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Abstract. It is clear that every rational surgery on a Hopf link in 3-sphere is a lens
space surgery. In this note we give an explicit computation which lens space is a resulting
manifold. The main tool we use is the calculus of continued fractions. As a corollary, we
recover the (well-known) result on the criterion for when rational surgery on a Hopf link
gives the 3-sphere.
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1. Introduction

It is well known that every closed, orientable 3-manifold can be obtained by Dehn

surgery on a framed link in S3. In [4], Kirby gave an answer when two framed

links in S3 produce homeomorphic 3-manifolds, using what is nowadays called Kirby

integral calculus (which pertains to surgery with integral coefficients). However,

preceding these results, Rolfsen in [6] provided more general framework for surgery

on links with rational coefficients (which is refered to in this paper as rational or

Rolfsen calculus) and in [7] generalized the main result of [4]. The advantage of

using surgery with rational coefficients is that we can simplify surgery presentation

of a 3-manifold. For example, the homology sphere resulting from surgery on a trefoil

with coefficient 1/n, where n is an integer, can also be constructed using an integral

surgery but one has to work with more complicated links, see Example in [7] and

Figure 3. For more details about surgery of 3-manifolds and Kirby calculus, see [5],

Chapter VI, and for presentation of the rational surgery we refer to [6], Section 9.H

and [7].
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Let us recall that a surgery along a link is called a lens space surgery if the result

is a lens space (we will consider manifolds S3 and S2 × S1 as (trivial) special cases

of lens spaces and denote them by L(1, 0) and L(0, 1), respectively). In this note

a Hopf link denotes a two-component link constisting of two unknots linked together

once. It is denoted as 221 link in Appendix C, Table of knots and links of [6] and

sometimes also refered to as an L2a1 link.

It is known that a surgery on a Hopf link with framing m ∈ Z and p/q ∈ Q

(see Figure 1) is a lens space surgery and the 3-manifold we obtain is L(a, b), where

a/b = m − q/p, see Proposition 17.3 in [5] for more general statement. Note that

this transformation of a 2-component surgery to a 1-component surgery (with coeffi-

cients as above) is well known under the name slam-dunk move, see The Slam-Dunk

Theorem of [1], and [2], Section 5.3.

m
p

q

=

m−

q

p

Figure 1. Hopf link with framing m ∈ Z and p/q ∈ Q.

We generalize this result to the case when surgery coefficients on both components

of a Hopf link are rational numbers, see Figure 2. To state our main result and for

the purposes of this note, we will say that a continued fraction is an expression of the

form [a0; a1, . . . , al], where a0, . . . , al ∈ Z. If we adjoin the symbol 1
0 (which we will

sometimes denote by ∞) to Q and define 1
0 + r = 1

0 and r/(10 ) = 0, r ∈ Q then any

continued fraction as before represents an element r (we write r = [a0; a1, . . . , al]),

where r ∈ Q ∪ { 1
0} is defined as:

(1) if l = 0, then r = a0;

(2) if l > 0, then r = a0 + 1/[a1; . . . , al]. Then, our main result is:

Theorem 1.1. Rational surgery on a Hopf link with framing p/q = [a0; a1, . . . , an]

and r/s = [b0; b1, . . . , bm + 1] is a lens space surgery and the resulting lens space

is L(a, b), where

a

b
= [−bm; . . . ,−b0, a0, . . . , an]

(−1)m+1

− 1

(if a/b ∈ Q, we take a and b coprime, b > 0.)

604



p

q

r

s

=L(a, b)

Figure 2. Hopf link with rational surgery on both unknots.

Remark 1.2. The numbers a and b are not uniquely determined by p/q and r/s.

For example, if we take p/q = 2 = [2] and r/s = 3
2 = [1; 2] = [2;−2], applying the

theorem for the two representations of r/s, we obtain a/b = − 4
1 and a/b = 4

3 ,

respectively.

Note that a rational surgery along a Hopf chain is not necessarily a lens space

surgery. The example we mentioned in the beginning says that the homology sphere

obtained via (1/n)-surgery along trefoil in S3 (which is not a lens space) is home-

omorphic to the manifold obtained via surgery on a 3-component Hopf chain with

coefficients −3,− 1
2 and (1− 6n)/n, see Figure 3 and Example in [7].

1

n

1

. . .

(n full left-hand twists)

−

1

2

−3

1− 6n

n

= =

Figure 3. Equivalent surgery presentations of the homology sphere.

The following examples show how one can find an explicit lens space using the

previous theorem.

Example 1.3. Let p/q = 5
2 and r/s = 109

57 . We have that
5
2 = [2; 2] and

109
57 = [1; 1, 10, 2, 1+ 1], so Theorem 1.1 implies that

a

b
= [−1;−2,−10,−1,−1, 2, 2]−1− 1 = −

431

257
.

Since L(p, q) ∼= L(p, q′) when q ≡ q′ (mod p), we have that this manifold is

also L(431, 174):
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2

109

57

=L(431, 174)

Example 1.4. Let p/q = 3
2 = [1; 2] and r/s = 3

4 = [0; 1, 3]. Then a/b =

[−2;−1, 0, 1, 2]−1 − 1 = 1
0 , hence, Theorem 1.1 implies that the resulting lens space

is in fact S3 = L(1, 0).

This paper is organized as follows. In Section 2 we describe rational (or Rolfsen)

moves on a Hopf link in terms of continued fractions while in Section 3 we prove the

main theorem. We end with an application of the above theorem and prove a (well

known) criterion for when a resulting lens space is S3 in terms of the framings p/q

and r/s, see Corollary 3.2.

2. Rational calculus

Kirby in [4] showed that two integral framed links represent the same 3-manifold

if and only if they are related by a finite sequence of moves of two kinds which are

called Kirby moves, see [5], Chapter VI, Section 19. In the case of rational instead

of integer framings, the analog of Kirby moves are Rolfsen moves (see [7]), which we

define below. Let L = L1∪. . .∪Ln be an n-component link in S
3, where ri ∈ Q∪{∞}

is a framing of Li for every 1 6 i 6 n. A Rolfsen move of the first kind states that

we can add or delete a component of the link with framing ∞. Let us suppose that

the ith component Li of L is unknotted, and let m be an integer. Then we may

perform m full twists along Li, where by m full twists we mean m full right-hand

twists if m > 0 and |m| full left-hand twists if m < 0. Then Li, ri, Lj and rj (j 6= i)

change to L′

i, r
′

i, L
′

j and r′j , respectively, where

(2.1) r′i =
1

m+ 1/ri
, r′j = rj +mlk(Li, Lj)

2

(1/0 = ∞ and 1/∞ = 0) and lk(Li, Lj) is the linking number of Li and Lj. This is

a Rolfsen move of the second kind.

In this paper, we will perform Rolfsen moves only on Hopf links. Let us suppose

that L = L1 ∪ L2 is a Hopf link, where r1 = p/q is a framing of L1, and r2 = r/s is

a framing of L2 (p, q, r, s ∈ Z). Since the absolute value of the linking number of the

Hopf link is 1, equations (2.1) give rise to

r′1 =
1

m+ q/p
=

p

q +mp
, r′2 =

r

s
+m =

r +ms

s
,
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where we have performed m full twists along the component L1, see Figure 4.

p

q

r

s

=

p

q +mp

r +ms

s

Figure 4. Rolfsen move of the second kind performed on the Hopf link.

Note that using Rolfsen move of the second kind, the Hopf link with fram-

ing (1, r/s) is transformed to the Hopf link with framing (∞, (r − s)/s) when we

perform one full left-hand twist along the circle with framing 1. Using the Rolfsen

move of the first kind, this is further transformed to the surgery along a circle with

framing (r − s)/s, which is a surgery presentation of the lens space L(r− s, s). Sim-

ilarly, the Hopf link with framing (p/q, 1) is transformed to a surgery presentation

of the lens space L(p− q, q).

Inspired by the Rolfsen move of the second kind, we define the following transfor-

mations of rational numbers. For a rational number p/q ∈ Q (p and q are coprime)

and m ∈ Z, we define operations

R1,m

(p

q

)

=
p+mq

q
, R−1,m

(p

q

)

=
p

q +mp
.

Lemma 2.1. Let m ∈ Z. Then:

p

q

r

s

=

R±1,m

(p

q

)

R∓1,m

(r

s

)

P r o o f. This follows by using Rolfsen move of the second kind. �

Note that we have the following straightforward property of continued fractions,

which will be useful in the rest of the paper:

(2.2) [0; 0, . . . , 0
︸ ︷︷ ︸

i zeros

, ai, . . . , al] =

{

[ai; . . . , al], i even,

[0; ai, . . . , al], i odd.

Lemma 2.2. Let [a0; a1, . . . , an] be a continued fraction representation of p/q and

let m be an integer. Then
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(1) [a0 +m; a1, . . . , an] is a continued fraction representation of R1,m(p/q);

(2) [0;m, a0, . . . , an] is a continued fraction representation of R−1,m(p/q).

P r o o f. Statements of the lemma follow directly from equations

R1,m

(p

q

)

= m+
p

q
and R−1,m

(p

q

)

=
p

q +mp
=

1

m+ (p/q)−1
.

�

Corollary 2.3. Let [a0; a1, . . . , al] be a continued fraction representation of p/q

and let m1, . . . ,mn be integers. Then the following equations hold:

R(−1)n,mn
◦ . . . ◦R−1,m1

(p

q

)

= [mn; . . . ,m1, a0, . . . , al]
(−1)n ,

R(−1)n+1,mn
◦ . . . ◦R1,m1

(p

q

)

= [mn; . . . ,m1 + a0, . . . , al]
(−1)n+1

.

P r o o f. Let us prove the first equality (the second being proved in a similar

fashion). Using Lemma 2.2, we have

R−1,m1

(p

q

)

= [0;m1, a0, . . . , al] = [m1, a0, . . . , al]
−1.

For n = 2 we have

R1,m2
◦R−1,m1

(p

q

)

= [m2;m1, a0, . . . , al],

and the proof follows by induction on n. �

Corollary 2.4. Let [a0; a1, . . . , al] be a continued fraction representation of p/q

and 0 6 i 6 l − 1. Then

R(−1)i,−ai
◦ . . . ◦R1,−a0

(p

q

)

= [0; 0, . . . , 0
︸ ︷︷ ︸

i+1 zeros

, ai+1, . . . , al] = [ai+1; . . . , al]
(−1)i+1

.

P r o o f. By Lemma 2.2 we have R1,−a0
(p/q) = [0; a1, . . . , al]. For i = 1, by

using (2.2) we obtain

R−1,−a1
◦R1,−a0

(p

q

)

= [0;−a1, 0, a1, a2, . . . , al] = [a2; . . . , al] = [0; 0, a2, . . . , al].

Now the claim of the corollary follows by induction on i. �

Corollary 2.5. Let [a0; a1, . . . , al+1] be a continued fraction representation of p/q

(note that the last term of this representation is written as al + 1 and not as al like

in the previous statements). Then

R(−1)l,−al
◦ . . . ◦R1,−a0

(p

q

)

= 1.
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P r o o f. Since for l = 0, the statement of the corollary is trivial, let us suppose

that l > 0. By Corollary 2.4, we have

R(−1)l−1,−al−1
◦ . . . ◦R1,−a0

(p

q

)

=

{

al + 1, l even,

(al + 1)−1, l odd.

We finish the proof by noting that R1,−al
(al+1) = 1 and R−1,−al

(al+1)−1 = 1. �

3. The main results

In this section we prove Theorem 1.1.

Proposition 3.1. Let p/q = [a0; a1, . . . , an] and r/s = [b0; b1, . . . ; bm+1], and let

k1, . . . , kl ∈ Z. Then

p

q

r

s

=

c

d

e

f

where c/d = [kl; . . . , k1, a0, . . . , an]
(−1)l and e/f = [kl; . . . , k1 + b0, . . . , bm](−1)l+1

. In

particular,

p

q

r

s

=

a

b
1

where a/b = [−bm; . . . ,−b0, a0, . . . , an]
(−1)m+1

.

P r o o f. By Lemma 2.1, the surgery (p/q, r/s) is equivalent to the surgery

(

R(−1)l,kl
◦ . . . ◦R−1,k1

(p

q

)

, R(−1)l+1,kl
◦ . . . ◦R1,k1

(r

s

))

,

which after application of Corollary 2.3 yields the first part of the proposition. The

rest of the statement follows when we take for k1, . . . , kl to be −b0, . . . ,−bm, respec-

tively. �
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P r o o f of Theorem 1.1. Proof of the main theorem now easily follows from the

previous proposition. A surgery on a Hopf link with framing p/q and r/s is equivalent

to a surgery on the same link with framing a/b and 1, where a/b is given above. The

last move we need to make is one twist in negative direction along the circle with

framing 1. �

Corollary 3.2. Let p/q, r/s ∈ Q such that pr − qs = ±1. Then the 3-manifold

resulting from surgery on a Hopf link with coefficients p/q and r/s is S3.

Before proving this result, we recall some of the well known facts about con-

tinued fractions. We say that a continued fraction [a0; a1, . . . , an] is standard if

a1, . . . , an are positive integers and an > 1. For such a standard continued frac-

tion we put pi/qi := [a0; a1, . . . , ai], i = 1, . . . , n, assuming pi and qi to be coprime.

Then, every rational number can be represented as a standard continued fraction

in a unique way.

Lemma 3.3. Let [a0; a1, . . . , an] be a standard continued fraction and let x be

a variable. Then we have an equality of rational functions

(3.1) [a0; a1, . . . , an, x] =
pnx+ pn−1

qnx+ qn−1
,

where the left-hand side of the previous equality is defined inductively as a0 + x−1

if n = 0 and [a0; a1, . . . , an−1, (an + 1)/x], otherwise.

P r o o f. If we denote by A(x) and B(x) the left-hand and right-hand functions

of (3.1), respectively, then the result can be proved in the same manner as Theorem 1

in [3]. �

Lemma 3.4. Let p/q ∈ Q (p and q coprime) and let [a0; a1, . . . , an] be its standard

continued fraction. If integers x, y satisfy px − qy = 1 (or px − qy = −1), then

y/x = [a0; a1, . . . , an, l] for an integer l.

P r o o f. One solution for px − qy = 1 (or px − qy = −1) is given by x0 =

(−1)n+1qn−1 and y0 = (−1)n+1pn−1 (or x0 = (−1)nqn−1 and y0 = (−1)npn−1), by

Theorem 2 in [3]. Then, all the solutions are given by x0 + lqn and y0 + lpn for

respective equations and respective x0 and y0. In particular, there exists an integer l

such that y/x = (pnl + pn−1)/(qnl + qn−1). The result follows by Lemma 3.3. �
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P r o o f of Corollary 3.2. Let [a0; a1, . . . , an] be a standard continued fraction

for p/q. By Lemma 3.4 there exists an integer l such that r/s = [0; a0, a1, . . . , an, l].

Hence, we have

[−l+ 1;−an, . . . ,−a1, − a0, 0, a0, a1, . . . , an]
(−1)n − 1

= [−l+ 1; 0](−1)n − 1 =







1

0
for n even,

1

−1
for n odd.

Now we can apply Theorem 1.1 and finish by noting that the resulting lens

spaces L(1, 0) and L(1,−1) are both homeomorphic to S3. �
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