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Abstract. Let [x] be an integer part of x and d(n) be the number of positive divisor of n.
Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6

5
,

∑

n6x

d([nc]) = cx log x+ (2γ − c)x+O
(

x

log x

)

,

where γ is the Euler constant and [nc] is the Piatetski-Shapiro sequence. This gives an
improvement upon the classical result of this problem.
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1. Introduction

The Piatetski-Shapiro sequences are sequences of the form

([nc])∞n=1,

where c > 1 and c /∈ N. Let [x] be the largest integer not exceeding x. Using the

prime number theorem and some elementary calculation, we can easily prove that

(1.1)
∑

n6x
[nc]∈P

1 ∼ x

c logx
as x→ ∞

for 0 < c 6 1 and P is the set of primes.
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For c > 1, a classical result of finding primes in such sparse sequences is attributed

to Piatetski-Shapiro, who proved that (1.1) holds if c is a fixed number lying in the

range 1 < c < 12
11 . Naturally, one would like the range of c to be as large as possible.

When c is a positive integer larger than 2, [nc] is no longer to be a prime, so the

left-hand side of equation (1.1) vanishes. In this direction, many experts have made

significant contributions, see, e.g., [1], [4], [6], [7], [8], [10] and the references therein.

At present, the best result is obtained by Rivat and Sargos (see [11]), who proved

that (1.1) holds for 1 < c < 2817
2426 . On the other hand, Rivat and Wu in [12] have

proven that for c ∈ (1, 243205 ), there are infinitely many Piatetski-Shapiro primes.

In this paper, we are interested in the divisors of the sequence [nc]. Let d(n) be

the number of positive integer solutions to equation x1x2 = n. The estimation of the

error term of the asymptotic formula of sum
∑

n6x

d(n) is called the Dirichlet divisor

problem, which is a famous problem in number theory. In 1999, Arkhipov, Soliba

and Chubarikov in [2] proved that when 1 < c < 8
7 ,

∑

n6x

d([nc]) = xQ(log x) +O
( x

log x

)

,

where Q(x) is a polynomial of degree 1. Later, Lü and Zhai in [9] improved the range

of c to 1 < c < 495
433 by involving the theory of exponent pairs. One may note that

495
433 ≈ 1.143187 and 8

7 ≈ 1.142857.

In this paper, we consider the asymptotic formula for
∑

n6x

d([nc]), where d(n)

denotes the number of positive divisor of n. On this subject, we have the following

result. We can give a further improvement upon the range of c.

Theorem 1.1. Let 1 < c < 6
5 . Then we have

(1.2)
∑

n6x

d([nc]) = cx log x+ (2γ − c)x+O
( x

log x

)

,

where γ is the Euler constant.

Notations 1.1. Throughout the paper, c > 1 is a fixed number and we set

β = 1/c. The symbols η and ε are small positive real numbers, where ε may not

necessarily be the same at different occurrences. As usual, e(z) = exp(2πiz) = e2πiz.

The symbol k ∼ K means 1
2K 6 k 6 2K. We write f = O(g) or f ≪ g to

mean |f | 6 c0g for some unspecified positive constant c0. We denote f ≍ g to mean

that f ≪ g and g ≪ f .
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2. Preliminaries

In this section, we quote the results needed later. Firstly, we need the following

asymptotic formula for the divisor function d(n).

Lemma 2.1. Let x > 1, then

∑

n6x

d(n) = x log x+ (2γ − 1)x+O(
√
x),

where γ is the Euler constant.

We shall use the following approximation of the saw-tooth function ψ(x) =

x− [x]− 1
2 ∈ [− 1

2 ,
1
2 ).

Lemma 2.2. For 0 < |t| < 1, let

W (t) = πt(1 − |t|) cot πt+ |t|.

Fix a positive integer J . For x ∈ R define

ψ∗(x) := −
∑

16|j|6J

(2πij)−1W
( j

J + 1

)

e(jx)

and

(2.1) δ(x) :=
1

2(J + 1)

∑

|j|6J

(

1− |j|
J + 1

)

e(jx).

Then δ is nonnegative, and we have

|ψ∗(x)− ψ(x)| 6 δ(x)

for all real numbers x.

P r o o f. See Vaaler [13], Theorem 18. �

We shall also use the following estimate for a sum involving function δ.

Lemma 2.3. Fix 0 < β < 1. Assume that 1 6 N < N1 6 2N . Define the

function δ as in (2.1). Then

∑

N<n6N1

δ(−nβ) ≪ J−1N + J1/2Nβ/2.

P r o o f. See [3], Chapter 4, page 48. �

615



To estimate the exponential sums, we need the following lemma.

Lemma 2.4. Let 2 6 M < M ′ 6 2M , and let f be a holomorphic function in

the domain

D = {z : |z − x| < cM for some x ∈ [M,M ′]},

where c is a positive constant. Suppose that f(x) is real for M 6 x 6M ′, and that

either

f(z) = Bzα(1 +O(F−1/3)) for z ∈ D,

where α 6= 0, 1 is a fixed real number, and

F = |B|Mα, or f(z) = B log z(1 + o(F−1/3)) for z ∈ D,

where F = |B|.
Let g ∈ C1[M,M ′], and suppose that M 6 x 6M ′,

|g(x)| ≪ G, |g′(x)| ≪ G′.

Suppose also that M3/4 ≪ F ≪M3/2, then

∣

∣

∣

∣

∑

M6m6M ′

d(m)g(m)e(f(m))

∣

∣

∣

∣

≪ (G+ FG′)M1/2F 1/3+ε.

P r o o f. See Jutila [5], Lemma 4.6. �

3. Proof of Theorem 1.1

Throughout the proof, let β = 1/c. Then [nc] = m is equivalent to

−(m+ 1)β < −n 6 −mβ.

Therefore, we have

(3.1) S :=
∑

n6x

d([nc]) =
∑

m6xc

([−mβ ]− [−(m+ 1)β ])d(m) +O(xε)

= S1 + S2 +O(xε),

where

S1 =
∑

m6xc

((m+ 1)β −mβ)d(m) and S2 =
∑

m6xc

(ψ(−(m+ 1)β)− ψ(−mβ))d(m)
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with ψ(x) being the saw-tooth function in Lemma 2.2. Using partial summation,

Lemma 2.1 and the Taylor expansion

(x+ 1)β − xβ = βxβ−1 +O(xβ−2)

for x > 1, we deduce that

S1 =
∑

m6xc

((m+ 1)β −mβ)d(m) = β
∑

m6xc

d(m)mβ−1 +O

(

∑

m6xc

d(m)mβ−2

)

= cx log x+ (2γ − c)x+Oc(
√
x),

where the O-term only depends on c. Replacing xc by M and breaking into dyadic

intervals, the remaining task is to prove that for small η > 0,

S2 ≪ (log 2M)
∑

m∼M

(ψ(−(m+ 1)β)− ψ(−mβ))d(m) ≪Mβ−η.

For convenience of calculation, we write

S∗
2 :=

∑

m∼M

(ψ(−(m+ 1)β)− ψ(−mβ))d(m).

By Lemma 2.2, for any J > 0 there exist functions ψ∗ and δ (> 0) such that

ψ(x) = ψ∗(x) +O(δ(x)),

where

(3.2) ψ∗(x) =
∑

16|j|6J

a(j)e(jx), δ(x) =
∑

|j|6J

b(j)e(jx)

with

a(j) ≪ j−1, b(j) ≪ J−1.

Hence,

S∗
2 =

∑

m∼M

d(m)(ψ∗(−(m+ 1)β)− ψ∗(−mβ))

+O

(

M ε
∑

m∼M

(δ(−(m+ 1)β) + δ(−mβ))

)

= S3 +O(M εS4),

say. By Lemma 2.3, we have

S4 ≪ J−1M + J1/2Mβ/2.
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We fix a small η > 0 and set

(3.3) J :=M1−β+η,

then we obtain

S4 ≪Mβ−η/2

if 1
2 < β < 1.

Finally, we need to prove that

(3.4) S3 =
∑

m∼M

d(m)(ψ∗(−(m+ 1)β)− ψ∗(−mβ)) ≪Mβ−η/2,

provided that η is sufficiently small. By (3.2), we write

S3 =
∑

m∼M

d(m)(ψ∗(−(m+ 1)β)− ψ∗(−mβ))

=
∑

m∼M

d(m)

(

∑

16|j|6J

a(j)e(−j(m+ 1)β)−
∑

16|j|6J

a(j)e(−jmβ)

)

=
∑

m∼M

d(m)
∑

16|j|6J

a(j)ϕj(m)e(−jmβ),

where ϕj(x) = e(j(xβ − (x+ 1)β))− 1 and

(3.5) ϕj(x) ≪ jMβ−1,
dϕj(x)

dx
≪ jMβ−2

for x ∈ (M, 2M ]. Using partial summation and (3.5), we have

S3 ≪
∑

16|j|6J

1

j

∣

∣

∣

∣

∑

m∼M

d(m)ϕj(m)e(−jmβ)

∣

∣

∣

∣

≪
∑

16|j|6J

1

j
max

M<x62M
|ϕj(x)|

∣

∣

∣

∣

∑

M<m6x

d(m)e(−jmβ)

∣

∣

∣

∣

+

∫ 2M

M

∑

16|j|6J

1

j

∣

∣

∣

dϕj(x)

dx

∣

∣

∣

∣

∣

∣

∣

∑

M<m6x

d(m)e(−jmβ)

∣

∣

∣

∣

dx

≪Mβ−1max
M1

∑

16|j|6J

∣

∣

∣

∣

∑

M<m6M1

d(m)e(−jmβ)

∣

∣

∣

∣

with M <M1 6 2M .

We can infer that in order to get (3.4), it suffices to prove that

∑

16|j|6J

∣

∣

∣

∣

∑

m∼M

d(m)e(−jmβ)

∣

∣

∣

∣

≪M1−η/2.
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Taking the definition of J in (3.3) into account and dividing the summation interval

1 6 |j| 6 J into O(log 2J) dyadic intervals, we see that the above bound holds if

(3.6) K =
∑

h∼H

∣

∣

∣

∣

∑

m∼M

d(m)e(−hmβ)

∣

∣

∣

∣

≪M1−η

for any M > 1 and 1 6 H 6M1−β+η.

By Lemma 2.4 with f(z) = −hzβ, we have

K ≪M1/2+β/3H4/3,

where M3/4−β ≪ H ≪M3/2−β. As 1 6 H 6M1−β+η, we have

K ≪M1/2+β/3H4/3

for c < 4
3 . Then we can conclude that

K ≪M1−η

for 1 < c < 6
5 . This completes the proof of Theorem 1.1. �
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