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On the recognizability of some projective

general linear groups by the prime graph

Masoumeh Sajjadi

Abstract. Let G be a finite group. The prime graph of G is a simple graph Γ(G)
whose vertex set is π(G) and two distinct vertices p and q are joined by an edge
if and only if G has an element of order pq. A group G is called k-recognizable
by prime graph if there exist exactly k nonisomorphic groups H satisfying the
condition Γ(G) = Γ(H). A 1-recognizable group is usually called a recognizable
group. In this problem, it was proved that PGL(2, pα) is recognizable, if p is
an odd prime and α > 1 is odd. But for even α, only the recognizability of the
groups PGL(2, 52), PGL(2, 32) and PGL(2, 34) was investigated. In this paper,
we put α = 2 and we classify the finite groups G that have the same prime graph
as Γ(PGL(2, p2)) for p = 7, 11, 13 and 17. As a result, we show that PGL(2, 72)
is unrecognizable; and PGL(2, 132) and PGL(2, 172) are recognizable by prime
graph.

Keywords: projective general linear group; prime graph; recognition

Classification: 20D05, 20D60, 20D08

1. Introduction

Let G be a finite group. We denote by ω(G) the set of orders of elements of G.

This set is closed under divisibility; hence is uniquely determined by a set µ(G)

of elements in ω(G) which are maximal under divisibility relation. All the prime

divisors of |G| is denoted by π(G). The prime graph of G is a simple graph Γ(G)

whose vertex set is π(G) and two distinct vertices p and q are joined by an edge

if and only if G has an element of order pq, and in this case we will write p ∼ q.

Symbol t(G), is the maximal number of primes in π(G) pairwise nonadjacent in

Γ(G). The number of connected components of Γ(G) is denoted by s(G) and the

set of π1(G), π2(G), . . . , πs(G)(G), the connected components of Γ(G), is denoted

by S(G). If 2 ∈ π(G), we assume π1(G) is the connected component containing 2.

Definition 1.1. A finite group G is called k-recognizable by prime graph if

there exist exactly k nonisomorphic groups H satisfying condition Γ(G) = Γ(H).

A 1-recognizable group is usually called a recognizable group.
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A group is said to be an almost simple group if there is a nonabelian simple

group such that the given group can be embedded between the simple group and

its automorphism group. Many articles are devoted to the recognition of almost

simple groups by prime graph. As the projective general linear groups are under

study in the present paper, we only review the results obtained up to now for

these groups.

1. Let G be a finite group, and let p be a prime number such that Γ(G) =

Γ(PGL(2, p)), where p 6= 11, 19 and p is not a Mersenne or Fermat prime. If

p 6= 13, then G has a unique nonabelian composition factor which is isomorphic

to PSL(2, p) and if p = 13, then G has a unique nonabelian composition factor

which is isomorphic to PSL(2, 13) or PSL(2, 27), see [8].

2. If q = pα, where p is an odd prime and α > 1 is odd, then PGL(2, q) is

uniquely determined by its prime graph, see [1].

3. If q = pα, where p is an odd prime and α is an even number, then

PGL(2, q) for q = 52, 34 is uniquely determined by its prime graph, see [13], [11].

Also, PGL(2, 32) is unrecognizable by prime graph, see [12].

In this paper, we investigate the recognizability of almost simple groups

PGL(2, p2) for p = 7, 11, 13 and 17. As a result, the group PGL(2, 72), as the un-

recognizable group, and PGL(2, 132) and PGL(2, 172), as the recognizable groups

by prime graph, are added to the third part of the above list.

Assume that π is a set of prime numbers. A positive integer n is said to be a π-

number if every prime divisor of n belongs to π. By convention 1 is a π-number

for every set π of primes, and if π = ∅, 1 is the only π-number. We say that G

is a π-group if |G| is a π-number. Let G be a finite group. Then G has a unique

largest normal π-subgroup, which is denoted by Oπ(G) and called the π-radical

subgroup of G.

Extensions of groups are written in one of the following ways: A× B denotes

a direct product, with normal subgroups A and B; also A : B denotes a semidirect

product (or split extension), with a normal subgroup A and a subgroup B; and

A ·B denotes a non-split extension, with a normal subgroup A and a quotient B,

but no subgroup B; finally A.B or just AB denotes an unspecified extension.

In the extensions of groups, if B is cyclic of order n, we denote B by n. Our

undefined notations are standard as in [5].

2. Preliminary lemmas

The first and second parts of the following remark are used extensively in

Section 3 without mentioning it.
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Remark 2.1. Let G be a finite group, H a subgroup of G and N a normal

subgroup of G. Then:

(1) If p ∼ q in Γ(H), then p ∼ q in Γ(G);

(2) If p ∼ q in Γ(G/N), then p ∼ q in Γ(G);

(3) If p ∼ q in Γ(G) and {p, q} ∩ π(N) = ∅, then p ∼ q in Γ(G/N).

Proof: The proof is straightforward. �

We will use the symbol ε to denote either ±1 or the sign “+” or “−”. We

write L+
n (q) for the group Ln(q) = PSL(n, q) and L−

n (q) for the group Un(q) =

PSU(n, q).

Lemma 2.2. (a) Let S = S4(q). We assume that q = pn, where p 6= 3 is an odd

prime. Then the set ω(S) consists of all divisors of numbers (q2+1)/2, (q2−1)/2,

p(q + 1) and p(q − 1), see [21].

(b) We have

µ(Lε
3(q)) =

{

{q − ε1, p(q − ε1)/3, (q2 − 1)/3, (q2 + εq + 1)/} if d = 3;

{p(q − ε1), (q2 − 1), (q2 + εq + 1)} if d = 1,

where q = pα is odd and d = (3, q− ε1), see [2, Lemma 10] for ε = −, and see [20]

for ε = +.

(c) We have µ(Lε
4(q)) = {(q2 + 1)(q + ε1), q3 − ε1, 2(q2 − 1), 4(q − ε1)}, where

q = 2m, see [4, Corollary 3].

Definition 2.3. A group G is a 2-Frobenius group if there exists a normal series

1⊳H ⊳K ⊳G such that K and G/H are Frobenius groups with kernels H and

K/H , respectively.

K.W. Gruenberg and O. Kegel gave the structure of finite groups with discon-

nected prime graph in an unpublished manuscript in 1975. When a finite group

has a disconnected prime graph, we will be able to determine its structure by the

following theorem.

Theorem 2.4 (Gruenberg–Kegel, see [23, Theorem A]). If G is a finite group

whose prime graph has more than one component, then one of the following holds:

(a) G is a Frobenius or 2-Frobenius group;

(b) there exists a nonabelian simple group S such that S 6 G/K 6 Aut(S)

for some nilpotent normal π1-subgroup K of G.

Here we list some properties of the Frobenius group whose proofs can be found

in [15].

Lemma 2.5. Let G be a Frobenius group with kernel K and complement H .

Then the following holds:
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(a) K is a nilpotent group; in particular, the prime graph of K is complete;

(b) s(G) = 2 and S(G) = {π(K), π(H)};
(c) |K| ≡ 1 (mod |H |); and
(d) every subgroup of H of order pq, where p and q are not necessarily defer-

ent prime numbers, is cyclic. In particular each Sylow subgroup of H of

odd order is cyclic and a Sylow 2-subgroup of H is either cyclic or a gen-

eralized quaternion group. If H is nonsolvable, then there is a normal

subgroup H0 of H such that |H : H0| ≤ 2 and H0
∼= SL(2, 5)× Z, where

every Sylow subgroup of Z is cyclic and |Z| is prime to 2, 3 and 5.

Lemma 2.6 ([14, Lemma 1]). Let G be a finite group, let K EG, and let G/K

be a Frobenius group with kernel F and complement C. If (|F |, |K|) = 1 and F

does not lie in KCG(K)/K, then r · |C| ∈ ω(G) for some prime divisor r of |K|.
Lemma 2.7 ([6, Lemma 3]). Let G be a 2-Frobenius group. Then G is a solvable

group.

Lemma 2.8 ([7, Theorem 1]). If G is a finite solvable group all of whose elements

are of prime power order, then |π(G)| ≤ 2.

Lemma 2.9 ([9]). Let n ≥ 2 and q = pf . Then

(a) Out(PSL(n, q)) ∼= Z(n,q−1) : Zf : Z2, if n ≥ 3;

(b) Out(PSL(2, q)) ∼= Z(2,q−1) × Zf .

Notation 2.10. Let G be an almost simple group related to L = PSL(2, p2)),

where p is an odd prime. By Lemma 2.9, Out(L) ∼= Z2×Z2, then Aut(L) ∼= L ·22
(the Klein’s four group is denoted by 22). We note that the number of nontrivial

proper subgroups of Z2 × Z2 up to conjugacy is three subgroups of order 2: the

field, diagonal and field-diagonal automorphisms of L, which are denoted by 21,

22 and 23, respectively. So if G is an almost simple group related to L, i.e. L E

G ≤ Aut(L), then G is isomorphic to one of these groups: L, L : 21 ∼= PGL(2, p2),

L : 22 ∼= PΣL(2, p2), L · 23, L · 22 ∼= Aut(L).

Given a prime p > 5, we denote by Sp the set of all finite nonabelian simple

groups G, such that p ∈ π(G) ⊆ {2, 3, . . . , p}.
Lemma 2.11 ([18, Lemma 2.1]). Let P be a nonabelian simple group that

belongs to Sp, where 5 6 p 6 997. Then π(Out(P )) ⊆ {2, 3, 5, 7, 11}, and
11 divides only the order of the outer automorphism group of L2(2

11).

Lemma 2.12 ([17]). Let G be a finite group and N a nontrivial normal p-

subgroup for some prime p and set K = G/N . Suppose that K contains an

element x of order mcoprime to p such that 〈ϕ |〈x〉, 1 |〈x〉〉 > 0 for every Brauer

character ϕ of (an absolutely irreducible representation of) K in characteristic p.

Then G contains elements of order pm.
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Let t > 1 and n be natural numbers. A primitive prime divisor of tn − εn is

a prime that divides tn − εn and does not divide ti − εi for 1 6 i < n, which is

denoted by t[εn]. The following lemma is taken from [26].

Lemma 2.13 ([26, corollary 9]). Let G = Lε
n(q), q = pm, be a simple group

which acts absolutely irreducibly on a vector space W over a field of characteris-

tic p. Denote H = W : G.

(1) If q = p and (n, q − ε) > 1, then pq[εn] ∈ ω(H).

(2) If n is odd, then pq[ε(n−1)] ∈ ω(H).

(3) If n = 3 and (q − ε)3 = 3, then 3p ∈ ω(H).

(4) If n = 2 and q is odd, then 2p ∈ ω(H).

Lemma 2.14 ([22, Lemma 5]). Let L be a finite simple group Ln(q), d =

(n, q − 1).

(1) If there exists a primitive prime divisor r of qn − 1, then L includes

a Frobenius subgroup with kernel of order r and cyclic complement of

order n.

(2) Group L includes a Frobenius subgroup with kernel of order qn−1 and

cyclic complement of order (qn−1 − 1)/d.

Definition 2.15. A finite nonabelian simple group G is called a simple Kn-

group, if the order of G has exactly n distinct prime factors.

Lemma 2.16 ([19, Theorem 2]). Let G be a simple K4-group. Then, G is

isomorphic to one of the following simple groups:

(a) A7, A8, A9, A10, M11, M12, J2, L2(16), L2(25), L2(49), L2(81), L3(4),

L3(5), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2),

O+
8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2), Sz(8),

Sz(32), 3D4(2),
2F4(2)

′

.

(b) L2(r), where r is a prime satisfying the equation r2 − 1 = 2a · 3b · uc for

some a, b, c ≥ 1 and a prime u > 3.

(c) L2(2
m), where m ≥ 1 satisfies the equations 2m−1 = u and 2m+1 = 3tb

for some t > 3, b ≥ 1 and primes u, t.

(d) L2(3
m), where m ≥ 1 satisfies the equations 3m−1 = 2ub and 3m+1 = 4t,

or 3m − 1 = 2u and 3m + 1 = 4tb, where u, t are odd primes and b ≥ 1.

GAP code enabled us to find the spectrum of the following almost simple

groups, as used in the main results.

Lemma 2.17. We have:

ω(U4(5)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 20, 21, 24, 26, 30, 52, 60, 63}
ω
(

Aut(L2(3
5))

)

= {1, 2, 3, 4, 5, 10, 11, 15, 20, 22, 61, 121, 122, 242, 244}
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ω(PΣL(2, 35)) = {1, 2, 3, 5, 10, 11, 15, 61, 121, 122}
ω(S4(8)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 18, 21, 63, 65}

ω(L3(16)) = {1, 2, 3, 4, 5, 7, 10, 13, 15, 17, 85, 91}
ω(S6(4)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 20, 21, 30, 34, 51, 63, 65, 85}
ω(O+

8 (4)) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 17, 20, 21, 30, 34, 51, 63, 65, 85,
255}.

3. Main results

Lemma 3.1. Let G be a finite group such that Γ(G) = Γ(PGL(2, p2)), where

p ≥ 5 is prime. Then, either G is a nonsolvable Frobenius group and p = 7; or

there exists a nonabelian simple group S such that S 6 G/K 6 Aut(S) for some

nilpotent normal π1-subgroup K of G.

Proof: We know that µ(PGL(2, p2)) = {p2 − 1, p, p2 + 1}. Then Γ(G) =

Γ(PGL(2, p2)) implies that S(G) = {π1 = π(p2 − 1) ∪ π(p2 + 1), π2 = {p}}.
Clearly 3 does not divide n2 + 1 for every natural number n. Therefore if

ν ∈ π((p2 + 1)/2), ν 6= 3. Now, let G be a solvable group. Then, G has a solvable

Hall {3, ν, p}-subgroup T . As there is no edge between 3, ν and p in Γ(G),

it follows that each element of T has prime power order. Hence |π(T )| ≤ 2

by Lemma 2.8, which is a contradiction. Thus G is not solvable; so by using

Lemma 2.7, we conclude that G is not a 2-Frobenius. So by Theorem 2.4, either

G is a nonsolvable Frobenius group or there exists a nonabelian simple group S

such that S 6 G/K 6 Aut(S) for some nilpotent normal π1-subgroup K of G.

If G is a Frobenius group with kernel K and complement H , H is nonsolvable,

because G is a nonsolvable group. Then π(H) 6= {p}, which implies that π(H) =

π(p2 − 1) ∪ π(p2 + 1) and π(K) = {p}. Also by Lemma 2.5, there is a normal

subgroup H0 of H such that |H : H0| ≤ 2 and H0
∼= SL(2, 5) × Z, where |Z| is

prime to 2, 3 and 5. Suppose that Z 6= 1 and ν is a prime divisor of |Z|. Then

ν ∼ 3 and ν ∼ 5 in Γ(H0) ⊆ Γ(G), which implies that {ν, 3, 5} is a subset of

π(p2 − 1), because ν 6= 2 and 3 divides p2 − 1. Therefore π(H) ⊆ π(p2 − 1),

concluding π(p2 +1) = {2}, because π(p2 − 1)∩π(p2 +1) = {2}, but it is evident
that p2 + 1 has at least one odd divisor, which is a contradiction. Then Z = 1.

So H0 = SL(2, 5) and then π(H) = {2, 3, 5}. Therefore π(G) = {2, 3, 5} ∪ {p},
where p > 5. Since π(PSL(2, p2)) = π(PGL(2, p2)) = π(G) = {2, 3, 5, p}, using
Lemma 2.16 implies that p = 7 and the proof is completed. �

Theorem 3.2. Let G be a finite group such that Γ(G) = Γ(PGL(2, 72)). Then

one of the following holds:
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(1) G is isomorphic to a Frobenius group K : H , where K is a 7-group and H

contains a normal subgroup H0 such that |H : H0| ≤ 2 and H0
∼= SL(2, 5);

(2) G ∼= PGL(2, 72), U3(5), U3(5).2, U4(3).22 or U4(3).23;

(3)G/O2(G) is isomorphic to A7, S7, L3(4), L3(4).21 or L3(4).23 for O2(G) 6= 1

and G is isomorphic to S7 or L3(4).23 for O2(G) = 1.

Moreover PGL(2, 72) is unrecognizable by prime graph.

Proof: Applying Lemma 3.1, we obtain either G is a nonsolvable Frobenius

group or there exists a nonabelian simple group S such that S 6 G/K 6 Aut(S)

for some nilpotent normal π1-subgroup K of G.

If G = K : H is a Frobenius group, then by Lemma 3.1, π(K) = {p} = {7};
and there is a normal subgroupH0 of H such that |H : H0| ≤ 2 andH0

∼= SL(2, 5).

In what follows we show that there are infinitely many Frobenius groups with

the above properties and then we obtain PGL(2, 72) is unrecognizable by prime

graph. Let F be a finite field with char(F ) = 7. Since F has prime subfield

isomorphic to Z7, there are elements α and β in F such that α2 = −1 and

β2 = 5. So
√
5,
√
−1 ∈ F . Therefore, if V is a vector space of dimension two

over F (note that V is an elementary Abelian 7-group), by Proposition 6.1.2

of [16], the group VSL(2, 5) is Frobenius with kernel V and complement SL(2, 5).

Since Γ(SL(2, 5)) = {2 ∼ 3, 2 ∼ 5} and V is a 7-group, then Γ(VSL(2, 5)) =

Γ(PGL(2, 72)) = {2 ∼ 3, 2 ∼ 5, 7}. We know that there are infinitely many

field F with the above properties and therefore we can construct infinitely many

Frobenius group VSL(2, 5). This implies that PGL(2, 72) is unrecognizable by

prime graph.

If G is not a Frobenius group, there exists a nonabelian simple group S such

that S 6 G/K 6 Aut(S) for some nilpotent normal π1-subgroup K of G. We

have Γ(G) = {2 ∼ 3, 2 ∼ 5, 7} and S(G) = {π1 = {2, 3, 5}, π2 = {7}}. Then K is

a {2, 3, 5}-subgroup of G and 7 is an isolated vertex in Γ(G).

All simple groups S with π(S) ⊆ {2, 3, 5, 7} are listed in Table 1, taken

from [25]. It is noteworthy that, given the order of the groups S and the or-

der of their outer automorphisms, S 6 G/K 6 Aut(S) implies that 5 belongs to

π(K) in some cases, which we will mention.

Now we study each of the items in Table 1.

1. Let S ∼= A5, A6 or S4(3). We have 7 ∈ π(G) and |G|/|K| divides |S| ×
|Out(S)|. Therefore, since K is a {2, 3, 5}-group, 7 ∈ π(|S| · |Out(S)|), which is

a contradiction.

2. Let S ∼= L2(7). By Lemma 2.14, L2(7) has a Frobenius subgroup 7 : 3. Also

5 ∈ π(K), suppose that K5 ∈ Syl5(K). Since K is nilpotent, K = O5′(K) ×K5

and O5′(K)×Φ(K5)EG. Therefore G/K ∼= [G/O5′(K)×Φ(K5)]/[K/O5′(K)×
Φ(K5)], and K/O5′(K)× Φ(K5) ∼= K5/Φ(K5) is an elementary Abelian 5-group.
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So without loss of generality, we may assume that K is an elementary Abelian

5-group. Therefore by Lemma 2.6, 5 ∼ 3 in Γ(G), which is a contradiction.

S |S| |Out(S)| S |S| |Out(S)|
A5 22 · 3 · 5 2 L3(4) 26 · 32 · 5 · 7 12

A6 23 · 32 · 5 4 A8 26 · 32 · 5 · 7 2

S4(3) 26 · 34 · 5 2 A9 26 · 34 · 5 · 7 2

L2(7) 23 · 3 · 7 2 J2 27 · 33 · 52 · 7 2

L2(8) 23 · 32 · 7 3 A10 27 · 34 · 52 · 7 2

U3(3) 25 · 33 · 7 2 U4(3) 27 · 36 · 5 · 7 8

A7 23 · 32 · 5 · 7 2 S4(7) 28 · 32 · 52 · 74 2

L2(49) 24 · 3 · 52 · 72 4 S6(2) 29 · 34 · 5 · 7 1

U3(5) 24 · 32 · 53 · 7 6 O+
8 (2) 212 · 35 · 52 · 7 6

Table 1. Nonabelian simple group S with π(S) ⊆ {2, 3, 5, 7}.

3. Let S ∼= L2(8). By Lemma 2.14, L2(8) has a Frobenius subgroup 8 : 7. Also

5 ∈ π(K), so we may assume that K is an elementary Abelian 5-group. Therefore

by Lemma 2.6, 5 ∼ 7 in Γ(G), which is a contradiction.

4. Let S ∼= U3(3). By [5], L2(7) 6 U3(3); also 5 ∈ π(K) in this case. Therefore

by 2 we get a contradiction.

5. Let S ∼= A8, A9, J2, A10, S6(2) or O+
8 (2). By [5], 15 ∈ ω(S), then 3 ∼ 5

in Γ(G), which is a contradiction.

6. Let S ∼= S4(7). By Lemma 2.2, µ(S4(7)) = {25, 24, 56, 42}. Then 7 is not

an isolated vertex in Γ(G), which is a contradiction.

Then S ∼= A7, L2(49), U3(5), L3(4) or U4(3).

Case 1. Let S ∼= A7. Suppose that π(K) contains a prime r ∈ {3, 5}, we may

assume that K is an elementary Abelian r-group.

By [5], L2(7) 6 A7, and by Lemma 2.14, L2(7) has a Frobenius subgroup 7 : 3.

So if r = 5, by Lemma 2.6, 5 ∼ 3 in Γ(G), which is a contradiction. Let r = 3.

Suppose that x is an element of order 5 in A7 and let X = 〈x〉. By the table of 3-

modular characters of A7, see [28], we get 〈ϕ |〈x〉, 1 |〈x〉〉 > 0 for every irreducible

character ϕ of A7 (mod 3) as follows:

〈1S |X , 1 |X〉 = 1

〈6 |X , 1 |X〉 = 1

5
(6 + 1 + 1 + 1 + 1) = 2

〈101 |X , 1 |X〉 = 〈102 |X , 1 |X〉 = 1

5
(10 + 0 + 0 + 0 + 0) = 2
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〈13 |X , 1 |X〉 = 1

5
(13− 2− 2− 2− 2) = 1

〈15 |X , 1 |X〉 = 1

5
(15 + 0 + 0 + 0 + 0) = 3.

Now Lemma 2.12 implies that 3 · 5 ∈ ω(G), which is a contradiction. Then K

is a 2-group; therefore by Table 2, G/O2(G) ∼= A7 or A7.2 ∼= S7. Assume that

O2(G) = 1, since Γ(S7) = Γ(PGL(2, 72)), then G ∼= S7.

Case 2. Let S ∼= L2(49) =: L. We know µ(PSL(2, p2)) = {(p2 − 1)/2, p,

(p2 + 1)/2}, where p is an odd prime. Then µ(L) = {24, 7, 25}. Let K 6= 1,

then π(K) contains a prime r ∈ π1 = {2, 3, 5}. Suppose that P ∈ Sylr(K)

and B ∈ Syl7(L). Since K is nilpotent, P is a characteristic subgroup of K;

therefore PB 6 G. But 7 ≁ r in Γ(G), hence B acts fixed point freely on P . So

P : B is a Frobenius subgroup of G with the kernel P and complement B. By

Lemma 2.5 (d), B is cyclic, because |B| is odd, which is a contradiction. So we

obtain K = 1 and L 6 G 6 Aut(L). Then, G is isomorphic to L, L : 21, L : 22,

L · 23 or L · 22. But 2 ≁ 5 in Γ(L); also Γ(L · 23) = Γ(L) by [10]. Then G ≇ L

and L · 23. By [3], CL(22) = PSL(2, p). Therefore 2 ∼ p in Γ(PΣL(2, p2)), which

implies that 2 ∼ 7 in Γ(PΣL(2, 72)). Hence G ≇ L : 22; as a result G ≇ L · 22. So
G ∼= L : 21 ∼= PGL(2, 72).

L G elements of µ(G) L G elements of µ(G)

L3(4) L 7, 5, 4, 3 U4(3) L 12, 9, 8, 7, 5

L.21 8, 7, 6, 5 L.21 14, 12, 10, 9, 8

L.3 21, 15, 6, 4 L.4 28, 24, 20, 9

L.6 21, 15, 12, 8 L.22 18, 12, 10, 8, 7

L.22 14, 8, 6, 5 L.(22)122 18, 14, 12, 10, 8

L.3.22 21, 15, 14, 12, 8 L.23 24, 10, 9, 7

L.23 10, 8, 7, 6 L.(22)133 24, 14, 10, 9

L.3.23 21, 15, 10, 8, 6 L.D8 28, 24, 20, 18

L.22 14, 10, 8, 6 A7 L 7, 6, 5, 4

L.D12 21, 15, 14, 12, 10, 8 L.2 12, 10, 7

U3(5) L 10, 8, 7, 6

L.2 20, 12, 8, 7

L.3 30, 24, 21

L.S3 30, 24, 21, 20

Table 2. Almost simple groups L 6 G 6 Aut(L) for some sim-

ple groups L.
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Case 3. Let S ∼= U3(5) or U4(3). Suppose that 3 ∈ π(K), we may assume that

K is an elementary Abelian 3-group. Let S ∼= U3(5). Assume that P ∈ Syl3(K)

and B ∈ Syl5(S). Since 3 ≁ 5 in Γ(G), by the similar argument as in Case 2,

we get a Frobenius subgroup P : B of G. By Lemma 2.5 (d), B is cyclic.

Then S must have an element of order 53, which is a contradiction, because

µ(U3(5)) = {10, 8, 7, 6}, see Table 2. Let S ∼= U4(3), by Lemma 2.13 (1), we get

15 ∈ ω(K : U4(3)). By [27, Lemma 10], we have ω(K : U4(3)) ⊆ ω(G). Therefore

15 ∈ ω(G), which is a contradiction, so 3 ∤ |K|.
Now suppose that K 6= 1, then π(K) contains a prime r ∈ {2, 5}. We may

assume that K is an elementary Abelian r-group. Let x be an element of order 7

in S andX = 〈x〉. By the table of r-modular characters of S, see [28], similarly to

Case 1, we get 〈ϕ |〈x〉, 1 |〈x〉〉 > 0 for every irreducible character ϕ of S (mod r).

Now Lemma 2.12 implies that 7r ∈ ω(G), which is a contradiction. Then K = 1.

Now we conclude:

If S ∼= U3(5) := L, by Table 2, G ∼= L, L.2, L.3 or L.S3. By the structure

of Γ(G), G ∼= L or L.2.

If S ∼= U4(3) := L, by Table 2, G ∼= L, L.21, L.4, L.22, L.(22)122, L.23,

L.(22)133 or L.D8. Again by Γ(G), G ∼= L.22 or L.23.

Case 4. Let S ∼= L3(4) =: L. Suppose that π(K) contains a prime r ∈ {3, 5}.
We may assume that K is an elementary Abelian r-group.

By [5], L2(7) 6 L3(4); therefore if r = 5, similarly to Case 1, we get a contra-

diction. By Lemma 2.14, L3(4) has a Frobenius subgroup 42 : 5. Then if r = 3,

by Lemma 2.6, 3 ∼ 5 in Γ(G), which is a contradiction. So K is a 2-group;

therefore according to Table 2, G/O2(G) ∼= L, L.21, L.3, L.6, L.22, L.3.22, L.23,

L.3.23, L.2
2 or L.D12. But 7 is not an isolated vertex in the prime graph of the

groups L.3, L.6, L.22, L.3.22, L.3.23, L.2
2 and L.D12. Therefore G/O2(G) ∼= L,

L.21 or L.23. Assume that O2(G) = 1, since Γ(L.23) = Γ(PGL(2, 72)), then

G ∼= L.23. �

Theorem 3.3. Let G be a finite group such that Γ(G) = Γ(PGL(2, 112)). Then

G ∼= PGL(2, 112) or the factor group G/O3(G) is isomorphic to PΣL(2, 35) for

O3(G) 6= 1.

Proof: By Lemma 3.1, there exists a nonabelian simple group S such that

S 6 G/K 6 Aut(S) for some nilpotent normal π1-subgroup K of G. Also

µ(PGL(2, 112)) = {112 − 1, 11, 112 + 1}. Therefore Γ(G) = {2 ∼ 3, 2 ∼ 5,

3 ∼ 5, 2 ∼ 61, 11} and S(G) = {π1 = {2, 3, 5, 61}, π2 = {11}}. Then K is

a {2, 3, 5, 61}-subgroup of G and 11 is an isolated vertex in Γ(G).

Because π(Out(S)) ⊆ {2, 3, 5, 7} by Lemma 2.11, 11 must belong to π(S).

Here we have listed all possibilities for S in Table 3, taken from [25].
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S |S| |Out(S)| S |S| |Out(S)|
L2(11) 22 · 3 · 5 · 11 2 L2(3

5) 22 · 35 · 112 · 61 10

M11 24 · 32 · 5 · 11 1 L2(11
2) 23 · 3 · 5 · 112 · 61 4

M12 26 · 33 · 5 · 11 2 S4(11) 26 · 32 · 52 · 114 · 61 2

U5(2) 210 · 35 · 5 · 11 2

Table 3. Nonabelian simple group S with 11 ∈ π(S) ⊆ {2, 3, 5, 11, 61}.

Now we study each of the items in Table 3:

1. Let S ∼= L2(11). By Lemma 2.14, L2(11) has a Frobenius subgroup 11 : 5.

But S 6 G/K 6 Aut(S) implies that 61 divides |K|, so we may assume that K

is an elementary Abelian 61-group. Therefore by Lemma 2.6, 61 ∼ 5 in Γ(G),

which is a contradiction.

2. Let S ∼= M11,M12 or U5(2). By [5], L2(11) 6 S, and in this case 61 ∈ π(K)

too. So by 1, we get a contradiction.

3. Let S ∼= S4(11). By Lemma 2.2, we have µ(S4(11)) = {61, 60, 11 ·12, 11 ·10}.
Then 11 is not an isolated vertex in Γ(G), which is a contradiction.

Then S ∼= L2(3
5) or L2(11

2).

Case 1. Let S ∼= L2(3
5) =: L. By Lemma 2.14, L has a Frobenius subgroup

35 : 121. Let π(K) contain a prime r ∈ {2, 5, 61}, we may assume that K is

an elementary Abelian r-group. Therefore by Lemma 2.6, 11 is not an isolated

vertex in Γ(G), which is a contradiction. So we obtain K is a 3-group. By

Lemma 2.9, Out(L) ∼= Z2 × Z5
∼= Z10. Then G/K ∼= L, L.2, L.5 or L.10. If

G/K ∼= L (22 ·35 ·112 ·61) or L.2 (23 ·35 ·112 ·61), we get a contradiction, because

5 | |G| and K is a 3-group. If G/K ∼= L.10 ∼= Aut(L), then by Lemma 2.17,

2 ∼ 11 in Γ(G/K). Therefore 2 ∼ 11 in Γ(G), which is a contradiction. Hence

G/O3(G) ∼= PΣL(2, 35) (note that Γ(PΣL(2, 35)) ⊆ Γ(G), see Lemma 2.17).

Case 2. Let S ∼= L2(11
2) =: L. Let K 6= 1, then π(K) contains a prime

r ∈ π1 = {2, 3, 5, 61}. Similar to Theorem 3.2 Case 2, G has a Frobenius subgroup

P : B, where P ∈ Sylr(K) and B ∈ Syl11(L). By Lemma 2.5 (d), B is cyclic,

because |B| is odd, which is a contradiction. So we obtain K = 1 and L 6

G 6 Aut(L). Then, G is isomorphic to L, L : 21, L : 22, L · 23 or L · 22. But

2 ≁ 61 in Γ(L); also Γ(L · 23) = Γ(L) by [10]. Then G ≇ L and L · 23. By [3],

CL(22) = PSL(2, 11). Therefore 2 ∼ 11 in Γ(PΣL(2, 112)); hence G ≇ L : 22; as

a result G ≇ L · 22. So G ∼= L : 21 ∼= PGL(2, 112). �

Remark 3.4. If there are no examples of extensions of PΣL(2, 35) by nontriv-

ial 3-groups having the same prime graph as for PGL(2, 112), we can say that

PGL(2, 112) is recognizable by prime graph.
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Theorem 3.5. Let G be a finite group such that Γ(G) = Γ(PGL(2, p2)) for

p = 13 or 17. Then G ∼= PGL(2, p2), in other words PGL(2, p2), where p ∈
{13, 17} is recognizable by prime graph.

Proof: By Lemma 3.1, there exists a nonabelian simple group S such that

S 6 G/K 6 Aut(S) for some nilpotent normal π1-subgroup K of G.

Case 1. Let p = 13. Then µ(PGL(2, 132)) = {132 − 1, 13, 132 + 1}. Therefore

Γ(G) = {2 ∼ 3, 2 ∼ 7, 2 ∼ 5, 2 ∼ 17, 3 ∼ 7, 5 ∼ 17, 13} and S(G) = {π1 =

{2, 3, 5, 7, 17}, π2 = {13}}. Then K is a {2, 3, 5, 7, 17}-subgroup of G and 13 is

an isolated vertex in Γ(G).

Because π(Out(S)) ⊆ {2, 3, 5, 7} by Lemma 2.11, 13 must belong to π(S). We

have listed all possibilities for S in Table 4, taken from [25].

S |S| |Out(S)| S |S| |Out(S)|
L3(3) 24 · 33 · 13 2 S6(3) 29 · 39 · 5 · 7 · 13 2

L2(25) 23 · 3 · 52 · 13 4 O7(3) 29 · 39 · 5 · 7 · 13 2

U3(4) 26 · 3 · 52 · 13 4 G2(4) 212 · 33 · 52 · 7 · 13 2

S4(5) 26 · 32 · 54 · 13 2 S4(8) 212 · 34 · 5 · 72 · 13 6

L4(3) 27 · 36 · 5 · 13 4 O+
8 (3) 212 · 312 · 52 · 7 · 13 24

2F4(2)
′ 211 · 33 · 52 · 13 2 U4(4) 212 · 32 · 53 · 13 · 17 4

L2(13) 22 · 3 · 7 · 13 2 U3(17) 26 · 34 · 7 · 13 · 173 6

L2(27) 22 · 33 · 7 · 13 6 L2(13
2) 23 · 3 · 5 · 7 · 132 · 17 4

G2(3) 26 · 36 · 7 · 13 2 S4(13) 26 · 32 · 5 · 72 · 134 · 17 2
3D4(2) 212 · 34 · 72 · 13 3 L3(16) 212 · 32 · 52 · 7 · 13 · 17 24

Sz(8) 26 · 5 · 7 · 13 3 S6(4) 218 · 34 · 53 · 7 · 13 · 17 2

L2(64) 26 · 32 · 5 · 7 · 13 6 O+
8 (4) 224 · 35 · 54 · 7 · 13 · 172 12

U4(5) 27 · 34 · 56 · 7 · 13 4 F4(2) 224 · 36 · 52 · 72 · 13 · 17 2

L3(9) 27 · 36 · 5 · 7 · 13 4

Table 4. Nonabelian simple group S with 13 ∈ π(S) ⊆ {2, 3, 5, 7, 13, 17}.

Now we study all of the items in the above table. Note that S 6 G/K 6 Aut(S)

implies that 1, 2 and 5 to 12, 17 divides |K|. Therefore in the mentioned items,

we may assume that K is an elementary Abelian 17-group.

1. Let S ∼= L3(3). By [5], L3(3) has a Frobenius subgroup 13 : 3. Since

17 ∈ π(K), by Lemma 2.6, 17 ∼ 3 in Γ(G), which is a contradiction.

2. Let S ∼= L2(25). By Lemma 2.14, L2(25) has a Frobenius subgroup 25 : 12.

Also 17 ∈ π(K), so by Lemma 2.6, 17 ∼ 3 in Γ(G), which is a contradiction.

3. Let S ∼= U3(4), S6(3), O7(3), G2(4) or F4(2). By [5], 15 ∈ ω(S). Then 3 ∼ 5

in Γ(G), which is a contradiction.
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4. Let S ∼= S4(5) or U4(4). By Lemma 2.2, 30 ∈ µ(S), so 3 ∼ 5 in Γ(G),

which is a contradiction.

5. Let S ∼= L4(3). By Lemma 2.14, L4(3) has a Frobenius subgroup 33 : 13. But

17 ∈ π(K), therefore by Lemma 2.6, 17 ∼ 13 in Γ(G), which is a contradiction.

6. Let S ∼=2 F4(2)
′

. By [5], L2(25) 6
2 F4(2)

′

, and in this case 17 ∈ π(K) too.

So by 2, we get a contradiction.

7. Let S ∼= L2(13). By Lemma 2.14, L2(13) has a Frobenius subgroup 13 : 6.

Since 17 ∈ π(K), therefore 17 ∼ 3 in Γ(G) by Lemma 2.6, which is a contradiction.

8. Let S ∼= L2(27). By Lemma 2.14, L2(27) has a Frobenius subgroup 27 : 13.

Also 17 ∈ π(K), so by Lemma 2.6, 17 ∼ 13 in Γ(G), which is a contradiction.

9. Let S ∼= G2(3). By [5], L2(13) 6 G2(3); also 17 ∈ π(K). Then by 7, we get

a contradiction.

10. Let S ∼= 3D4(2). By [5], L2(8) 6 3D4(2), by Lemma 2.14, L2(8) has

a Frobenius subgroup 8 : 7; also 17 ∈ π(K). So by Lemma 2.6, 17 ∼ 7 in Γ(G),

which is a contradiction.

11. Let S ∼= Sz(8). By [5], Sz(8) has a Frobenius subgroup 23+3 : 7. Since

17 ∈ π(K), therefore 17 ∼ 7 in Γ(G) by Lemma 2.6, which is a contradiction.

12. Let S ∼= L2(64). By Lemma 2.14, L2(64) has a Frobenius subgroup 64 : 63.

Since 17 ∈ π(K), then 17 ∼ 3 and 17 ∼ 7 in Γ(G) by Lemma 2.6, which is

a contradiction.

13. Let S ∼= U4(5). By Lemma 2.17, 15 ∈ ω(U4(5)); hence 3 ∼ 5 in Γ(G),

which is a contradiction.

14. Let S ∼= L3(9). By Lemma 2.2, 91 ∈ µ(L3(9)). Then 7 ∼ 13 in Γ(G),

which is a contradiction.

15. Let S ∼= S4(8). By Lemma 2.17, 65 ∈ ω(S4(8)); hence 5 ∼ 13 in Γ(G),

which is a contradiction.

16. Let S ∼= O+
8 (3). By [5], O7(3) 6 O+

8 (3); so by 3 we get a contradiction.

17. Let S ∼= U3(17). By Lemma 2.2, 17 · 18 ∈ µ(U3(17)); therefore 17 ∼ 3

in Γ(G), which is a contradiction.

18. Let S ∼= S4(13). By Lemma 2.2, 13 · 14 ∈ µ(S4(13)); therefore 13 is not an

isolated vertex in Γ(G), which is a contradiction.

19. Let S ∼= L3(16), S6(4) or O
+
8 (4). By Lemma 2.17, 15 ∈ ω(S); hence 3 ∼ 5

in Γ(G), which is a contradiction.

Then S ∼= L2(13
2) := L and L 6 G/K 6 Aut(L). Let K 6= 1, then π(K)

contains a prime r ∈ π1 = {2, 3, 5, 7, 17}. Similarly to Theorem 3.2 Case 2,

G has a Frobenius subgroup P : B, where P ∈ Sylr(K) and B ∈ Syl13(L). By

Lemma 2.5 (d), B is cyclic, because |B| is odd, which is a contradiction. So

we obtain K = 1 and L 6 G 6 Aut(L). Then, G is isomorphic to L, L : 21,

L : 22, L · 23 or L · 22. But 2 ≁ 5 and 2 ≁ 17 in Γ(L); also Γ(L · 23) = Γ(L)
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by [10]. Then G ≇ L and L · 23. By [3], CL(22) = PSL(2, 13). Therefore 2 ∼ 13

in Γ(PΣL(2, 132)); hence G ≇ L : 22; as a result G ≇ L · 22. So G ∼= L : 21 ∼=
PGL(2, 132).

Case 2. Let p = 17. Then µ(PGL(2, 172)) = {172 − 1, 17, 172 + 1}. Therefore

Γ(G) = {2 ∼ 3, 2 ∼ 5, 2 ∼ 29, 5 ∼ 29, 17} and S(G) = {π1 = {2, 3, 5, 29},
π2 = {17}}. Then K is a {2, 3, 5, 29}-subgroup of G and 17 is an isolated vertex

in Γ(G).

Because π(Out(S)) ⊆ {2, 3, 5, 7} by Lemma 2.11, 17 must belong to π(S). We

have listed all possibilities for S in Table 5, taken from [25].

S |S| |Out(S)| S |S| |Out(S)|
L2(17) 24 · 32 · 17 2 L2(17

2) 25 · 32 · 5 · 172 · 29 4

L2(16) 24 · 3 · 5 · 17 4 S4(17) 210 · 34 · 5 · 174 · 29 2

S4(4) 28 · 32 · 52 · 17 4

Table 5. Nonabelian simple group S with 17 ∈ π(S) ⊆ {2, 3, 5, 17, 29}.

Now we study each of the items in the above table separately:

1. Let S ∼= L2(16). By Lemma 2.14, L2(16) has a Frobenius subgroup with

kernel of order 16 and cyclic complement of order 15. Then 3 ∼ 5 in Γ(G), which

is a contradiction.

2. Let S ∼= S4(4). By [5], 15 ∈ ω(S4(4)). Then 3 ∼ 5 in Γ(G), which is

a contradiction.

3. Let S ∼= S4(17). By Lemma 2.2, 17 · 18 ∈ µ(S4(17)); therefore 17 is not an

isolated vertex in Γ(G), which is a contradiction.

4. Let S ∼= L2(17). By Table 5, {5, 29} ⊆ π(K). Therefore we may assume

that K is an elementary Abelian 29-group. Since 29 does not belong to L2(17),

the ordinary character table of L2(17) implies that either an element of order 3

or an element of order 17 has a fixed point in K, see [24, Lemma 2.17]. Then

3 ∼ 29 or 17 ∼ 29 in Γ(G), which is a contradiction.

Then S ∼= L2(17
2) := L and L 6 G/K 6 Aut(L). Let K 6= 1, then π(K)

contains a prime r ∈ π1 = {2, 3, 5, 29}. Similarly to Theorem 3.2 Case 2,

G has a Frobenius subgroup P : B, where P ∈ Sylr(K) and B ∈ Syl17(L). By

Lemma 2.5 (d), B is cyclic, because |B| is odd, which is a contradiction. So we ob-

tain K = 1 and L 6 G 6 Aut(L). Then, G is isomorphic to L, L : 21, L : 22, L ·23
or L ·22. But 2 ≁ 5 and 2 ≁ 29 in Γ(L); also Γ(L ·23) = Γ(L) by [10]. Then G ≇ L

and L · 23. By [3], CL(22) = PSL(2, 17). Therefore 2 ∼ 17 in Γ(PΣL(2, 172));

hence G ≇ L : 22; as a result G ≇ L · 22. So G ∼= L : 21 ∼= PGL(2, 172). �
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