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On the class of order almost L-weakly compact operators

Kamal El Fahri, Hassan Khabaoui, Jawad H’michane

Abstract. We introduce a new class of operators that generalizes L-weakly com-
pact operators, which we call order almost L-weakly compact. We give some
characterizations of this class and we show that this class of operators satisfies
the domination problem.

Keywords: order bounded weakly convergent sequence; L-weakly compact set;
order almost L-weakly compact operator; L-weakly compact operator

Classification: 46B42, 47B60, 47B65

1. Introduction and notation

Along this paper the term operator means a bounded linear mapping,

E, F mean Banach lattices, X means a Banach space and G, H mean Riesz

spaces.

Recently, K. Bouras et al. in [5] introduced and studied the class of almost

L-weakly compact operators. Namely, an operator T : X −→ F is called

almost L-weakly compact if T carries relatively weakly compact subsets of X into

L-weakly compact subsets of F . Alternatively, T : X −→ F is almost L-weakly

compact if and only if fn(T (xn)) → 0 for every weakly convergent sequence (xn)

of X and every disjoint sequence (fn) of BF ′ , where BF ′ is the closed unit ball

of F ′. Also, in another work [10] they considered operators which send order

bounded subsets to L-weakly compact subsets. Indeed, an operator T : E −→ F

is said to be order L-weakly compact if T ([0, x]) is an L-weakly compact subset

of F for every x ∈ E+. Alternatively, T : E −→ F is order L-weakly compact

if and only if fn(T (xn)) → 0 for every order bounded sequence (xn) of E and

every disjoint sequence (fn) of BF ′ . After that, A. Elbour et al. in [7] gave

some characterizations of almost L-weakly compact operators and they study the

connections between this class of operators and other classes (as Dunford–Pettis

operators, compact operators and L-weakly compact operators). Note that or-

der bounded subset is not in general relatively weakly compact and conversely

a relatively weakly compact subset is not in general order bounded.
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The main purpose of this paper is to consider operators which send order

bounded relatively weakly compact subsets to L-weakly compact subsets. We

give some important characterizations of this class of operators and we show that

this class satisfies the domination problem.

To state our results, we need to fix some notation and recall some defini-

tions. In what follows, E+ denotes the positive cone of E, sol(A) denotes the

solid hull of the subset A, x ∧ y := inf{x, y} and x ∨ y := sup{x, y}. For every

norm bounded subset A ⊂ E, ̺A : E′ → R
+ is the lattice semi norm defined

by ̺A(f) = sup{|f ||x| : x ∈ A} = sup{|g(x)| : x ∈ A and |g| ≤ |f |}. Then E is

order continuous if for each generalized sequence (xα) such that xα ↓ 0 in E, (xα)

converges to 0 for the norm ‖·‖ where the notation xα ↓ 0 means that (xα) is

decreasing, its infimum exists and inf(xα) = 0. A nonzero element x of G is dis-

crete if the order ideal generated by x equals the vector subspace generated by x.

A space G is discrete, if it admits a complete disjoint system of discrete elements.

A space G is σ-Dedekind complete if every majorized countable nonempty sub-

set of G has a supremum. A space E has the positive Schur property whenever

0 ≤ xn

w
−→ 0 implies limn→∞ ‖xn‖ = 0. A nonempty bounded subset A of E

is said to be L-weakly compact if limn→∞ ‖xn‖ = 0 for every disjoint sequence

(xn) ⊂ sol(A). A net (xα) of E is unbounded absolutely weakly convergent (uaw-

convergent) to x if (|xα − x| ∧ u) converges weakly to zero for every u ∈ E+; we

write xα

uaw
−→ x.

Let Ea denote the maximal ideal in E on which the induced norm is order

continuous. From Proposition 2.4.10 in [11], we note that Ea is closed and that

Ea = {x ∈ E : each monotone sequence in [0, |x|] is convergent}.

A linear mapping between G and H is positive if T (x) ≥ 0 in H , whenever

x ≥ 0 in G. Note that each positive linear mapping on a Banach lattice is

continuous. If an operator T : E −→ F is positive then, its adjoint T ′ : F ′ −→ E′

is likewise positive, where T ′ is defined by T ′(f)(x) = f(T (x)) for each f ∈ F ′

and for each x ∈ E.

We need to recall definitions of the following operators:

◦ An operator T : E −→ F is said to be regular if it can be written as

a difference of two positive operators.

◦ An operator T : E −→ F is said to be order bounded if T (A) is an order

bounded subset of F for every order bounded subset of E.

◦ An operator T : X −→ F is said to be norm-order bounded if T (A) is an

order bounded subset of F for every norm bounded subset of X .

◦ An operator T : X −→ F is said to be L-weakly compact if T (BX) is an

L-weakly compact subset of F .
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◦ An operator T : E −→ Y is said to be M-weakly compact if

limn−→∞ ‖T (xn)‖ = 0 for every disjoint sequence of BE .

◦ An operator T : E −→ X is said to be order weakly compact if T ([0, x])

is a relatively weakly compact subset of X for every x in E+.

◦ An operator T : E −→ X is said to be AM-compact if T ([0, x]) is a rela-

tively compact subset of X for every x in E+.

◦ An operator T : E −→ F is said to be a lattice homomorphism whenever it

preserves the lattice operations. That is, whenever T (x∨y) = T (x)∨T (y)

holds for all x, y ∈ E.

◦ A positive operator T : E −→ F is said to be almost interval preserving,

if T [0, x] is dense in [0, T (x)] for every x ∈ E+.

2. Main results

Definition 2.1. An operator T : E −→ F is called order almost L-weakly com-

pact if T maps order bounded relatively weakly compact subsets of E to L-weak-

ly compact subsets of F . The class of all almost L-weakly compact operators

from E to F will be denoted by o-ALWC(E,F ).

Let us denote by LWC(E,F ), ALWC(E,F ) and o-LWC(E,F ) the class of

L-weakly compact operators, the class of almost L-weakly compact operators and

the class of order L-weakly compact operators, respectively. We have the following

inclusions:

LWC(E,F ) ⊂ ALWC(E,F ) ⊂ o-ALWC(E,F ); and

LWC(E,F ) ⊂ o-LWC(E,F ) ⊂ o-ALWC(E,F ).

The following lemmas will be used throughout this paper.

Lemma 2.2 ([5, Lemma 2.4]). For every nonempty bounded subset A ⊂ E, the

following assertions are equivalent:

(1) A is L-weakly compact;

(2) fn(xn) → 0 for every sequence (xn) of A and every disjoint sequence (fn)

of BF ′ .

Lemma 2.3. If Ea is discrete, then every L-weakly compact subset of E is

relatively compact.

Proof: Let A be a L-weakly compact subset of E. By [11, Proposition 3.6.2]

there exists x ∈ (Ea)+ such that A ⊂ [−x, x]+εBE . Since E
a is discrete, it follows

from [12, Theorem 6.1] and [1, Theorem 3.1] that A is a relatively compact subsets

of E. �
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Lemma 2.4. If T : E −→ F is an almost interval preserving operator then for

every L-weakly compact subset A of E we have T (A) is an L-weakly compact

subset of F .

Proof: Let T : E −→ F be an almost interval preserving operator, A be

an L-weakly compact subset of E, (xn) be a sequence of A and (fn) be a norm

bounded disjoint sequence of F ′. Since T is almost interval preserving, then by

[11, Theorem 1.4.19] T ′ is a lattice homomorphism and hence (T ′(fn)) is a norm

bounded disjoint sequence of E′. By Lemma 2.2, we have T ′(fn)(xn) −→ 0 which

means that fn(T (xn)) −→ 0 and hence by Lemma 2.2 we infer that T (A) is an

L-weakly compact subset of F . �

The converse of the inclusions cited below are not true in general as we show

in the following examples;

Examples. (1) The identity operator of an infinite dimensional Banach lat-

tice with the positive Schur property (L1([0, 1]) for example) is an al-

most L-weakly compact operator, see Proposition 2.2 in [5], which is not

L-weakly compact, see Theorem 3.1 in [3].

(2) The identity operator of an infinite dimensional order continuous Banach

lattice (for example, the Banach lattice c0) is an order L-weakly compact

operator, see Corollary 2.1 in [10], which is not L-weakly compact.

(3) The identity operator of an order continuous Banach lattice which does

not have the positive Schur property (for example, the Banach lattice c0)

is an order almost L-weakly compact operator, see Theorem 2.5, which is

not almost L-weakly compact.

(4) It follows from [13, Proposition 1] that each operator T : l∞ −→ c0 is

Dunford–Pettis, then for every relatively weakly compact subset A of l∞

we have T (A) is a relatively compact subset of c0. As c0 is order con-

tinuous, then T (A) is L-weakly compact, see [11, page 212], and hence T

is almost L-weakly compact, so the operator T is order almost L-weakly

compact. On the other hand, since l∞ is σ-Dedekind complete and is

not a discrete order continuous Banach lattice then it follows from [2,

Corollary 1] that there exists an operator T : l∞ −→ c0 which is not AM-

compact and hence is not order L-weakly compact. Otherwise, for every

order bounded subset A of l∞, T (A) should be a L-weakly compact subset

of c0. Since c0 is a discrete Banach lattice, it follows from Lemma 2.3 that

T (A) is a relatively compact subset of c0. Hence, T is an AM-compact

operator and this is a contradiction.

In the following result, we give sequential characterizations of order almost

L-weakly compact operators.
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Theorem 2.5. For an operator T : E −→ F , the following statements are equiv-

alent:

(1) T is order almost L-weakly compact.

(2) For every order bounded weakly convergent sequence (xn) of E and every

uaw-null sequence (fn) of BF ′ , we have fn(T (xn)) → 0.

(3) For every order bounded weakly convergent sequence (xn) of E and every

disjoint sequence (fn) of BF ′ , we have fn(T (xn)) → 0.

(4) The following conditions hold simultaneously:

(i) fn(T (xn)) → 0 for every order bounded weakly null sequence (xn)

of E and every disjoint sequence (fn) of BF ′ ;

(ii) T (E) ⊂ F a.

Proof: (1) =⇒ (2) Let (xn) be an order bounded weakly convergent sequence

of E and let (fn) be a uaw-null sequence of F ′. The set K = {x0, x1, . . .} is

order bounded and relatively weakly compact, then by our hypothesis T (K) is

L-weakly compact. As |fn|
uaw
−→ 0 and |T (xn)| ∈ F+ ∩ sol(T (K)), it follows from

[8, Proposition 3.2] that |fn|(|T (xn)|) → 0 and hence fn(T (xn)) → 0, as desired.

(2) =⇒ (3) This follows from the fact that every disjoint sequence is uaw-null,

see [14, Lemma 2].

(3) =⇒ (4) (i) Obvious.

(ii) Let x ∈ E. Since the constant sequence (xn) given by xn = x is an order

bounded weakly convergent sequence of E, then fn(T (x)) = fn(T (xn)) → 0 for

every disjoint sequence (fn) of BF ′ . Hence, it follows from Lemma 2.2 that the

singleton {T (x)} is L-weakly compact. So, T (x) ∈ F a, see [11, page 212], as

desired.

(4) =⇒ (1) Let A be an order bounded relatively weakly compact subsets

of E. If T (A) is not an L-weakly compact set, then according to Lemma 2.2

there exist a disjoint sequence (fn) ⊂ BF ′ and a sequence (xn) ⊂ A such that

|fn(T (xn))| > ε for some ε > 0 and for all n ∈ N. Pick a subsequence (xnk
) of

(xn) and some x ∈ E such that xnk

w
−→ x. Since (xnk

− x) is an order bounded

weakly null sequence ofE, it follows from our hypothesis that fnk
(T (xnk

−x)) → 0.

On the other hand, since T (E) ⊂ F a it follows that the singleton {T (x)} is

an L-weakly compact subset of F . In particular, by Lemma 2.2 we infer that

fnk
(T (x)) → 0. Now, from fnk

(T (xnk
)) = fnk

(T (xnk
− x)) + fnk

(T (x)) we see

that fnk
(T (xnk

)) → 0, which is impossible. Thus, T (A) is an L-weakly compact

subset of F and so T is order almost L-weakly compact. �

In a similar way, we have a dual version.
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Theorem 2.6. For an operator T : E −→ F , the following statements are equiv-

alent:

(1) T ′ is order almost L-weakly compact.

(2) For every order bounded weakly convergent sequence (fn) of F
′ and every

uaw-null sequence (xn) of BE , we have fn(T (xn)) → 0.

(3) For every order bounded weakly convergent sequence (fn) of F
′ and every

disjoint sequence (xn) of BE , we have fn(T (xn)) → 0.

(4) The following conditions hold simultaneously:

(i) fn(T (xn)) → 0 for every order bounded weakly null sequence (fn)

of F ′ and every disjoint sequence (xn) of BE .

(ii) T ′(F ′) ⊂ (E′)a.

Proof: (1) =⇒ (2) Let (fn) ⊂ F ′, (xn) ⊂ BE be respectively an order bounded

weakly convergent and a uaw-null sequences. The set K = {f0, f1, . . .} is order

bounded and relatively weakly compact, then by our hypothesis A = T ′(K) is

L-weakly compact. We consider the operator S : E → l∞ defined by

S(x) =
(

fk(T (x))
)

k≥0
for each x ∈ E.

Firstly, we show that S is an M-weakly compact operator. To this end, let (yn)

be a disjoint sequence of BE and let ε > 0 be fixed. By [11, Proposition 3.6.2],

there exists some g ∈ ((E′)a)+ satisfying

A ⊂ [−g, g] + εBE′ .

This implies that

(∗)

‖S(yn)‖∞ = sup
k

|fk(T (yn))| = sup
k

|(T ′(fk))(yn)|

≤ sup
h∈A

|h(yn)| ≤ g(|yn|) + ε,

holds for each n. On the other hand, in view of g ∈ ((E′)a)+, it follows that the

singleton {g} is an L-weakly compact subset of E′, see [11, page 212], and so by

Lemma 2.5 in [5] we have

(∗∗) g(|yn|) → 0.

Therefore, from (∗) and (∗∗) we infer that lim sup ‖S(yn)‖∞ ≤ ε holds. Since

ε > 0 is arbitrary, we see that ‖S(yn)‖∞ → 0 and so S is an M-weakly com-

pact operator. In particular, since the sequence (xn) is uaw-null, then it follows

from [15, Theorem 19] that ‖S(xn)‖∞ → 0. Now, a glance at the inequality

|fn(T (xn))| ≤ ‖S(xn)‖∞ shows that fn(T (xn)) → 0, as desired.

(2) =⇒ (3) This follows from the fact that every disjoint sequence is uaw-null,

see [14, Lemma 2].
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(3) =⇒ (4) (i) Obvious.

(ii) Let f ∈ F ′. Since the constant sequence (fn) given by fn = f is an order

bounded weakly convergent sequence of F ′, then

(T ′(f))(xn) = f(T (xn)) = fn(T (xn)) → 0

for every disjoint sequence (xn) of BE . Hence, it follows from [5, Lemma 2.5]

that the singleton {T ′(f)} is L-weakly compact. So, T ′(F ′) ⊂ (E′)a, see [11,

page 212], as desired.

(4) =⇒ (1) Let A be an order bounded relatively weakly compact subset of F ′.

If T ′(A) is not an L-weakly compact set, then according to [5, Lemma 2.5]

there exist a disjoint sequence (xn) ⊂ BE and a sequence (fn) ⊂ A satisfying

|fn(T (xn))| > ε for some ε > 0 and for all n ∈ N. Pick a subsequence (fnk
)

of (fn) and some f ∈ F ′ such that fnk

w
−→ f . Note that since (fnk

− f) is an

order bounded weakly null sequence of E, then it follows from our hypothesis

that (fnk
− f)(T (xnk

)) → 0. On the other hand, since T ′(F ′) ⊂ (E′)a it follows

that the singleton {T ′(f)} is an L-weakly compact subset of E′. In particular, by

[5, Lemma 2.5] we infer that f(T (xnk
)) → 0. Now, from the equality

fnk
(T (xnk

)) = (fnk
− f)(T (xnk

)) + f(T (xnk
))

we see that fnk
(T (xnk

)) → 0, which contradicts the fact that |fn(T (xn))| > ε.

Thus, T ′(A) is an L-weakly compact subset of E′ and so T ′ is order almost

L-weakly compact. �

In terms of norm-order bounded weakly compact and L-weakly compact oper-

ators, the order almost L-weakly compact operators are characterized as follows.

Theorem 2.7. For an operator T : E −→ F , the following statements are equiv-

alent:

(1) T is order almost L-weakly compact.

(2) If S : X −→ E is a norm-order bounded weakly compact operator from

an arbitrary Banach space X into E, then the product T ◦ S is L-weakly

compact.

(3) If S : l1 −→ E is a norm-order bounded weakly compact operator, then

the product T ◦ S is L-weakly compact.

The proof is virtually identical with that of [5, Theorem 2.4] which we omit.

Remarks. (1) We can check easily that the space o-ALWC(E,F ) is a norm

closed vector subspace of the space L(E,F ) of all operators fromE into F .

(2) Consider the schema of operators E
T

−→ F
S

−→ G.
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(a) If S is an order almost L-weakly compact operator, then S ◦ T

is not necessarily order almost L-weakly compact. In fact, by [4,

Lemma 2.4] there exists a non regular operator T : c −→ c0 which is

certainly not Dunford–Pettis. The operator T is not order almost L-

weakly compact. Otherwise, since c0 is discrete then it follows from

Lemma 2.3 that T (A) is relatively compact for every order bounded

relatively weakly compact subsets A of the Banach lattice c. As c is

an AM-space with unit, then T should be a Dunford–Pettis operator

and this is a contradiction.

Now, if S : c0 −→ c0 is the identity operator on c0 then S is order

almost L-weakly compact, see Theorem 2.5, but S ◦ T = T is not

order almost L-weakly compact.

(b) However, if S is an order almost L-weakly compact operator and T is

an order bounded operator, then the composed operator S ◦ T is or-

der almost L-weakly compact. In fact, let A be an order bounded rel-

atively weakly compact subset of E then T (A) is an order bounded

relatively weakly compact subset of F . Since S is order almost

L-weakly compact, then S(T (A)) is a L-weakly compact subset of G.

That is, S ◦ T is order almost L-weakly compact.

(c) If T is an order almost L-weakly compact operator, then S ◦ T is

not necessarily order almost L-weakly compact. In fact, consider the

operator S : l1 → l∞ defined by

S((λn)n) =

( ∞
∑

n=1

λn

)

(1, 1, . . .)

for all (λn) ∈ l1. Note that S is not order almost L-weakly compact.

Indeed, let e = (1/n2)n∈N∗ and (en) be the sequence of the standard

unit vectors of l∞. Since |en| ≤ S(e), then (en) is a disjoint sequence

in the solid hull of {S(e)} satisfying ‖en‖∞ 9 0 and hence {S(e)}

is not L-weakly compact. As the singleton {e} is an order bounded

relatively weakly compact subset of l1, then S fails to be order

almost L-weakly compact. If T : l1 −→ l1 is the identity operator

on l1, then T is order almost L-weakly compact but S ◦ T = S is

not order almost L-weakly compact.

(d) However, if S is an almost interval preserving operator and T is

order almost L-weakly compact, then the composed operator S ◦T is

order almost L-weakly compact. In fact, let A be an order bounded

relatively weakly compact subset of E, then T (A) is an L-weakly

compact set in F . As S is an almost interval preserving operator,
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then by the Lemma 2.4 we have S(T (A)) is a L-weakly compact

subset of G. Hence, S ◦ T is order almost L-weakly compact.

In the next result, we characterize the positive order almost L-weakly compact

operators.

Theorem 2.8. For a positive operator T : E −→ F , the following statements are

equivalent:

(1) T is order almost L-weakly compact.

(2) T carries the solid hull of each order bounded relatively weakly compact

subset of E to L-weakly compact subset of F .

(3) For every order bounded relatively weakly compact set W ⊂ E and ε > 0,

there exists some g ∈ (F ′)+ such that

(|f | − g)+(T |x|) < ε

holds for all x ∈ W and f ∈ BF ′ .

Proof: (1) =⇒ (2) Let W be an order bounded relatively weakly compact subset

of E. We shall see that T (sol(W )) is an L-weakly compact subset of F . The proof

will be based upon two steps.

Step 1: Let (fn) be a disjoint sequence of B+
F ′ and ε > 0. We claim that there

exist u ∈ E+ and a natural number k such that

(∗) fn(T ((|x| − u)+)) < ε

holds for all x ∈ W and all n > k. To see this, assume by way of contradiction

that (∗) is false. That is, assume that for each u ∈ E+ and each k there exist

x ∈ W and m > k with fm(T ((|x| − u)+)) ≥ ε. An easy inductive argument

shows that there exist a sequence (xn) ⊂ W and a subsequence (gn) of (fn) such

that

gn

(

T

((

|xn+1| − 4n
n
∑

i=1

|xi|

)+))

≥ ε holds for all n.

Let x =
∑∞

n=1 2
−n|xn|, yn =

(

|xn+1| − 4n
∑n

i=1 |xi|
)+

and zn =
(

|xn+1| −

4n
∑n

i=1 |xi| − 2−nx
)+

. By [1, Lemma 4.35], the sequence (zn) is disjoint and

lies in the solid hull of W . Thus, by [1, Theorem 4.34] we see that the sequence

(zn) is order bounded and weakly null in E. Hence, it follows from our hypothesis

that gn(T (zn)) → 0. On the other hand, the inequality 0 ≤ yn ≤ zn + 2−nx

implies

0 < ε ≤ gn(T (yn) ≤ gn(T (zn)) + 2−ngn(T (x)) → 0,

which is impossible. Therefore, (∗) is true.
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Step 2: Now, we claim that T (sol(W )) is an L-weakly compact set in F . To this

end, assume by way of contradiction that this is not the case. Then, by applying

Lemma 2.2 we can assume that there exist a disjoint sequence (fn) ⊂ BF ′ and

a sequence (yn) ⊂ sol(W ) such that fn(T (yn)) 9 0 for all n ∈ N. By passing to

a subsequence, we can assume that for some ε > 0 we have |fn(T (yn))| > ε for all

n ∈ N. On the other hand, by the Step 1 we pick u ∈ E+ and k such that (∗) is

valid. Note that the singleton {u} is an order bounded relatively weakly compact

subset of E, hence {T (u)} is an L-weakly compact subset of F (because T is order

almost L-weakly compact), so it follows from Lemma 2.2 that fn(T (u)) → 0.

Now, we choose m > k such that fn(T (u)) < ε holds for all n ≥ m and we

pick a sequence (xn) ⊂ W with |yn| ≤ |xn| for all n, and we note that

|T ′(fn)(yn)| ≤ T ′(fn)|xn| ≤ T ′(fn)(|xn| − u)+ + T ′(fn)(u)

≤ fn(T (|xn| − u)+) + fn(T (u)) ≤ ε+ ε = 2ε

holds for all n ≥ m. The above inequality contradicts the fact that |fn(T (yn))|>ε.

Therefore, T (sol(W )) is an L-weakly compact subset of F .

(2) =⇒ (3) Let W be an order bounded relatively weakly compact subset of E

and let ε > 0. According to our hypothesis T (sol(W )) is L-weakly compact and

hence it follows from [11, Proposition 3.6.3] that ̺T (sol(W ))(fn) → 0 for each

disjoint sequence (fn) ⊂ BF ′ . Let ̺ be the norm continuous semi-norm defined

by
̺(f) = sup{|f ||x| : x ∈ W}.

Then, the positivity of T implies ̺(T ′fn) ≤ ̺T (sol(W ))(fn) for each disjoint se-

quence (fn) ⊂ BF ′ . In particular, ̺(T ′fn) → 0 for each disjoint sequence

(fn) ⊂ BF ′ . Therefore, by [1, Theorem 4.36] there exists some g ∈ (F ′)+ satisfy-

ing

(|f | − g)+(T (|x|)) ≤ ̺(T ′[|fn| − g)+]) < ε

holds for all f ∈ BF ′ and x ∈ W .

(3) =⇒ (1) Let (fn) ⊂ BF ′ be a disjoint sequence and (xn) be an order bounded

weakly convergent sequence of E. According to Theorem 2.5, it suffices to show

that fn(T (xn)) −→ 0.

The set W = {x1, x2, . . .} is an order bounded weakly relatively compact subset

of E. Choose x ∈ E with |xn| ≤ x for all n ∈ N. Let ε > 0, by our hypothesis

there exists some 0 ≤ g ∈ (F ′)+ satisfying

(|fn| − g)+(T (|xn|)) < ε

for all n ∈ N. Since (|fn| ∧g) is an order bounded disjoint sequence, then we have

|fn| ∧ g
w

∗

→ 0 in F ′ and so (|fn| ∧ g)(T (|x|)) → 0. Thus, for every n we have
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|fn(T (xn))| ≤ |fn|(T (|xn|)) ≤ ((|fn| − g)+)(T (|xn|)) + (|fn| ∧ g)(T (|x|))

≤ ε+ (|fn| ∧ g)(T (|x|)).

This shows that fn(T (xn)) → 0, as desired. �

As consequence of Theorem 2.8, we obtain that the class of order almost L-

weakly compact operators satisfies the domination problem.

Corollary 2.9. If a positive operator S : E −→ F is dominated by an order

almost L-weakly compact operator T : E −→ F , then S is an order almost

L-weakly compact operator.

Proof: Let S, T : E −→ F be two positive operators such that 0 ≤ S ≤ T holds

and T is order almost L-weakly compact. We have to show that S is order almost

L-weakly compact. Indeed, let W be an order bounded relatively weakly compact

subset of E and let ε > 0. By Theorem 2.8, there exists some g ∈ (F ′)+ such

that

(|f | − g)+(T |x|) < ε

holds for all x ∈ W and f ∈ BF ′ . Hence,

(|f | − g)+(S|x|) ≤ (|f | − g)+(T |x|) < ε

holds for all x ∈ W and f ∈ BF ′ . So, it follows from Theorem 2.8 that S is an

order almost L-weakly compact operator. �

An easy application of Theorem 2.5 shows that the identity operator on E

is order almost L-weakly compact if and only if E is order continuous. On the

other hand, it is well known that E is order continuous if and only if the iden-

tity operator on E is an order weakly compact operator. Motivated by the last

results, it is natural to ask the following question: What is the relationship that

combines order almost L-weakly compact operators and order weakly compact

operators. A direct application of Theorem 2.5 and [6, Corollary 2.6] shows that

each positive order almost L-weakly compact operator is order weakly compact

but the converse is false in general. Indeed, in the previous example mentioned

in Remarks (Remark (2) (c)), the positive operator S : l1 −→ l∞ defined by

S((λn)n) =

( ∞
∑

n=1

λn

)

(1, 1, . . .)

for all (λn) ∈ l1 is an order weakly compact operator but it is not order almost

L-weakly compact.

For the almost interval preserving operators, the situation is quite different.

More precisely, we have the following proposition.



470 K. El Fahri, H. Khabaoui, J. H’michane

Proposition 2.10. Each almost interval preserving order weakly compact oper-

ator T : E −→ F is order almost L-weakly compact.

Proof: Let (xn) be an order bounded weakly convergent sequence of E and let

(fn) be a disjoint sequence of BF ′ . We have to show that fn(T (xn)) → 0. To this

end, let ε > 0 and pick some 0 ≤ x ∈ E such that |xn| ≤ x for all n ∈ N. As T

is order weakly compact, then by [9, Corollary 3.5] there exists some 0 ≤ g ∈ E′

such that

(|T ′(fn)| − g)+(x)

holds for all n ∈ N. Since T ′ is a lattice homomorphism, then (|T ′(fn)| ∧ g)

is an order bounded disjoint sequence of E′ and this implies that (|T ′(fn)| ∧ g) is

weakly null. Hence, we have (|T ′(fn)| ∧ g)(x) → 0. Thus, for every n ∈ N we get

|fn(T (xn))| ≤ |T ′(fn)||x| = (|T ′(fn)| − g)+(x) + (|T ′(fn)| ∧ g)(x)

≤ ε+ (|T ′(fn)| ∧ g)(x).

Since ε > 0 is arbitrary, the latter inequalities imply that fn(T (xn)) → 0 and this

proves that T is an order almost L-weakly compact operator. �
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