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Abstract. The aim of this short paper is threefold. First, we develop an implicit gen-
eralization of a constitutive relation introduced by Korteweg (1901) that can describe the
phenomenon of capillarity. Second, using a sub-class of the constitutive relations (implicit
Euler equations), we show that even in that simple situation more than one of the mem-
bers of the sub-class may be able to describe one or a set of experiments one is interested
in describing, and we must determine which amongst these constitutive relations is the
best by culling the class by systematically comparing against an increasing set of observa-
tions. (The implicit generalization developed in this paper is not a sub-class of the implicit
generalization of the Navier-Stokes fluid developed by Rajagopal (2003), (2006) or the gen-
eralization due to Prusa and Rajagopal (2012), as spatial gradients of the density appear in
the constitutive relation developed by Korteweg (1901).) Third, we introduce a challenging
set of partial differential equations that would lead to new techniques in both analysis and
numerical analysis to study such equations.
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1. INTRODUCTION

Rajagopal [20] introduced algebraic implicit constitutive relations to describe the
response of both solids and fluids, and later Prisa and Rajagopal [19] generalized the
class of simple materials introduced by Noll [17] to the class of implicit constitutive
relations between the history of the stress and the history of the deformation gradi-
ent, and showed that under the assumption of fading memory, when the appropriate
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approximations are carried out, the implicit relations yield both differential type and
rate type approximations. The approximations obtained by Coleman and Noll [2]
within the context of simple fluids are a special sub-set of the approximations ob-
tained by Prusa and Rajagopal [19]. This study was followed by the generalization
by Rajagopal [23] who studied the anisotropy of implicit constitutive relation be-
tween the histories of the density, stress and the deformation gradient. All the above
implicit constitutive relations do not include spatial gradient of the density, and thus
the constitutive relation introduced by Korteweg [10] is not a sub-class of these im-
plicit constitutive relations introduced by Rajagopal [20], Prusa and Rajagopal [19]
and Rajagopal [23].

Thus, the first objective of the short work is to develop implicit generalizations
of the classical Korteweg fluids (which includes implicit generalizations of the Eu-
ler fluid), with a view towards increasing the arsenal of the modeler to describe
the response of compressible fluids. The second objective addresses the issue of de-
termining constitutive relations that can describe observed phenomena, a problem
confronted by the modeler. Conjectures are propounded on the basis of observations
and the iterative process between carefully constructed experiments to test these
conjectures. The back and forth between the polishing of conjectures and refining of
experiments hopefully leads to a theory that is simple, economical, with predictive
capability, allowing for consilience of inductions and falsifiability. Most “theories”
that are in vogue do not rise to such levels; they merely explain a small body of
evidence. A constitutive theory is an explanation for the response of a particular
class of materials!, based on our observation of how these materials behave when
subject to external stimuli. The question then arises, given a class of flows that
have been observed of a particular fluid, namely what are the class of constitutive

2

relation that best explain the class of observed flows®. Using the class of implicit

Euler fluids, and a very simple static solution, we show that infinity of constitutive

! The terminology “constitutive theory” or “constitutive relations” is a misnomer as it

is used. The word “constitutive” applies to how a material is constituted (how it is
composed), but it is used as a synonym for response functions (see Rajagopal: Rethinking
the Development of Constitutive Relations. Book in preparation, 2023, for a detailed
discussion of this erroneous usage of the terminology “constitutive relations”).

2 An interesting mathematical generalization of this question, within the context of or-
dinary differential or partial differential equations, is the following: given a particular
class of solutions, determine the class of ordinary differential or partial differential equa-
tions wherein such a class of solutions is possible? Within the context of incompressible
isotropic Green elasticity (see Green [8], Truesdell and Noll [29]) such a question has
been investigated by McLeod, Rajagopal and Wineman [16] for a class of inhomogeneous
shear superposed on homogeneous triaxial extension. They delineate a class of stored
energy functions which lead to a class of ordinary differential equations for which they
prove solutions exist.
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relations could describe the solution. This large class has to then be whittled down
by considering more and more observed flows, arriving at a reasonable constitutive
relation. Finally, we remark on the system of partial differential equations that arise
from the implicit constitutive relations that we develop, which can be the food for
thought to mathematical and numerical analysts.

In a series of papers published between 1754 and 1761, Euler [3]-[5] developed
an idealized fluid model that has proved extremely useful in describing the flows
of a large class of fluids. The Euler fluid? is defined by a constitutive expression
for the stress in terms of the density, namely (see Truesdell [28], Truesdell and Ra-
jagopal [30])

(1.1) T = —p(o)1,

where o is the density and —p is the mean value of the stress referred to as the
mechanical pressure, and I denotes the identity tensor?. The Euler fluid is a perfectly
elastic fluid incapable of dissipation. We shall see later that (1.1) is a very special
sub-class of the Korteweg fluid whose constitutive relation is given by (1.4). Usually,
one also allows for the effect of temperature in which case the constitutive expression
takes the form

where now 6 is the temperature. The classical ideal gas is an example of an Euler
fluid. In (1.2), p is referred to as the thermodynamic pressure.

The expression for the thermodynamic pressure p as a function of the density o
and the temperature 6, which is usually referred to as the equation of state, relates
the various quantities that appear in it. In classical thermodynamics, one seems
to take the approach that the quantities that appear in the equation of state are
related and there does not seem to be much deliberation with regard to which of
these quantities might be a cause and which an effect. One finds the thermody-
namic pressure expressed in terms of the density and temperature; the density being
expressed in terms of the thermodynamic pressure and temperature; or the temper-
ature being expressed in terms of the thermodynamic pressure and density. While

3In the first paper on inviscid fluids, Euler required that the vorticity be zero in flows
of incompressible inviscid fluids. Later, he generalized the investigation to include both
compressible and incompressible fluids and relaxed the requirement that the flows be
irrotational.

4 The incompressible counterpart of the constitutive relation (1.1) takes the form T' = —plI,
where p is the indeterminate scalar that is a consequence of the constraint of incompressi-
bility.
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the notion of temperature is not a primitive when one is dealing within the con-
text of statistical thermodynamics, it is presumed to be the cause for the transfer of
“heat” (energy in thermal form) within the context of classical thermodynamics. For
instance, Maxwell [15] states that “The temperature of a body is its thermal state
considered with reference to power of communicating heat to other bodies. “ That
is, temperature is the power (ability) to transmit heat. Fosdick and Rajagopal [6]
have shown that the notion of transfer of heat (transfer of thermal energy) implies
the existence of a locally Euclidean Hausdorff space of one dimension, namely the
existence of temperature, that is the existence of the concept of temperature is a
necessary precursor for heat transfer to take place, and it is the difference in temper-
ature that causes heat transfer to take place, which is usually described by Fourier’s
law: ¢ = —kV0, where g is the heat flux (the effect), 6 is the temperature (the
gradient of € is the cause for the heat flux) and k is the thermal conductivity.

In the case of the constitutive representation (1.2), the mechanical pressure (mean
value of the stress) and thermodynamic pressure are the same. This is not always the
case, especially when one considers the compressible Navier-Stokes fluid, many non-
Newtonian fluids or the Korteweg fluid. The indiscriminate use of the terminology
“pressure” has been the cause for much confusion (see Rajagopal [24]) as will become
clear from what follows.

Korteweg [10] developed a constitutive relation for a fluid wherein the stress de-
pended on both the density, its first and second spatial gradients, and the symmetric
part of the velocity gradient. Models wherein the stress depends on the density and
the gradients of the density have also been used to describe the response of granular
materials (see Goodman and Cowin [7], Hutter and Rajagopal [9]). The important
fact to bear in mind is that the gradient in question is the Eulerian spatial gradi-
ent and the constitutive models under consideration are models for homogeneous
bodies. Maélek and Rajagopal [13] have looked at constitutive equations for inho-
mogeneous bodies wherein they considered the possibility of the stress depending
on the Lagrangian spatial gradient of the density. Here, we shall only consider the
implications of constitutive relations for homogeneous bodies. While we shall not
consider inhomogeneous bodies in this short paper, it is easy to generalize the results
established here to the case of inhomogeneous bodies.

Korteweg [10] proposed a constitutive expression which falls into the class of ma-
terials defined through

(1.3) T = f(0,0,Vo, Vo, Dv).
The Korteweg fluid takes the special form:
(1.4) T = (ao(0) + a1 A0+ 2| Vo] ) T + a3(Vo® Vo) + s VP g+ A tr Dv + 2D,

488



where g is a function depending on the density and «;, i = 1,2,3,4, p and A
are constants and Dwv is the symmetric part of the velocity gradient®. The above
model presents lots of challenges with regard to the solution of boundary value
problems as the balance of linear momentum will in general contain three spatial
derivatives of the density and it is far from apparent the three boundary conditions
that ought to be prescribed. Recently, Sou¢ek, Heida and Malek [26] have determined
boundary conditions for the Korteweg-like fluids on the basis of thermodynamics.
The boundary condition for the density is given in terms of the normal derivatives of
the density at the boundary, but this condition might not be useful in the resolution of
some general boundary value problems. We notice that to describe the fluid using the
constitutive relation (1.4), we have to be able to prescribe seven material constants,
and it is a tremendously daunting task to delineate an experimental program in
which these constants can be measured®.

The models considered by Euler and Korteweg are explicit expressions for the
stress in terms of the dependent variables. Recently, Rajagopal [20], [21], [22] intro-
duced implicit constitutive relations that relate the stress and appropriate kinemat-
ical quantities depending on whether the model describes the response of a solid or
a fluid. In the case of fluid models, Rajagopal [20], [21] introduced constitutive rela-
tions where the stress, the density and the symmetric part of the velocity gradient
were related through an algebraic relation. Malek et al. [12] studied generalizations
of the classical Navier-Stokes constitutive equation within the class of the implicit
models introduced by Rajagopal [20], [21], and Le Roux and Rajagopal [11] developed
implicit relations which in a simple shear flow exhibited a non-monotone response
between the shear rate and shear stress. Perlacova and Prusa [18] showed that sub-
classes of the implicit constitutive relations developed by Le Roux and Rajagopal [11]
can describe the response of colloidal solutions.

In addition to implicit generalizations of the Euler and Korteweg fluids, it is poss-
ible to systematically develop implicit generalizations of many other constitutive
relations including fluids with thresholds. Blechta, Malek and Rajagopal [1] have
provided a taxonomy of constitutive relations for incompressible fluids. It ought to

be possible to develop such a categorization for compressible fluids as well (see also
Malek and Rajagopal [14]).

® Notice that when Dv = 0, that is, when there is no flow, and when we set p(g) =
a0(0) + a1 A0+ a2|Vo|?, the mean value of the stress for the constitutive relation (1.4)
is not necessarily the pressure p(p), as there are contributions from the other terms.

6 Even within the context of the classical Navier-Stokes fluid, while one can measure the
shear viscosity, one cannot determine the other viscosity that appears in the representa-
tion for the stress. One can measure the bulk modulus x = 3\ + 24, and thus indirectly
compute A.
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2. GENERALIZATION OF THE CLASSICAL KORTEWEG FLUID MODEL

We notice that the second gradient of density appears in the Korteweg consti-
tutive relation (1.4). An implicit generalization of this is the implicit constitutive
relation (1.3). In what follows, we shall ignore the dependence of the constitutive re-
lations on the second gradient of the density. Ignoring the dependence of the second
gradient of the density implies that we cannot recover the full Korteweg model within
the context of the implicit equation that is being proposed. However, inclusion of the
second gradient of density and using standard representation theorems would lead to
a constitutive relation characterized by a large set of material functions that would
render it impossible to fashion a meaningful experimental program to determine all
of them, even if these material functions are assumed to be constants. Even the sim-
plified model that we consider requires the determination of six material functions of
the density, numerous invariants of tensors involving the stress, the tensor product
of the gradient of the density with itself, and the product of the stress and second
gradient of the density, as demanded by representation theorems (see Spencer [27]).
Using such implicit models would require one to make sensible simplifications of the
constitutive relations for them to be of any use whatsoever.

Let us consider an implicit relation between the Cauchy stress T', the density o
and Vp, given by

(2.1) flo,Vo,T)=0.

If the fluid under consideration is isotropic, then f has to meet

(2.2) f(0,QV0,QTQ") =Qf(0, Vo, T)Q"T VQ €O,

where O is the orthogonal group. Standard representation theorems (see Spencer
[27]) then lead to the representation

(2.3) arI + T +a3(Vo® Vo) + auT? + a5(Vo® TVo +TVo @ Vo)
+a(Vo®T?Vo+T?*Vo® Vo) =0,

where the material moduli o;, 7 = 1,...,6, depend on the density o and the following
invariants:
(2.4) trT, tr T2, tr T3, tr(Vo® Vo), tr(Vo® TVp), tr(Vo® T?*Vyp).

If we restrict the implicit constitutive relation (2.3) to being linear in the Cauchy
stress, we obtain

(2.5) a1l + aT +a3(Vo® Vo) +a5(Vo@TVo+TVe® Vo) =0,
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where the material moduli a; and a3 depend on the density o and the invariants
(2.6) tr T, tr(Vo® Vo), tr(Vo® TVp),

and the material moduli «s and a5 depend on the density ¢ and tr(Vo ® Vo).

We now proceed to show that given an experimental observation, even within
a much simpler sub-class of constitutive relations, implicit generalization of the FEu-
ler equation, infinite number of constitutive relations could explain a particular phe-
nomenon, and that we have to whittle them down by considering several experimen-
tal observations. Let us consider the sub-class of (2.1) wherein we have an implicit
relation between the density and the stress. In this case

(2.7) flo,T)=0.

The above is a generalization of the explicit Euler constitutive relation to the class of
implicit relations. The class of models defined through (2.5) form a sub-class of the
implicit models considered by Rajagopal (2003). The representation (2.3) simplifies
to

2.8 041I+042T+0é4T2 =0,
(

where the material moduli «;, i = 1, 2,4, depend on the density ¢ and the invariants
tr T, tr T? and tr T°. Notice the difference between the representation (2.8) that the
stress satisfies and the expression for the stress in an Euler fluid. Even if ay = 0,
representation (2.8) is different and is more general than the constitutive relation for
an Euler fluid as the material moduli «;, i = 1,2, depend on the density and the
invariants tr T, tr T2 and tr T2. That is, even in the case of ay = 0, equation (2.8)
reduces to

(2.9) ar(o, tr T, tr T? tr T?)T + (o, tr T, tr T?  tr T3)T = 0,

which one may not be able to solve to obtain an explicit expression for the stress
in terms of the density. We note that the Euler fluid is a special case of (2.9) and
corresponds to « being a function of the density ¢ and s being a constant. The
question is whether the additional structure in (2.9) allows us to describe additional
natural phenomena or experiments other than the Euler fluid. Before we proceed to
determine this, we shall discuss the third purpose of the paper, the challenge offered
by these new implicit constitutive relations in mathematical and numerical analysis.

We now record the governing equations that we need to consider. The balance of
mass is given by

(2.10) % + div(pv) =0,
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and the balance of linear momentum is given by

(2.11) Qi—;’ = divT + ob,

where b is the specific body force. We also assume that the Cauchy stress T is
symmetric and the balance of angular momentum is fulfilled. Thus, we now need to
solve the system of equations (2.8), (2.10), and (2.11) (ten scalar equations) simulta-
neously for the unknowns p, v, T' (ten scalar unknowns). Unlike the situation in the
case of a classical Euler fluid, we cannot substitute the expression for the stress T
into the balance of linear momentum and get an equation that relates the gradient of
the pressure and the velocity. Here, we need to solve the balance laws in conjunction
with the constitutive equation (2.6).

In the case of the generalization of the Korteweg model, we need to solve equations
(2.3), (2.10), and (2.11) simultaneously for the unknowns g, v, T'; once again, ten
partial differential equations for ten unknowns. Such systems can present very inter-
esting challenges when studying issues such as existence, uniqueness and stability.

3. A SIMPLE BOUNDARY VALUE PROBLEM THAT CAN BE DESCRIBED BY AN
INFINITE SUB-CLASS OF CONSTITUTIVE RELATIONS BELONGING TO CLASS (2.8)

Let us consider a very simple problem within the context of constitutive rela-
tion (2.8). Let us consider a half-space {(x,y, 2);z,y € (—00,00) and z € (0,00)}
filled with a fluid described by (2.8) at rest under the action of gravity whose density
does not change with time. Since the fluid is static, the velocity v = 0. Then, since
the density does not change with time, (2.10) is automatically satisfied. Thus, we
need to find a stress T' and corresponding density profile that satisfies (2.8) and (2.11)
simultaneously”. We shall now investigate whether specific stress and density fields
can be satisfied by a sub-class of constitutive relations (2.8) and meet the requirement
of (2.11).

Let us suppose the body force (gravity) is given by

(31) b= _gk = (07 Oa _g)v

where ¢ is the accelaration due to gravity and k denotes the unit vector in the
z-coordinate direction.

Let us first consider a constitutive relation for the Euler fluid as a special case of
the implicit constitutive relation (2.7):

(3.2) T (o) = —f(o),

"Asv =0, dv/dt =0 in (2.11).
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where, for simplicity, we shall assume the function f(g) to be sufficiently smooth
to give meaning to the following calculations. Furthermore, we shall appeal to the
semi-inverse method to seek a solution for the stress field of the form

(3.3) T(z) = —p(2)I.
It then immediately follows from (2.11) that
(3.4) o) = =g [o5)ds or ()= o0) =g [ ofs)ds.
Then, as (3.2) and (3.3) should hold, we observe that T'(z) = T'(9(z)) and
(5.5) o)) = 9(0) —g | ols)ds.

0

Taking derivative of this relation with respect to z yields the following ordinary
differential equation for the density:

(3.6) f'(o) = —go(2).

Its integration then gives

(3.7) /@dgz —g/ dz.

Let F(-) denote the primitive function to f'(-)/-. Assuming that its inverse function
exists, we obtain a solution of (3.6) of the form

(3-8) o(z) = F7H(F(e(0) - g2),

whereas the associated stress field is given by

(3.9) T(z) = —f(F~(F(e(0)) — g2))I.

As an example, let us consider first the case of an ideal gas, where f(g) = co. Then
f'(0)/o = c¢/o. Consequently, F(0) = cIn(p) and F~1(-) = exp(-/c). This gives

(3.10) o(z) = 0(0) exp(—%z) and T(z) = —cp(0) exp(—%z)[.

==»(0)
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Alternatively, we can consider a constitutive relation of the form f (o) = 2¢,/0, which

implies f'(0) = ¢/\/0, ie., F' = c/o®? F = —2¢/,/0 and F71() = (=2¢/F(-))2.
This implies the following solution

_ 0(0) and  T(») — —2¢4/0(0) 7
(1+V/e(0)g2/(20))? ®=1 + v o(0)gz/(2¢)

Let us now, as the second example, consider a case of the implicit constitutive
relation (2.8) of the form

(3.11) o(2)

(3.12) (T + f1(@I)(T + fo(0)T) = 0,

which corresponds to the choice (referring again to (2.8))

(3.13) ar(e) = file)fa(e), 2(0) = fi(e) + fale), aa=1.

The functions fi(e) and f2(p) specify two possible pressure state equations for the
considered fluid, for instance, the two cases considered above as examples, i.e.,
Ji(e) = co and f2(0) = 2¢\/0. Clearly, the solution procedure can be repeated
in the same way as above for the classical Euler fluid, since the only two solutions
to (3.12) are T = —f1(0)I and T = —f2(0)I. As a result, we arrive at two differ-
ent density profiles and two corresponding stress fields (3.10) and (3.11), for such
a material model.

So, in this example, we have demonstrated that for a given implicit material class
model (3.12), representing a subclass of the more general model (2.8), and for the
given physical setting (mechanical equilibrium of semi-infinite medium under the
action of gravity), two solutions that both belong to the class of Euler fluids can be
found. These solutions differ by the resulting density and stress profiles. Note that
assuming stratification of the fluid into layers of different branches of the constitutive
relation, that is, changing between one and the other equation of state, would allow
constructing further (in fact infinitely many) solutions.® So from this point of view,
the given constitutive model on its own does allow us to not uniquely determine the
response of the system in equilibrium, which is a natural consequence of the model’s
nonlinearity and absence of further constraints.

To demonstrate the challenges associated with working with implicit constitutive
relationships of type (2.8), let us take another viewpoint in the context of the same

8 This is the artifice used by Rajagopal and Wineman [25] to explain elastic-plastic response
wherein the constitutive relation is a product of two terms, and the constitutive equation
satisfying one or the other of the two terms, the choice of the branch being based on
a selectivity criterion.
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thought experiment. Let us assume that we observe (measure) the equilibrium den-
sity and stress profile

(3.14) o(z) = 0(0) exp(—%z), T(z) = —co(0) eXp(—%z)I,

and let us now consider the question of identification of the material model based on
these two observations. We already know that the Euler fluid represents one such
model, i.e. material for which T' = — f(0)I (for f(0) = co). The interesting question
is whether one can find the solution of the form (3.14) for a constitutive relation
belonging to (2.8) other than the Euler constitutive relation, that is whether one can
find a ¢ such that the stress is given by (3.3) and satisfies both (2.8) and (3.14).

Since
(3.15) trT = -3¢, trT?=3p> and trT3=—3¢°
it follows from (2.8) that we need to satisfy

(3.16) a1(o, ) — @2(0, )¢ + dalo,9)p* =0,

where @; (0, p) denotes a;(o, 3¢, —3p?,3p>), i = 1,2,4. Let us consider, for simplic-
ity, and in analogy with example (3.12) the following constitutive subclass of (2.8):

(3.17) (T + f(I)(T + h(o,9)I) =0, where f(g) = co,

where we emphasize that A now depends on the stress implicitly through . We
can see that any choice of h(p,¢) provides a constitutive material model from the
material class (2.8), which, moreover, complies with the set of observation profiles
0(2), T(z) given by (3.10) and with the (equilibrium form of) linear momentum
balance (2.11).

The fact that more than one model belonging to the class of implicit functions
can describe a particular phenomenon has important consequences. Even if one were
to restrict oneself to the class of classical Euler models, if we admit “branching” in
the constitutive response as in (3.12), infinitely many solutions are possible. On the
other hand, an infinity of other fluid models exists that cannot be interpreted as
“pbranching” Euler models. These are all models of the form (3.17) with & depending
also on the stress via . All of these implicit models can support the same solution.

Thus, while two models belonging to the class of implicit relations may both be
capable of describing a particular phenomenon, each of them might be capable of de-
scribing different observations (phenomenon/experimental result). However, having
described a particular result, a specific Euler fluid may be incapable of describing
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some other observation. Thus, by considering a sequence of boundary value prob-
lems, we can determine the constitutive relations that belong to (2.8) that can best
explain all of them.

To recapitulate, as the result cannot be overemphasized, the class of implicit con-
stitutive relations (2.8) allows one to have many constitutive relations that describe
result (3.14). Given a set of observations, we can systematically cull the class of
constitutive relations to arrive at a sub-class which best describes the set of observa-
tions. This culling process may lead to one or for that matter no constitutive relation
that can describe the set of observations. A good example of the latter is the class
of observation of turbulent flows. To date, no adequate theory has been found that
can describe well all the observed turbulent phenomena.

Acknowledgement. The author thanks an anonymous reviewer for his in-
sightful comments that enhanced the presentation of the results.
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