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Abstract. The aim of this short paper is threefold. First, we develop an implicit gen-
eralization of a constitutive relation introduced by Korteweg (1901) that can describe the
phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit
Euler equations), we show that even in that simple situation more than one of the mem-
bers of the sub-class may be able to describe one or a set of experiments one is interested
in describing, and we must determine which amongst these constitutive relations is the
best by culling the class by systematically comparing against an increasing set of observa-
tions. (The implicit generalization developed in this paper is not a sub-class of the implicit
generalization of the Navier-Stokes fluid developed by Rajagopal (2003), (2006) or the gen-
eralization due to Pr̊uša and Rajagopal (2012), as spatial gradients of the density appear in
the constitutive relation developed by Korteweg (1901).) Third, we introduce a challenging
set of partial differential equations that would lead to new techniques in both analysis and
numerical analysis to study such equations.
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1. Introduction

Rajagopal [20] introduced algebraic implicit constitutive relations to describe the

response of both solids and fluids, and later Pr̊uša and Rajagopal [19] generalized the

class of simple materials introduced by Noll [17] to the class of implicit constitutive

relations between the history of the stress and the history of the deformation gradi-

ent, and showed that under the assumption of fading memory, when the appropriate
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approximations are carried out, the implicit relations yield both differential type and

rate type approximations. The approximations obtained by Coleman and Noll [2]

within the context of simple fluids are a special sub-set of the approximations ob-

tained by Pr̊uša and Rajagopal [19]. This study was followed by the generalization

by Rajagopal [23] who studied the anisotropy of implicit constitutive relation be-

tween the histories of the density, stress and the deformation gradient. All the above

implicit constitutive relations do not include spatial gradient of the density, and thus

the constitutive relation introduced by Korteweg [10] is not a sub-class of these im-

plicit constitutive relations introduced by Rajagopal [20], Pr̊uša and Rajagopal [19]

and Rajagopal [23].

Thus, the first objective of the short work is to develop implicit generalizations

of the classical Korteweg fluids (which includes implicit generalizations of the Eu-

ler fluid), with a view towards increasing the arsenal of the modeler to describe

the response of compressible fluids. The second objective addresses the issue of de-

termining constitutive relations that can describe observed phenomena, a problem

confronted by the modeler. Conjectures are propounded on the basis of observations

and the iterative process between carefully constructed experiments to test these

conjectures. The back and forth between the polishing of conjectures and refining of

experiments hopefully leads to a theory that is simple, economical, with predictive

capability, allowing for consilience of inductions and falsifiability. Most “theories”

that are in vogue do not rise to such levels; they merely explain a small body of

evidence. A constitutive theory is an explanation for the response of a particular

class of materials1, based on our observation of how these materials behave when

subject to external stimuli. The question then arises, given a class of flows that

have been observed of a particular fluid, namely what are the class of constitutive

relation that best explain the class of observed flows2. Using the class of implicit

Euler fluids, and a very simple static solution, we show that infinity of constitutive

1 The terminology “constitutive theory” or “constitutive relations” is a misnomer as it
is used. The word “constitutive” applies to how a material is constituted (how it is
composed), but it is used as a synonym for response functions (see Rajagopal: Rethinking
the Development of Constitutive Relations. Book in preparation, 2023, for a detailed
discussion of this erroneous usage of the terminology “constitutive relations”).

2An interesting mathematical generalization of this question, within the context of or-
dinary differential or partial differential equations, is the following: given a particular
class of solutions, determine the class of ordinary differential or partial differential equa-
tions wherein such a class of solutions is possible? Within the context of incompressible
isotropic Green elasticity (see Green [8], Truesdell and Noll [29]) such a question has
been investigated by McLeod, Rajagopal and Wineman [16] for a class of inhomogeneous
shear superposed on homogeneous triaxial extension. They delineate a class of stored
energy functions which lead to a class of ordinary differential equations for which they
prove solutions exist.
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relations could describe the solution. This large class has to then be whittled down

by considering more and more observed flows, arriving at a reasonable constitutive

relation. Finally, we remark on the system of partial differential equations that arise

from the implicit constitutive relations that we develop, which can be the food for

thought to mathematical and numerical analysts.

In a series of papers published between 1754 and 1761, Euler [3]–[5] developed

an idealized fluid model that has proved extremely useful in describing the flows

of a large class of fluids. The Euler fluid3 is defined by a constitutive expression

for the stress in terms of the density, namely (see Truesdell [28], Truesdell and Ra-

jagopal [30])

(1.1) T = −p(̺)I,

where ̺ is the density and −p is the mean value of the stress referred to as the

mechanical pressure, and I denotes the identity tensor4. The Euler fluid is a perfectly

elastic fluid incapable of dissipation. We shall see later that (1.1) is a very special

sub-class of the Korteweg fluid whose constitutive relation is given by (1.4). Usually,

one also allows for the effect of temperature in which case the constitutive expression

takes the form

(1.2) T = −p(̺, θ)I,

where now θ is the temperature. The classical ideal gas is an example of an Euler

fluid. In (1.2), p is referred to as the thermodynamic pressure.

The expression for the thermodynamic pressure p as a function of the density ̺

and the temperature θ, which is usually referred to as the equation of state, relates

the various quantities that appear in it. In classical thermodynamics, one seems

to take the approach that the quantities that appear in the equation of state are

related and there does not seem to be much deliberation with regard to which of

these quantities might be a cause and which an effect. One finds the thermody-

namic pressure expressed in terms of the density and temperature; the density being

expressed in terms of the thermodynamic pressure and temperature; or the temper-

ature being expressed in terms of the thermodynamic pressure and density. While

3 In the first paper on inviscid fluids, Euler required that the vorticity be zero in flows
of incompressible inviscid fluids. Later, he generalized the investigation to include both
compressible and incompressible fluids and relaxed the requirement that the flows be
irrotational.

4 The incompressible counterpart of the constitutive relation (1.1) takes the form T = −pI,
where p is the indeterminate scalar that is a consequence of the constraint of incompressi-
bility.
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the notion of temperature is not a primitive when one is dealing within the con-

text of statistical thermodynamics, it is presumed to be the cause for the transfer of

“heat” (energy in thermal form) within the context of classical thermodynamics. For

instance, Maxwell [15] states that “The temperature of a body is its thermal state

considered with reference to power of communicating heat to other bodies.“ That

is, temperature is the power (ability) to transmit heat. Fosdick and Rajagopal [6]

have shown that the notion of transfer of heat (transfer of thermal energy) implies

the existence of a locally Euclidean Hausdorff space of one dimension, namely the

existence of temperature, that is the existence of the concept of temperature is a

necessary precursor for heat transfer to take place, and it is the difference in temper-

ature that causes heat transfer to take place, which is usually described by Fourier’s

law: q = −k∇θ, where q is the heat flux (the effect), θ is the temperature (the

gradient of θ is the cause for the heat flux) and k is the thermal conductivity.

In the case of the constitutive representation (1.2), the mechanical pressure (mean

value of the stress) and thermodynamic pressure are the same. This is not always the

case, especially when one considers the compressible Navier-Stokes fluid, many non-

Newtonian fluids or the Korteweg fluid. The indiscriminate use of the terminology

“pressure” has been the cause for much confusion (see Rajagopal [24]) as will become

clear from what follows.

Korteweg [10] developed a constitutive relation for a fluid wherein the stress de-

pended on both the density, its first and second spatial gradients, and the symmetric

part of the velocity gradient. Models wherein the stress depends on the density and

the gradients of the density have also been used to describe the response of granular

materials (see Goodman and Cowin [7], Hutter and Rajagopal [9]). The important

fact to bear in mind is that the gradient in question is the Eulerian spatial gradi-

ent and the constitutive models under consideration are models for homogeneous

bodies. Málek and Rajagopal [13] have looked at constitutive equations for inho-

mogeneous bodies wherein they considered the possibility of the stress depending

on the Lagrangian spatial gradient of the density. Here, we shall only consider the

implications of constitutive relations for homogeneous bodies. While we shall not

consider inhomogeneous bodies in this short paper, it is easy to generalize the results

established here to the case of inhomogeneous bodies.

Korteweg [10] proposed a constitutive expression which falls into the class of ma-

terials defined through

(1.3) T = f(̺, θ,∇̺,∇(2)̺,Dv).

The Korteweg fluid takes the special form:

(1.4) T = (α0(̺)+α1∆̺+α2|∇̺|2)I+α3(∇̺⊗∇̺)+α4∇(2)̺+λ trDv+2µDv,
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where α0 is a function depending on the density and αi, i = 1, 2, 3, 4, µ and λ

are constants and Dv is the symmetric part of the velocity gradient5. The above

model presents lots of challenges with regard to the solution of boundary value

problems as the balance of linear momentum will in general contain three spatial

derivatives of the density and it is far from apparent the three boundary conditions

that ought to be prescribed. Recently, Souček, Heida and Málek [26] have determined

boundary conditions for the Korteweg-like fluids on the basis of thermodynamics.

The boundary condition for the density is given in terms of the normal derivatives of

the density at the boundary, but this condition might not be useful in the resolution of

some general boundary value problems. We notice that to describe the fluid using the

constitutive relation (1.4), we have to be able to prescribe seven material constants,

and it is a tremendously daunting task to delineate an experimental program in

which these constants can be measured6.

The models considered by Euler and Korteweg are explicit expressions for the

stress in terms of the dependent variables. Recently, Rajagopal [20], [21], [22] intro-

duced implicit constitutive relations that relate the stress and appropriate kinemat-

ical quantities depending on whether the model describes the response of a solid or

a fluid. In the case of fluid models, Rajagopal [20], [21] introduced constitutive rela-

tions where the stress, the density and the symmetric part of the velocity gradient

were related through an algebraic relation. Málek et al. [12] studied generalizations

of the classical Navier-Stokes constitutive equation within the class of the implicit

models introduced by Rajagopal [20], [21], and Le Roux and Rajagopal [11] developed

implicit relations which in a simple shear flow exhibited a non-monotone response

between the shear rate and shear stress. Perlácová and Pr̊uša [18] showed that sub-

classes of the implicit constitutive relations developed by Le Roux and Rajagopal [11]

can describe the response of colloidal solutions.

In addition to implicit generalizations of the Euler and Korteweg fluids, it is poss-

ible to systematically develop implicit generalizations of many other constitutive

relations including fluids with thresholds. Blechta, Málek and Rajagopal [1] have

provided a taxonomy of constitutive relations for incompressible fluids. It ought to

be possible to develop such a categorization for compressible fluids as well (see also

Málek and Rajagopal [14]).

5Notice that when Dv = 0, that is, when there is no flow, and when we set p(̺) =
α0(̺) + α1∆̺+ α2|∇̺|2, the mean value of the stress for the constitutive relation (1.4)
is not necessarily the pressure p(̺), as there are contributions from the other terms.

6 Even within the context of the classical Navier-Stokes fluid, while one can measure the
shear viscosity, one cannot determine the other viscosity that appears in the representa-
tion for the stress. One can measure the bulk modulus κ = 3λ+ 2µ, and thus indirectly
compute λ.
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2. Generalization of the classical Korteweg fluid model

We notice that the second gradient of density appears in the Korteweg consti-

tutive relation (1.4). An implicit generalization of this is the implicit constitutive

relation (1.3). In what follows, we shall ignore the dependence of the constitutive re-

lations on the second gradient of the density. Ignoring the dependence of the second

gradient of the density implies that we cannot recover the full Korteweg model within

the context of the implicit equation that is being proposed. However, inclusion of the

second gradient of density and using standard representation theorems would lead to

a constitutive relation characterized by a large set of material functions that would

render it impossible to fashion a meaningful experimental program to determine all

of them, even if these material functions are assumed to be constants. Even the sim-

plified model that we consider requires the determination of six material functions of

the density, numerous invariants of tensors involving the stress, the tensor product

of the gradient of the density with itself, and the product of the stress and second

gradient of the density, as demanded by representation theorems (see Spencer [27]).

Using such implicit models would require one to make sensible simplifications of the

constitutive relations for them to be of any use whatsoever.

Let us consider an implicit relation between the Cauchy stress T , the density ̺

and ∇̺, given by

(2.1) f(̺,∇̺,T ) = 0.

If the fluid under consideration is isotropic, then f has to meet

(2.2) f(̺,Q∇̺,QTQ⊤) = Qf(̺,∇̺,T )Q⊤ ∀Q ∈ O,

where O is the orthogonal group. Standard representation theorems (see Spencer
[27]) then lead to the representation

(2.3) α1I + α2T + α3(∇̺⊗∇̺) + α4T
2 + α5(∇̺⊗ T∇̺+ T∇̺⊗∇̺)

+ α6(∇̺⊗ T 2∇̺+ T 2∇̺⊗∇̺) = 0,

where the material moduli αi, i = 1, . . . , 6, depend on the density ̺ and the following

invariants:

(2.4) trT , trT 2, trT 3, tr(∇̺⊗∇̺), tr(∇̺⊗ T∇̺), tr(∇̺⊗ T 2∇̺).

If we restrict the implicit constitutive relation (2.3) to being linear in the Cauchy

stress, we obtain

(2.5) α1I + α2T + α3(∇̺⊗∇̺) + α5(∇̺⊗ T∇̺+ T∇̺⊗∇̺) = 0,
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where the material moduli α1 and α3 depend on the density ̺ and the invariants

(2.6) trT , tr(∇̺⊗∇̺), tr(∇̺⊗ T∇̺),

and the material moduli α2 and α5 depend on the density ̺ and tr(∇̺⊗∇̺).

We now proceed to show that given an experimental observation, even within

a much simpler sub-class of constitutive relations, implicit generalization of the Eu-

ler equation, infinite number of constitutive relations could explain a particular phe-

nomenon, and that we have to whittle them down by considering several experimen-

tal observations. Let us consider the sub-class of (2.1) wherein we have an implicit

relation between the density and the stress. In this case

(2.7) f(̺,T ) = 0.

The above is a generalization of the explicit Euler constitutive relation to the class of

implicit relations. The class of models defined through (2.5) form a sub-class of the

implicit models considered by Rajagopal (2003). The representation (2.3) simplifies

to

(2.8) α1I + α2T + α4T
2 = 0,

where the material moduli αi, i = 1, 2, 4, depend on the density ̺ and the invariants

trT , trT 2 and trT 3. Notice the difference between the representation (2.8) that the

stress satisfies and the expression for the stress in an Euler fluid. Even if α4 = 0,

representation (2.8) is different and is more general than the constitutive relation for

an Euler fluid as the material moduli αi, i = 1, 2, depend on the density and the

invariants trT , trT 2 and trT 3. That is, even in the case of α4 = 0, equation (2.8)

reduces to

(2.9) α1(̺, trT , trT 2, trT 3)I + α2(̺, trT , trT 2, trT 3)T = 0,

which one may not be able to solve to obtain an explicit expression for the stress

in terms of the density. We note that the Euler fluid is a special case of (2.9) and

corresponds to α1 being a function of the density ̺ and α2 being a constant. The

question is whether the additional structure in (2.9) allows us to describe additional

natural phenomena or experiments other than the Euler fluid. Before we proceed to

determine this, we shall discuss the third purpose of the paper, the challenge offered

by these new implicit constitutive relations in mathematical and numerical analysis.

We now record the governing equations that we need to consider. The balance of

mass is given by

(2.10)
∂̺

∂t
+ div(̺v) = 0,
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and the balance of linear momentum is given by

(2.11) ̺
dv

dt
= divT + ̺b,

where b is the specific body force. We also assume that the Cauchy stress T is

symmetric and the balance of angular momentum is fulfilled. Thus, we now need to

solve the system of equations (2.8), (2.10), and (2.11) (ten scalar equations) simulta-

neously for the unknowns ̺, v, T (ten scalar unknowns). Unlike the situation in the

case of a classical Euler fluid, we cannot substitute the expression for the stress T

into the balance of linear momentum and get an equation that relates the gradient of

the pressure and the velocity. Here, we need to solve the balance laws in conjunction

with the constitutive equation (2.6).

In the case of the generalization of the Korteweg model, we need to solve equations

(2.3), (2.10), and (2.11) simultaneously for the unknowns ̺, v, T ; once again, ten

partial differential equations for ten unknowns. Such systems can present very inter-

esting challenges when studying issues such as existence, uniqueness and stability.

3. A simple boundary value problem that can be described by an

infinite sub-class of constitutive relations belonging to class (2.8)

Let us consider a very simple problem within the context of constitutive rela-

tion (2.8). Let us consider a half-space {(x, y, z);x, y ∈ (−∞,∞) and z ∈ (0,∞)}
filled with a fluid described by (2.8) at rest under the action of gravity whose density

does not change with time. Since the fluid is static, the velocity v = 0. Then, since

the density does not change with time, (2.10) is automatically satisfied. Thus, we

need to find a stress T and corresponding density profile that satisfies (2.8) and (2.11)

simultaneously7. We shall now investigate whether specific stress and density fields

can be satisfied by a sub-class of constitutive relations (2.8) and meet the requirement

of (2.11).

Let us suppose the body force (gravity) is given by

(3.1) b = −gk = (0, 0,−g),

where g is the accelaration due to gravity and k denotes the unit vector in the

z-coordinate direction.

Let us first consider a constitutive relation for the Euler fluid as a special case of

the implicit constitutive relation (2.7):

(3.2) T (̺) = −f(̺)I,

7As v = 0, dv/dt = 0 in (2.11).
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where, for simplicity, we shall assume the function f(̺) to be sufficiently smooth

to give meaning to the following calculations. Furthermore, we shall appeal to the

semi-inverse method to seek a solution for the stress field of the form

(3.3) T (z) = −ϕ(z)I.

It then immediately follows from (2.11) that

(3.4) ϕ(z) = −g

∫
̺(s) ds or ϕ(z) = ϕ(0)− g

∫ z

0

̺(s) ds.

Then, as (3.2) and (3.3) should hold, we observe that T (z) = T (̺(z)) and

(3.5) f(̺(z)) = ϕ(0)− g

∫ z

0

̺(s) ds.

Taking derivative of this relation with respect to z yields the following ordinary

differential equation for the density:

(3.6) f ′(̺)
d̺(z)

dz
= −g̺(z).

Its integration then gives

(3.7)

∫
f ′(̺)

̺
d̺ = −g

∫
dz.

Let F (·) denote the primitive function to f ′(·)/ · . Assuming that its inverse function
exists, we obtain a solution of (3.6) of the form

(3.8) ̺(z) = F−1(F (̺(0))− gz),

whereas the associated stress field is given by

(3.9) T (z) = −f(F−1(F (̺(0)) − gz))I.

As an example, let us consider first the case of an ideal gas, where f(̺) = c̺. Then

f ′(̺)/̺ = c/̺. Consequently, F (̺) = c ln(̺) and F−1(·) = exp(·/c). This gives

(3.10) ̺(z) = ̺(0) exp
(
−g

c
z
)
and T (z) = −c̺(0)︸ ︷︷ ︸

=−ϕ(0)

exp
(
−g

c
z
)
I.
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Alternatively, we can consider a constitutive relation of the form f(̺) = 2c
√
̺, which

implies f ′(̺) = c/
√
̺, i.e., F ′ = c/̺3/2, F = −2c/

√
̺ and F−1(·) = (−2c/F (·))2.

This implies the following solution

(3.11) ̺(z) =
̺(0)

(1 +
√
̺(0)gz/(2c))2

and T (z) =
−2c

√
̺(0)

1 +
√
̺(0)gz/(2c)

I.

Let us now, as the second example, consider a case of the implicit constitutive

relation (2.8) of the form

(3.12) (T + f1(̺)I)(T + f2(̺)I) = 0,

which corresponds to the choice (referring again to (2.8))

(3.13) α1(̺) = f1(̺)f2(̺), α2(̺) = f1(̺) + f2(̺), α4 = 1.

The functions f1(̺) and f2(̺) specify two possible pressure state equations for the

considered fluid, for instance, the two cases considered above as examples, i.e.,

f1(̺) = c̺ and f2(̺) = 2c
√
̺. Clearly, the solution procedure can be repeated

in the same way as above for the classical Euler fluid, since the only two solutions

to (3.12) are T = −f1(̺)I and T = −f2(̺)I. As a result, we arrive at two differ-

ent density profiles and two corresponding stress fields (3.10) and (3.11), for such

a material model.

So, in this example, we have demonstrated that for a given implicit material class

model (3.12), representing a subclass of the more general model (2.8), and for the

given physical setting (mechanical equilibrium of semi-infinite medium under the

action of gravity), two solutions that both belong to the class of Euler fluids can be

found. These solutions differ by the resulting density and stress profiles. Note that

assuming stratification of the fluid into layers of different branches of the constitutive

relation, that is, changing between one and the other equation of state, would allow

constructing further (in fact infinitely many) solutions.8 So from this point of view,

the given constitutive model on its own does allow us to not uniquely determine the

response of the system in equilibrium, which is a natural consequence of the model’s

nonlinearity and absence of further constraints.

To demonstrate the challenges associated with working with implicit constitutive

relationships of type (2.8), let us take another viewpoint in the context of the same

8 This is the artifice used by Rajagopal andWineman [25] to explain elastic-plastic response
wherein the constitutive relation is a product of two terms, and the constitutive equation
satisfying one or the other of the two terms, the choice of the branch being based on
a selectivity criterion.
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thought experiment. Let us assume that we observe (measure) the equilibrium den-

sity and stress profile

(3.14) ̺(z) = ̺(0) exp
(
−g

c
z
)
, T (z) = −c̺(0) exp

(
−g

c
z
)
I,

and let us now consider the question of identification of the material model based on

these two observations. We already know that the Euler fluid represents one such

model, i.e. material for which T = −f(̺)I (for f(̺) = c̺). The interesting question

is whether one can find the solution of the form (3.14) for a constitutive relation

belonging to (2.8) other than the Euler constitutive relation, that is whether one can

find a ϕ such that the stress is given by (3.3) and satisfies both (2.8) and (3.14).

Since

(3.15) trT = −3ϕ, trT 2 = 3ϕ2 and trT 3 = −3ϕ3,

it follows from (2.8) that we need to satisfy

(3.16) α̂1(̺, ϕ)− α̂2(̺, ϕ)ϕ + α̂4(̺, ϕ)ϕ
2 = 0,

where α̂i(̺, ϕ) denotes αi(̺, 3ϕ,−3ϕ2, 3ϕ3), i = 1, 2, 4. Let us consider, for simplic-

ity, and in analogy with example (3.12) the following constitutive subclass of (2.8):

(3.17) (T + f(̺)I)(T + h(̺, ϕ)I) = 0, where f(̺) = c̺,

where we emphasize that h now depends on the stress implicitly through ϕ. We

can see that any choice of h(̺, ϕ) provides a constitutive material model from the

material class (2.8), which, moreover, complies with the set of observation profiles

̺(z), T (z) given by (3.10) and with the (equilibrium form of) linear momentum

balance (2.11).

The fact that more than one model belonging to the class of implicit functions

can describe a particular phenomenon has important consequences. Even if one were

to restrict oneself to the class of classical Euler models, if we admit “branching” in

the constitutive response as in (3.12), infinitely many solutions are possible. On the

other hand, an infinity of other fluid models exists that cannot be interpreted as

“branching” Euler models. These are all models of the form (3.17) with h depending

also on the stress via ϕ. All of these implicit models can support the same solution.

Thus, while two models belonging to the class of implicit relations may both be

capable of describing a particular phenomenon, each of them might be capable of de-

scribing different observations (phenomenon/experimental result). However, having

described a particular result, a specific Euler fluid may be incapable of describing
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some other observation. Thus, by considering a sequence of boundary value prob-

lems, we can determine the constitutive relations that belong to (2.8) that can best

explain all of them.

To recapitulate, as the result cannot be overemphasized, the class of implicit con-

stitutive relations (2.8) allows one to have many constitutive relations that describe

result (3.14). Given a set of observations, we can systematically cull the class of

constitutive relations to arrive at a sub-class which best describes the set of observa-

tions. This culling process may lead to one or for that matter no constitutive relation

that can describe the set of observations. A good example of the latter is the class

of observation of turbulent flows. To date, no adequate theory has been found that

can describe well all the observed turbulent phenomena.

A c k n ow l e d g em e n t. The author thanks an anonymous reviewer for his in-

sightful comments that enhanced the presentation of the results.
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