s,u;(s)) — Dsf(s, u(s))]ua(s), va)
+ (D1fij(s,u;j(s)) — Difi(s, u(s)), va),
gj(t — s)aj(s;u;(s),v) — g(t — s)a(s;u(s), v)
= [g;(t — s) — g(t — $)|[(Dsfij (s, uj(s))uju(s), va) + (D1f1;(s,u;(s)), va)]
+ g(t = s)(Dsji;(s, u;j(s))wja (s), va)
+9(t — s)([Dafij (s, uj(s)) — Dafi(s, u(s))]us(s), vz)
+ gt — s)(D1f(s,u;j(s)) — Dij(s, u(s)), va),

we rewrite (4.2) as

(wj (), v) + Mwj, (t),v2) + (Dapu (t, u; () wje (1), va)
_ /0 gt — 8)(Dsji; (5, 15 (5)) ;e (5), v) s
[ lopte =) = gt = (Dass 555D 5), )
0
+ (D1fij(s,ui(s)), va)] ds

(4:3) + / 9(t — $){[Dsfi; (5, u5(5)) — Dafils, u(s))]uua (), vs) ds

+ /0 g(t — s)(D1fij(s,uj(s)) — Dija(s,u(s)), vy) ds

— ([Dapy (t,u;(t)) = Dapnlt, ult))]ua (t), v2)
— (Dt us (1) = Daplt,u(t)),v) + (Fy(t),0) Vo € H,
w; (0) = w}(0) = 0.
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Taking v = w/(t) in (4.4)1 and then integrating in ¢, we get

(4.4) ﬁﬁj(t)g/o ds/O %[Dguj(m,s,uj(x,s))]w?x(m,s)dm
w2 [ ar [t = ) (Daiy (0, () 5). 0 () ds

+2/th/ngT—s )= g(r — 3)]

X (Dufij(s,u;(s)) + Dafij(s,u;i(s))uja(s), wi, (7)) ds

+2/ dT/ (t—29)

X (Dafis (5, u5(5)) — Dufi(s, u(s)), wl, () ds
+ 2/ dT/ ’7' - s

% ([Dsfis (5, u;(s)) — Dsfi(s, u(s))]utz (5), )y (7)) ds
2 / (D (5,5 (5)) — Dapa(s, u(s))Jusa (5), ' (5)) ds
=2 [ (Dug 5,5 = Duss ). () d

+2/0<Fj(s),wj(s)>ds
= le’

j=1
_ . = ¢
where i = min{1, A, .} and 5 (¢) = [w ()12 + o (D)2 + Ji ), (5)] ds.
We estimate the terms I; on the right-hand side of (4.4) as follows.
Estimate of I;. By the estimation

%[Dsuj(%svuj(% S))]‘ < K () (1 + [uf(, 9)]) < (1+ Kar(p)) (1 + M),
we have
(4.5) I = / ds/ [Dspj(x, s, uj(z s))]w?m(x,s) dx

< (14 Kyr(u)(1+ M) / s (3)]2 ds
< (1+ K (n 1+M/S
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Estimate of I5. By the estimation

|D3jij(x,s,uj(z,s))| < Knm(ji;) <1+ Knm(p),

we obtain
(4.6) I, = 2/ d’T/ (1 — 8)(Dsfij(s,u;(s))w;z(s), wﬂ( 7)) ds

<2(1+KM(ﬂ))/O Hw;-m(f)lldT/ l9(7 = 8)[[[wjz ()] ds

< BB (1) + 3L+ Kaulp) P ||g||Lz(0T>/ 55

Estimate of I3. Note that
D172 (s, uj(s)) + Dsfij (s, u;(s))wja(s)|
< K () (1 + fluge (s)]) < (14 K () (1 + M),
t T
(4.7) I3 = 2/ dr | [g;(t —s) —g(T — s)]
0
X (D1fij(s,u;j(s)) + Dafij(s,uj(s))uju(s), w), (1)) ds
<21+ Ku(p 1—|—M/||wﬂ ||d7'/ lgj (T —s) —g(T — s)|ds
— 1
< BS5;(t) + 3(1 + K () (1 + M)*T*lg; — gll72(0,7+)-
Estimate of 14. Using the estimation
1Dy, 5,u43(5, 5) — Duj(e, s, u(z, )

|
< sup  [Dipy(w,s,y) — Dip(, s, )| + K ()|uj(z, s) — u(z, s)|
(z,t,y)€EAM

< dl(ﬂj,ﬂ) + K () gj(s)v

we get

(4.8) Iy = 2/ dT/ (1 —8)(D1aj(s,u;(s)) — Dlﬂ(s,u(s)),w;I(T» ds

< B5;() + 5T 191202 / (02 (g, i) + K2, (3)5;(5)) ds

< BS;(t) + E(T*HQHLz(O,T* ))2d3 (g, 1)

2
+/5 “(Nlgll 20,7+ Kar (2 /S
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Estimate of Is. By the above inequality, we obtain
D3y (5,105 ()) — DaiCs. u(s)ua (5)| < M (d (. ) + () /5,5)).
Hence,
- / / (r = $){[Dsty (s, 15(s)) = Dafils,u(s)) g (s), ) (7)) ds
5,(0) +

N

B (T M||gllr2(0,7+))d; (ﬂjﬂ)

B
2

5 T (Mgl 20,7 K (12 S
Estimate of Ig. Similarly, we verify that

s (s, 105(5)) — D, us) e (5)| < M (ds (g ) + Kna (1)y/35(5) ).

(4.10) I = —2/0 ([Dspj(s,uj(s)) = Dspals, u(s))ua(s), wi, (s)) ds

_ 2 2 t_
< B5,(0)+ ST M g ) + MK ) [ 5 (0)ds.

Estimate of I7. Repeating the estimation similarly to I, we obtain
| Dipaj(a, 5,ui(x,8)) — Dipu(a, s, u(z, s))| < di(pg, 1) + Kar(p)y/Si(s),

so it follows that
t
(4.11) =2 / (Dypy (5. u5(5)) — Dip(s,u(s)), wly (5)) ds
0

_ ) ) L
< 5,0) + ST o0 + 5K () / 5,(s) ds.

Estimate of Is. We note that

Fj(t) = Fj(,t) = Fj(a,t) = F(2,t) = f;[u;)(2,) = flu;) (@, t) + flug) (@, t) = flu](@,1).
Since
| filug) (@, t) = flugl(z, )] = | f3 (@t uy (@, ), w2, 1), Vs (2, 1), Vaj(2,1))
— [z, tui(z, t), w2, 1), Vuy (2, 1), Vaj(z, 1))
Hf] f”CO(AM) <d(fjaf)v
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it follows that

1f g (8) = FLul )] < 2V2Kar(f)y/55(8) + Knr ()| w) ()]

Then
IE (N < 11£ilu) (8) = Flu @)1 + [ Flu)(t) = Flul @)
<d(f;, )+ Qﬁf?M(f)\/ Si(t) + K (f)l[w), (t)]).
Hence,

t
(412) Iy = 2/ (B (5), ! (s)) ds

0
1
g
Finally, by choosing 8 = fi./14, we get from (4.5)—(4.10) that

<T@ (S, ) + 65,0 + 1+ 4V2Ru(f) + S K3 (f)] / 5;(s) ds.

t

5,(t) < R;(M) + D / 5;(s) ds,
0

where

2 . 28 i .
R;j(M) = iT (5, f) + ?(1 + K ()2 (1+ M)*T*||g; — gll720.7+

56 . o
+ ?T (1+ M?)[d3 (g, 1) + (TNl gll 20,74)) > d3 (g, 1),

Dag = = (14+4V3Ru(f) + (1 + Kar () (1 + M) + — K3, (1))

* o
28 —\\ 2% 2

+2E(1 + K ()T |9l 220,74
56 « _

+ F(l + M?)(K 3 (1) + T gll7 20,7 K s (1))

Using Gronwall’s lemma, we have

Sj (t) < Rj (M) exp(TDM).

This yields that

s = ullw, (ry < 34/exp(TDar) R; (M)
< Cr(dy(pj, ) + da (i, 1) + d(f5, ) + g5 — gllmor)) Vi = Jo.
Theorem 4.1 is proved. O
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Remark 4.2. We give here an example, in which condition (4.1) is satisfied.
(i) Consider {f;} defined by

2?2y
f' mat7yla"'ay4 :fmat7y17"'ay4 +
it ) =1 AT

(z,t,91,...,94) € [0,1] x [0, T%] x R*, where f € C1([0,1] x [0, T*] x R*) satisfies (Hy).
It is easy to check that f; € C1([0,1] x [0,T*] x R*) also satisfies (H4) and

7 (03 (07 2 * * -
d(f;, f) = sup max [|[Df; — D*fllco4,,) < 7 max{(T )2, T*} = 0 as j — oo.
M>0lal<1 J

(i) Consider {p;} defined by

xty?
/J/(J%t,?J :/'[/(x7tay +‘7a
’ ) ) J(1+y?)

(z,t,y) € [0,1] x [0,T*] x R, where u € C3([0,1] x [0,T*] x R) satisfies (Ha).
It is easy to check that p; € C3([0,1] x [0,7%] x R) also satisfies (Hz) and

i, 1) = sup sup( max 1075 — D7l coa )
M>0 1B1<3

1
< - max{5,18T*} — 0 as j — oc.
J

(iii) It is similar to give {f;}and {g;}, so we omit it here.

5. GLOBAL EXISTENCE AND GENERAL DECAY

In this section, we investigate the general decay of solutions to Problem (1.1) in
the specific case p = p(t,u), f(u) = u, f = —Mu + f(u) — 1 D3pu(t, u)u? + F(z,t).
Precisely, we shall consider the problem

0? ¢
U + AU — Miggy — wu(t, u(z,t)) + / g(t — 8)ugy(z, s)ds
0

1
fu) — =D3u(t,u)u2 + F(x,t), 0<z <1, 0<t<T,
u(1

—~~
ot
—_

~—

I

2
u(0,t) , 1) =0,
u(z,0) = to(z), w(z,0)=1u1(z),

where A > 0, A\; > 0 are given constants and u, g, f, F, Ug, U1 are given functions
satisfying the following assumptions.
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We first note that by Theorem 3.6, under the assumptions corresponding to this
special case, Problem (5.1) has a unique local weak solution u such that

we C([0,T]; H? N Hy) N C* ([0, T]; Hy) N L>(0,T; H? N Hy),
u' € C([0,T); Hy) N L=(0,T; H* N Hy), w" € L*(0,T; Hy) N L>(0,T; L?),

for T small enough. Furthermore, using the standard arguments of density, we can
propose the assumptions to get the local existence and uniqueness of a weak solution
for Problem (5.1) with less smoothness as follows.
(Hl) (’0,0,’&1) S H& X L2;
(Hz) p € C3(Ry x R) and there exists a positive constant s, such that
(i) Dap(t,z) = ps > 0 for all (¢,2) € Ry x R,
(ii) D1Dau(t,z) < 0 for all (¢,2) € Ry x R;
(Hs) g € C'(Ry);
(Hy) f € CY(R) such that f(0) =0 and yf(y) > 0 for all y € R;
(Hs) F e L2((0,1) x Ry).

We then obtain the following theorem.

Theorem 5.1. Let (Hy), (Hy), (Hs), (Hy), (Hs) hold. Then there exist T > 0
and a unique solution of Problem (5.1) such that

(5.2) ue C%[0,T); Hy) N CH([0,T); L?), ' € L*(0,T; Hy).

We now prove the existence of global solution and the energy of the solution decays
as t — oo. For this purpose, we strengthen the following assumptions.
(Hy) (@o, 1) € Hi x L%
(HY) pu € C3(Ry x R) and there exist positive constants fi., f1x, fi2« such that
(i) Dap(t,z) = ps > 0 for all (¢,2) € Ry x R,
(if) D1Dopu(t,z) <0 for all (¢,2) € Ry x R,
(iii) 22D3u(t,z) + Dap(t, z) > p1s > 0 for all (¢, 2) € Ry x R,
(iv) 2D3u(t,z) = —pa. for all (¢,2) € Ry x R;
(HY) g € CY(Ry) N LY(R,) such that
(i) Lo = po — 3(00) > 0,
(ii) there exists a function £ € C*(R) such that
(G) €(t) <0< g(t) forall t >0, [~ &(s)ds = oo,
(33) 9'@t) < =€&(t)g(t) < 0 for all t > 0, where g(t) = fotg(s) ds, g(oo0) =
fooo g(s)ds;

—~
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(H}) f € CYR), f(0) =0, yf(y) > 0 for all y € R and there exist constants a, 3,
dy, dy > 0 with o > 2, B > 2 such that
()yf <dy [} f(z)dz for all y € R,
(i) [ f(2)dz < da(|y|™ + |y|?) for all y € R;
(HY) F € L°°([R+,L2) N LY(Ry; L?) and there exist two positive constants Cp, yo
such that
IF@? < Coexp(—of) Vi >0

(HE) p > max{2,da}, ps > 5(p/d2)p2« + (1 +p/da)g(c0).
We next prove that if

/Dgu()uo )ad, (z) do — / dx/ z)dz >0

and if the initial energy and || F(t)| are small enough, then the solution is globally
extended in time and its energy decays to zero as t tends to infinity. To achieve this
goal, we first construct the Lyapunov functional in the form

(5:3) L(t) = E(t) + 9(1),

where § is a positive constant suitably chosen and

(5.4) B(O) = 51001 + (5= 2 )l(o = w0 + Nw)] + 1),
(55) 90 = (0 (0), ult) + 2 )P+ a0
with (g * u)( fo 8)||ux(t) — ux(s)]|? ds and

(56)  I(t) = (g u)(t) + N(u) — p / Flu(z,1) do
/ Dop(t, u(z, t))u(z,t) de — g(t)||u.()||?, F / f(z

Lemma 5.2. If (H), (HY)—(HZ) hold and u is the solution of (5.1), then the
energy functional E(t) satisfies

(G7) E(0) < ZIF@]+ IOl @,

B'(1) < = (M=) IO = Al 0] - Il

SO+ 00 + 5

2

for all e1 > 0.
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Proof. Multiplying (5.1) by «/(z,t) and integrating over [0, 1], we get

(5.8)  E'(t)= = Mllu' ()l = Alluz ()] + %(g’ *u)(t) — %g(t)lluas(lﬁ)Il2

1
43 [ DiDautt.uta, )il (e t)do + (F(0), 0 (0),
0
Using assumptions (HS), (H%), (HZ), we obtain

1 1

(5.9) 5/ D1Dop(t, u(x,t))ui (z,t)dz <0,
0

1

S0+ )(t) < ~ 30 (g = w)(0),

E'(t) < (F(0), /(1)) < 3IF@)] + 31 F Ol (0)]

This assures (5.71).
By applying Cauchy-Schwartz inequality, we have
1

(5.10) (F(t),u' (1)) < 2—€1||F1(t)||2 +

€1

L@ Ve > 0.

Then by using (5.8), (5.9) and (5.10), it is easy to see that (5.72) holds. Lemma 5.2
is proved. O

Lemma 5.3. If (HY)—(H¢) hold and (i, @1) € HE x L? such that 1(0) > 0 and

b

(5.11) 0" = —G(00) — pda(R22 + RF2) > Ly, + Lg(o0),
2ds do

where

R, = (%)m, E, = (E(O) + %91) exp(o1),

o= [IF@Ia L= g -5(0) >0
0

then I(t) > 0 for all t > 0.

We also note that condition (5.11) holds if g(co), E, is chosen small enough and
x> 0 is suitably large.
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Proof. By the continuity of I(t) and I(0) > 0, there exists 7' > 0 such that
I(t) = I(u(t)) >0 Ytelo,T].

From (5.4) and (5.6), we get

.12 B0 > 5O + (5 7)lox 0+ Nw)
> SO + (5 - 7)o w0 + L us (o))
> 3l + 22 )0 + L2 ) vie 0.7

Combining (5.71) and (5.12) and using Gronwall’s inequality, we obtain

2 p / 2 1
(513) IO + = o @ + (g )0

(p—2)
2pE(t) 2pE, 2 =
< < =R; Vtel0,T].
w-2L. S b-2)L 0.7

Then it follows from (H¢) (ii) and (5.13) that

p/ F(ulz, 1) da < pda([|u()l|Fe + Ju(®)]]s)
0

< pda([[ua()]|* + [lva (D))
i

pda(RY™ + RY72)ua (1)1
Thus,
(5.14) I(t) = (g xw)(t) + " luz(1)|]* > 0 ¥t € [0,7],

where the positive constant n* is defined as in (5.11).

Next, we prove that I(t) > 0 for all t > 0. Put Ts, = sup{T > 0: I(t) > 0 for
all t € [0,T]}, we have to show that T, = oco. Indeed, if To, < o0, then by the

continuity of I(t), we have I(Tx) > 0.
In the case of I(Tw,) > 0, by the same arguments as above, we can reduce that

there exists Thy > Tho such that I(t) > 0 for all ¢ € [0,Ts]. This is contrary to the

definition of Th..
In the case of I(Tw,) = 0, it follows from (5.14) that

0= 1I(Ts) = (g * u)(Too) + 1" ||uz(To0)|* > 0.

Therefore,
[u(Too) || = (g * u)(T) = 0.
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Due to the function s + g(Teo — 8)||tx(Teo) — ux(s)||? being continuous on [0, Th]
and g(Tw — s) > 0 for all s € [0,Tw], we have

Too
(9% u)(Toc) = / 9(Toe — 5) 11z ()] ds = 0.

It follows that ||us(s)]|> = 0 for all s € [0,T]. Thus, u(0) = 0. This is contrary to
1(0) > 0.
Consequently, To, = oo, i.e. I(t) > 0 for all ¢ > 0. Lemma 5.3 is proved. O

It is clear to see that Lemmas 5.2, 5.3 assures the global existence of the solution
for Problem (5.1).
Next, we put

(5.15) By (t) = [lu' @) + Nua(@)* + N(u) + (g % u)(t) + 1(2).
In order to discuss general decay, we need the following lemmas.

Lemma 5.4. Ifthe assumptions of Lemma 5.3 hold, there exist positive constants
B1, Br, B2, B2 such that

(5.16) BLE(t) <
<

for § small enough.

Proof. Lemma 5.4 is proved by using some simple estimates, hence we omit
the details. O

Lemma 5.5. If the assumptions of Lemma 5.3 hold, then the functional 1 (t)
defined by (5.5) satisfies the estimation

(5.17)
W0 < IO+ 5 IFOI + (2 + 52) g = w0
(51d2 dg
- =R ) - (1 - 6*)N(u)
- [0 s0r + s - 50 - 8 = Z — (14 Z)gto0)] a0

for all e9 > 0, d,, 61 € (0,1).
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Proof. Multiplying (5.1)1 by u(x,t) and integrating over [0, 1], we obtain

W'(t) = O] - %<D§u(t,U(t))Ui(t),U(t)> — (Dapu(t, u(t))ug (1), ua(t))

+<F(t),U(t)>+/ g(t = 5)(ua(s), ua(t)) ds + (f (u(t)), u(t))

0

= 012 + (PO, u0) + [0 = ) (). 0(0) ds + (u(t). 1)
— 5, /01 [%u(x ) D3p(t, u(x, ) + Doplt, u(z, t))} w2 (z, 1) do

—(1- 5*)/0 Eu(x,t)D%,u(t,u(x,t)) + Dapu(t, u(z, t))} u?(x,t) da.

Using Cauchy-Schwartz inequality, we have

1
— || F()]?,
262H @l

(5.18) (F (), ult)) < 3 uab)]* +

/ gt — ) (), w()) ds < (14 Z) O fua O + 5= (9 5 w)(0),
0

252
I(t) = 0" luas ()|

for all &5 > 0. By asumption (H$) (iii) and (H%) (iv), we get
(5.19)

_ 6*/0 [%u(x,t)Dgﬂ(t,u(x,t)) - Dgu(t,u(x,t))} w2 (2, t) dz < — 8,1 |ua ()%,

1
-(1- (5*)/0 Eu(m, D3 u(t, u(z,t)) + DQ,U(t,’U,(J?,t))} u?(x,t) dz

-—z-a) [ (e, ) D3, (e, O, 0) — (1 5.)
% [N ) + g0 e (t) )
< 51— )zl D)2 — (1~ )N u).
On the other hand, by asumption (H¢) (i) and definition of I(t) given by (5.6), we
obtain

(5.20)
(f(u(®)), u(t)) < dz/o Flu(z,t))de = %[(9 wu)(t) + N(u) = 6 I(t) — (1 —01)I(t)]
< %[(g *u)(t) + N(u) = 611(t) = (1= 00)n*[|ua(8)]|%]-

Then it follows from (5.18)—(5.20) that inequality (5.17) is valid.
Lemma 5.5 is proved completely. ([
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Using Lemmas 5.2-5.5, we state and prove our main result in this section as follows.

Theorem 5.6. If (HY)—(H¢) hold and (iig, %) € H} x L? satisfy I(0) > 0
and (5.11), then there exist positive constants C, ¥ such that

(5.21) wwmﬁﬂuamﬁ<6m4}végwm§ vt 0

Remark 5.7. The general decay obtained in Theorem 5.6 contains the decay
results of exponential or polynomial or logarithmic type. Then the following exam-
ples describe the different decay depending on the form of {(¢), and so lead to the
corresponding decay of the solution wu.

(i) Let ¢(t) = a = const > 0. Then the assumption (H$) is satisfied with ((¢). So
exp(—7 f(f &(s)ds) = exp(—a7t), and (5.21) becomes

w ()% + Jue(t)]|? < Cexp(—ayst) Vt>0 (exponential decay).

a = const > 0. Then (H$) is satisfied with ((t). So

(i) Let {(t) = a/(1+0)
(1+t)7, and (5.21) becomes

exp(—7 Ji €(s)ds) = 1/
C

I @I + ua (0] < [k

Vt >0 (polynominal decay).

(iii) Let ¢(t) = a/((l —|—t)(1 +1In(1+1))), a = const > 0. Then (Hf) is satisfied
with ((t). So exp( ’yfo s)ds) =1/(1 +1In(1 +¢))*7, and (5.21) becomes

C
/ 2 2 < 2 1 . )
llw ()17 + [|ws (6] TG Vt > 0 (logarit decay)

Proof of Theorem 5.6. First, due to the definition of £(¢) and the inequalities
(5.72), (5.17), we deduce that

6:22) £0) <~ (M- 2= 8) W1 - 36000 + 5 (= + ) IFOI?
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dg 1 (5(51(12 2
+0(%2 4 5 ) g w)(e) = ST — 60N () — 06 a1,
where
do
01 = 01(0,) =1 — —= — 6.,
1= 01(5:) )
_ _ a5 g e (1,82,
2= 05(0.,01,2) = “2(1= 60" 4 Guppre = 5 (1= B )pe = 5 (1+2)(c0).
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Clearly

d
lim 6,(6,)=1-=2>0,
6*—>0+ p
i 8a(6s,01,89) = 2o — Liips — 00) > 0
5.—04, 6104 2(0x, 01, €2 —p77 2#2* g(oo .

€9 —>0+

Then we can choose d, 01 € (0,1) and £ > 0 small enough such that 8, = 6,(d.) > 0,
0 = 05(dx,01,e2) > 0. Moreover, we also choose 1 > 0, 6 > 0 small enough and

satisfying
=\ — %—5>0, 0<5<min{1; @—2)(;—5*)@}
Putting
L §orday - d 1
(5.23) . :mln{91,591,592, g 2}, 93:5(5*@)’
we get from (5.22) and (5.23) that
(5.24) L0 < =0.5:(0) + 0.+ B)g w)0) + 5 (= + ) IFOI.
Combining (5.72) and (5.24), we obtain
(5.25)
, i - 1,1 & ,
EDL(D) < —BEOE @) + (0. + IE0g * )0 + 5 (= + 2 )eOIF O]
B.EWE(®) +200. +8)| ~ ') + 5| PO

%( S)eoF)?

—9.£()E ( ) — 20, + 05)E' () + Coe "0t
where

Co = [9*:193 + %(i + i)}f(o)co.

Setting the functional L(t) = &(t)L(t) + 2(0. + 05)E(t), we have
L(t) < [€(0)B2 + 2(B. + 03)B2] B (1) = o Fr (1)
and
L'(t) = & (1)L(E) + ()L (1) + 2(0- + 05) ' (¢)

—0,£(t)E1(t) + Coe ! —g—*g(t)L(t) + Coe 0t
2

248



By choosing 0 < 7 < min{é*/Bg, Y/£(0)}, we get
L'(t) + FE#)L(t) < Coe ",

Integrating the above inequality, we deduce

Co
(5.26) L(t) < (L(O) to— exp< / £(r dT)
On the other hand,

(5.27) L(t) = E@)L(t) +2(0. + 03)E(t) = 2(0. + 03) 81 E1(t)
2(0. + 03)B1 ([l O + [lua()]*)-
Then by (5.26) and (5.27), we get (5.21). Theorem 5.6 is proved completely. O

Remark 5.8. We also give here an example in which y satisfies assumption (HY).

We shall consider the function pu(t,z) = .z + fise~t|2|* 712, where p. > 0, ji, > 0,

k > 3 are constants. By direct computations, we have

Dopult, 2) = pe + ke~ 2|1 = pa > 0,
Dy Dap(t, z) = —kfie™"|2|* 1 <0,
zD3p(t,2) = k(k = e 2" = 0> —po.,
1 1
§ZD2M(t 2) + Dap(t, z) = §(k — 1)[Dap(t, z) — ps] + Dap(t, 2)

2 Doplt,z) 2 pe = p1x > 0.

This claims that (H$) holds.

6. APPENDIX

Proof of Lemma 3.3.
Cases (i), (i): By pim(x,t) = Dip(z,t, um—1(2,1)), i = 1,3, we have

M;m(xat) = Do Djp(x,t, upm—1(z,t)) + D3Di:u'(xatvumfl(xvt))u;n—l(xat)v i=1,3,
hence

M (1) (1 [, (1))

o (2, 1)) < K
< Ky(p) (14 Vg, (D) < Kar(p)(1+ M), i=1,3,

and

i (DI < Kna (1) (1 + [V, 1 (D]]) < Kar(w)(1+ M), i=1,3.
Thus (i), (ii) hold.
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Cases (i), (w): By

Hima (l‘, t) - DlDz/J/(xa t7 ’U,m_l(.l?, t)) + D3D1/J,(J), t7 'U;m_l(.l?, t))vum—l(x7 t)a

i=1,3, we have

|/Jim:c(mat)| M(M)(l + |V’U,m_1(l‘,t)|)

<K
< Knr () (1 + V2| Va1 ()] 1) < Knr(p)(1+2M), i =13,

and

[ tima ()| < K () (1 + [Vum—a(]) < Ky (w)(1 + M), i=1,3.

Thus (iii) and (iv) hold.
Cases (v), (vi): By

Wime (T t) = DaD1 Dipu(2, t, U —1(2,t)) + D3D1D;pu(x, ty t—1(x, t) )ul, 4 (2, 1)
+ [D2D3sD;pu(x, t, um—1(z,t))
+ D2D (b Uy (2, 8)) !, (2, 8)] V1 (2, 1)
+ D3Dip(x, t, U1 (2, 8))Vul, 1 (z,t), i=1,3,

we have

|Hima (2, 6)] < Kag () (1 + g (2, 8)]) + Kag () (1 + [up, 4 (2, 8)]) [ V-1 (2, 1)]
+KM(u)|Vu 1(z,1)
Kar(n)(1+ M) + Kar(n)(1+ M)V2[| Vg1 (8)]| 110
+KM(u)f||Vum_1( )l
< Ky (p)(1+ M) + Ky (p)(1+ M)2M + Ky (p)2M
= (14 5M +2M*)K (1)

and

[ Hima O < Kar (1) (1 + ([t 1 (DI + Knr (1) (1 + [[Vatgy, 1 @)D Vim—1 (1)
+ K (1) Vg, 1 (0]
< Ku(p)(1+ M) + Kp(p)(1+ M)M + Ky (p)M
=(1+3M + M*)Kn(p).

Thus (v), (vi) hold.

Case (vii): By Ap(t;u,v) = (fzm(t)us, ve), u,v € HE we get |Ay, (tu,v)| <
M ()| vz ||||vg||. Thus (vii) holds.

250



Case (viii): We have

1Aul) (8) + Aal) ()] < [Aul) (O] + | Aag) (1))

< V2 IauP )2 + 1A (1))2 < V3 1),

Thus (viii) holds.
Case (iz): We have

k
lu®) 0] < a0 + / 145 (5)]| ds < [loka]l + / V3%

which implies that (ix) holds.
Case (z): By (iii), we obtain

| 5 Grom L0 = W s 0) + s (1) 2 1)
< tms (uimz (Ol + lnam () Auiz) (1)
< Kr )L+ 20 [u ()] 4+ Kne ()| A (1))

< 2(1+ M)Kar(u)\/ S (1),

which implies that (x) holds.
Case (zi): We deduce from (iii), (v) that

|2 s (VUL = 1 s 1) + i ()0
< 8 ()| oo [0S0 (D] + 3 ()| o< 1655 (8
< (14 5M + 2M?) K () \/ S (8) + Kar () (1 + 2M)\/ 5% (t)
= (2+ 7TM + 2M?*) K (1) SP (1)

Thus (xi) holds.
Case (zii): We deduce from (i), (iii), (v) that

H 8?2& (am (B (¢ H
= (| & e 00t 1) + s DA 0
= | (VU () + pr3imae ()00 () + il (8) Al (£) + prn (8) Ay (1)
< [(145M +2M2) + (1 +2M) + (1 + M) + 11K (1) 5% (2)
=2(2+4M + M) Ky () SE 1),
Thus (xii) holds and proof of Lemma 3.3 is complete. O
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Proof of Lemma 3.4.
Case (i): We have

t t
8 @) < A (0] + [ JALD ) ds < [Ador] + [ Y5 (5)s.
0 0

Thus (i) holds.
Case (ii): We deduce from Lemma 3.3 (xi) that

t
0
I (OO < OO + [ 15 ()i ) s
t
< s (O] + (24 TM 4 2M*)Ks ) [ /50 (5) .
0

Thus (ii) holds.
Case (iii): We deduce from Lemma 3.3 (xi) that

0

H%(Mm(t)ug’j;(t))H < Ha%(%m(O)u%(o))H . /Ot 92

55 (o (s)uSE(9)]| s

’ +2(2 + 4M + M) K (p) /Ot\/ﬁﬂf) (s) ds.

Thus (iii) holds and proof of Lemma 3.4 is complete. O

< H (% (13m (0)Toka)
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