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Abstract. We are concerned with the null controllability of a linear coupled population dy-
namics system or the so-called prey-predator model with Holling type I functional response
of predator wherein both equations are structured in age and space. It is worth mentioning
that in our case, the space variable is viewed as the “gene type” of population. The studied
system is with two different dispersion coefficients which depend on the gene type variable
and degenerate in the boundary. This system will be governed by one control force. To reach
our goal, we develop first a Carleman type inequality for its adjoint system and consequently
the pertinent observability inequality. Note that such a system is obtained via the original
paradigm using the Lagrangian method. Afterwards, with the help of a cost function we
will be able to deduce the existence of a control acting on a subset of the gene type domain
and which steers both populations of a certain class of age to extinction in a finite time.
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1. Introduction

We consider the coupled population dynamics system

∂y

∂t
+
∂y

∂a
− (k1(x)yx)x + µ1(t, a, x)y + b(t, a, x)yp = ϑχω in Q,(1)

∂p

∂t
+
∂p

∂a
− (k2(x)px)x + µ2(t, a, x)p− µ3(t, a, x)yp = 0 in Q,

y(t, a, 1) = y(t, a, 0) = p(t, a, 1) = p(t, a, 0) = 0 on (0, T )× (0, A),

y(0, a, x) = y0(a, x); p(0, a, x) = p0(a, x) in QA,
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y(t, 0, x) =

∫ A

0

β1(t, a, x)y(t, a, x) da in QT ,

p(t, 0, x) =

∫ A

0

β2(t, a, x)p(t, a, x) da in QT ,

where Q = (0, T ) × (0, A) × (0, 1), QA = (0, A) × (0, 1), QT = (0, T ) × (0, 1),

ω ⊂⊂ (0, 1) and we denote q = (0, T ) × (0, A) × ω. The variables y(t, a, x) and

p(t, a, x), which are in interaction, represent, respectively, the distributions of prey

and predator at time t, of age a and of gene type x. Recall that system (1) above

models the dispersion of gene in the two populations prey and predator. A further

details about what can our paradigm model will be provided later. The param-

eters β1(t, a, x) (or β2(t, a, x)), µ1(t, a, x) (or µ2(t, a, x)) can be interpreted as the

natural fertility rate of the prey population (or the predator population) and the

natural mortality rate of the prey population (or of the predator population) while b

stands for capturing rate of predator called also the ratio between the searching ef-

ficiency and attack rate of predator and µ3 = λ2b is a positive constant where, λ2 is

the measure of the predator’s efficiency to convert prey biomass to fertility (or pro-

ductivity). On the other hand, the parameters k1 and k2 are, respectively, the

coefficients of dispersion of prey and predator populations which depend on the gene

type variable x; ϑ and ω are, respectively, the control that we are looking for and

the region of gene type where it acts. Such a control can be viewed in our situa-

tion as the capture strategy and corresponds in general to an external supply or to

removal of individuals on the sub-domain ω ⊂⊂ (0, 1). Herein we emphasize that

since our aim is to steer the two populations on extinction and taking into account

the ecological relationship between prey and predator, it will be judicious that the

control acts on the prey population. Besides, y0 and p0 are, respectively, the initial

distributions of the prey and predator populations and
∫ A

0
β1(t, a, x)y(t, a, x) da and∫ A

0
β2(t, a, x)p(t, a, x) da are the distributions of the newborns of, respectively, prey

and predators. Finally, the two positive fixed constants T and A are, respectively,

the time of control and the maximal age of expectancy that we suppose here is

the same for both populations. A suitable and powerful condition will be required

later on T .

The population dynamics models in their different aspects attracted many authors

and were investigated from many sides (see for example [4], [10], [28], [29], [31], [32],

[33], [36], [43], [49], [50], [52]). Among those questions, we find the null controllability

or in general the controllability problems for age and space structured population

dynamics models which where studied intensively in the literature like [1], [2], [3], [7].

In [1], [2], the author tried to prove both the exact and approximate controllability for

a population dynamics model where the coefficient is a positive constant. More pre-
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cisely, to prove the first type of controllability, Ainseba used the mean of observability

inequality which is a consequence of Carleman estimates based on the computations

done in [37] for a non-degenerate heat equation. The second result of the same paper

is reached by using an argument of density of the reachable set of states at time T on

L2-space for an age class (0, a1), where a1 < A. Notice that the exact controllability is

equivalent to the null controllability of a linear model. Based on this rule, using again

the Carleman type inequalities and with the help of the characteristics method, the

workers in [3] proved under the assumptions of that the L∞-norm of the initial data

is small and the fact that the coefficient of dispersion is positive function for all point

of space domain, that their population model is exact controllable. Earlier in [7], a

result similar to the one in [1], [2] was shown but without the so-called Carleman esti-

mate. In fact, the method used here is a combination between a contradiction process

and the so-called Mizohata uniqueness theorem (see the reference for further details).

Nevertheless, the previous works were established with either a space independent

or a non-degenerate dispersion coefficient contrary to our paper and the works real-

ized in [6], [26], whose calculus are based on the papers investigating the degenerate

heat equation [18], [20], [21], [22], [23]. In fact, in [18] Cannarsa et al. showed weaker

properties than null controllability result for a nonlinear degenerate heat equation,

namely “regional null controllability” and “persistent regional null controllability”

(see also [23]). The degeneracy occurs on the left of the boundary of the space domain

and the nonlinearity involves a gradient term. Abstractly, the two major results were

derived firstly for an adequate linearized equation. Afterwards, they enchained their

proof with a tool invoking the notion of regional approximate controllability instead

of Carleman inequality. Finally, the purpose is achieved by a Schauder fixed point

technique. In [22], the authors assessed the two previous kinds of controllability of a

semi-linear degenerate heat equation in the case where the nonlinearity is not related

to the gradient term. Herein the employed approach was totally different and based

on the cut-off functions technique and the non-degeneracy of the studied equation on

a strip of the space domain which is somehow “far” from the point of degeneracy (see

also [21]). The weighted inequalities of Carleman estimates were well-exploited by

Boussaouira et al. in [9] and improved the results of the last three references. To be

more accurate, through a Caccioppoli and Hardy-Poincaré inequalities, a persistent

observability is gotten and then the global null controllability for a linear degenerate

heat equation and consequently for the semilinear case with the help of fixed point

technique. Let us stress that in [9], the authors treated only the divergence form.

But what happened if the degenerate operator is in the non-divergence form? For-

tunately, Cannarsa et al. in [20] confirmed that the result remains the same again

with the aid of the Carleman estimates dilemma. Staying on the same trend, we

advise the reader to take a glance on the items [19], [24].
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As we said before, the degenerate population dynamics model, as for the non-

degenerate case, follows the issues taken for the heat equation. In this context, [6],

[26] were the first to be concerned with such a problem, each of them used a different

technique and imposed also different conditions on time control T . Indeed, in [6] the

authors allowed the dispersion coefficient to depend on the variable x and verifies

k(0) = 0, i.e., the coefficient of dispersion k degenerates at 0 and they tried to obtain

the null controllability in such a situation with β ∈ L∞(Q) following [9] via a new

Carleman estimate for a suitable full adjoint system and afterwards his observability

inequality. However, the main controllability result of [6] was shown under the condi-

tion T > A as in [12] and this constitutes a restrictiveness on the “optimality” of the

control time T since it means, for example, that for a pest population whose maximal

age A may equal to many days (may be many months or years) we need much time to

bring the population to the zero equilibrium. In [39], precisely in Theorem 1.1, the au-

thors showed, with the help of spectral theory, an interesting result concerning the (4)

property for all the age classes (0, A) for one equation. Nevertheless, the theorem was

brought out under a restrictive condition on the control time T , namely it may be

greater than the age expectancy A, besides that the control ϑ is essentially bounded

in Q and these two assumptions will be improved in this paper (see Theorem 4.4 and

Remark 4.5) using the so-called Carleman estimates (see Section 3). In the same vo-

cation and to overcome the condition T > A, Maniar et al. in [26] suggested the fixed

point technique implemented in [56] and which requires that the fertility rate must

belong to C2(Q) and consists briefly in demonstrating in a first time the null control-

lability for an intermediate system with a fertility function f ∈ L2(QT ) instead of∫ A

0
β(t, a, x)y(t, a, x) da and in achieving the task via the Leray-Schauder theorem.

On the other hand, a huge amount of works are focused on the control problems

of (1), among them we find [5], [8], [60] and the references therein. In [5], a prey-

predator model is taken under a reaction-diffusion system describing interaction

between prey and predator populations. The goal is to look for a suitable control

supported on a small spatial subdomain which guarantees the stabilization of the

predator population to zero. The objective of [60] was different. Actually, an age-

dependent prey-predator system was considered and the authors proved the existence

and uniqueness of an optimal control (called also “optimal effor”) which gives the

maximal harvest via the study of the optimal harvesting problem associated to their

coupled model. Similarly to the case of one equation in the papers [1], [2], [3], [5], [7],

[60] assumed that their coefficients of diffusion are constants. This motivated Ait Ben

Hassi et al. in [8] to generalize these works, specially [5], and investigated a semilinear

parabolic cascade systems with two different diffusion coefficients allowed to depend

on the space variable and degenerate at the left boundary of the space domain.

Moreover, the purpose of this paper was to bring out the null controllability via a
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Carleman type inequality of the adjoint problem of the associated linearized system

using the results of [9] or [24] and with the help of the Schauder fixed point theorem.

Another interesting works in the trend of cascade degenerate parabolic systems

(without and with singularities) can be found also in the references [15], [38], [53].

But up till now and to our best knowledge, little is known about the global null

controllability question of the age-structured population dynamics coupled systems

both in degenerate and non-degenerate cases and the two only items which deal with

such a paradigm are the one of Boutaayamou et al. in [14] and the recent paper [27].

In [14], the authors assessed a degenerate cascade population dynamics model in a

non-divergence form and proved its null controllability like the one in (4) using the

classical procedure based on the observability inequality deduced from the weighted

estimates of Carleman kind (see more details in the introduction of [27]). Let us

stress that the results in [14] were obtained under continuity regularity and biological

assumptions on the natural fertility and mortality rates. Such hypotheses lead to

omit interesting mathematical computations and this steered Maniar et al. in [27] to

study (4) of a degenerate population cascade model governed with one control force in

a divergence form and with L∞-regularity on natural rates using some powerful tools

like Hardy-Poincaré and Caccioppoli’s inequalities, Gronwall lemma and semi-groups

theory, to get the observability inequality of the associated full-adjoint system which

leads to the desired goal. In this work, we address the control problem (4) related

to (1) and it will be a generalization of the results obtained in [6], [26] and [27].

More precisely, following the global strategy of [8] we expect in this contribution to

prove the global null controllability of the structured age and space Lotka-Volterra

system (1) with one control force and when

(2) T ∈ (0, δ)

with

(3) δ = min(δ1, δ2),

wherein δ1 and δ2 are fixed small enough and belong to (0, A) and are defined by the

intervals (0, δ1) and (0, δ1) which represent the age class of the prey newborns and

predator newborns, respectively. That is, we show that for all y0, p0 ∈ L2(QA) there

exists a control ϑ ∈ L2(Q) such that the associated solution of (1) verifies

(4)

{
y(T, a, x) = 0, a.e. in (δ, A)× (0, 1),

p(T, a, x) = 0, a.e. in (δ, A)× (0, 1).

It deserves to mention that the researched control ϑ depends on δ and the two

initial distributions y0 and p0. Let us return back to condition (2) imposed on the
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fixed time of control T . This assumption is required not only for a technical cause

but is also meaningful in the cost of controllability in the sense that we will be

able to drive a very wide age classes of both populations to extinction fastly and

quickly instead of waiting for months or years like in [6] (see also [13], [30] for similar

explanation) and this will be an advantage of the optimality of the control ϑ. By the

way, the null controllability property (4) does not allow to control the age class of

non-fertile individuals of prey and predator populations and this can be justified in

the mathematical standpoint (see the further proofs). Also, ecologically speaking, the

fact that all classes of age were not answered can find its justification, in our opinion,

as follows: the capture and the killing of the whole populations both prey and

predator in a given time can have a boomerang effects on the ecosystem surrounding

both populations. On the other hand, the paradigm (1) can model other prey-

predator systems but not in the context of both populations densities eradication. For

more precision, if one wants just to steer one of two species to extinction in finite time,

model (1) can be used for instance as a description of the“cottony cushion-vedalia

beetle” system, wherein the role of the control is to improve the number of vedalia

beetle to delete in plausible threshold, the cottony cushion or also in some cases

of host-paritoid systems, where the goal is to eliminate the parasitoid population.

These two examples are interested to kill the prey population, nevertheless the model

of cereal species (prey) and destructive fungal rust (predator) can be considered to

control and reduce considerably the predator density. In our situation, where we have

to catch and capture the populations densities of prey and predator, we give into

paragraph 2.2, as mentioned previously, two examples from two different scientific

specializations.

The result (4) is gotten under the conditions that all natural rates possess

L∞-regularity and this prevent us the use of the fixed point technique needed in

[26], [56]. Another striking difference with the cited references is that our prey-

predator model is a coupled dynamics system combining at the same time an age

and space structure and likewise the degeneracy occurring for the two different

dispersion coefficients k1 and k2 on the left-hand side of the gene type domain,

that is, ki(0) = 0, i = 1, 2, e.g. ki(x) = xα, where α can be taken in [0, 1) if we

impose the Dirichlet boundary conditions or in [1, 2) if we consider the Newmann

boundary conditions (see assumptions (5) beneath). In this case, we say that (1)

is a degenerate populations dynamics cascade system. Genetically speaking, such a

property is natural since it means that if each population is not of a gene type, it

cannot be transmitted to its offspring. Another remark to do is that our system is

a prey-predator model with Holling type I functional response of predator. Finally,

we highlight that this work can be generalized in the case of interior degeneracy,

i.e., k1(x0) = 0 and k2(y0) = 0 (e.g. k1(x) = |x − x0|α and k2(x) = |x − y0|α,
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α ∈ (0, 1)), where x0, y0 ∈ (0, 1) using the results proved in [13], which are based

essentially on the method applied for controllability problem of interior degenerate

parabolic equations [34] and can be extended to the non-smooth case in the light

of item [35].

The remainder of this paper is organized as follows: in Section 2, we give an

overview about some types of Holling functional responses of predators as well as

what can our system (1) model. Section 3 will be devoted to a discussion about

the well-posedness of (1) and establish a new Carleman estimate of an intermediate

adjoint system which helps us to provide an evidence of the main Carleman type

inequality of the associated full adjoint system. As an outcome of the latter, in

Section 4, an observability inequality is proved with the help of the semi-groups

theory, which allows us to obtain a non classical implicit formulas of the adjoint

system solution (see [13], [30] for a similar procedure). The obtained observability

inequality will play a crucial role is showing the main controllability result stated

in (4). We close this work with Section 5, which takes the form of an appendix,

wherein the proofs of some basic tools are provided.

2. An overview of some Holling types functional responses and

modelling of system (1)

As mentioned in the introduction, this section will be concerned with discussion

of the different Holling types functional responses and the modelling of (1). More

precisely, we give some references treating different questions of the prey-predator

models involving the different functional responses even if some of them do not belong

to the control problems just to amplify the importance of study of such coupled

systems. Concerning the modeling, we suggest two examples from different scientific

fields, namely ecology and bacteriology, and justify why we must look for a strength

control to govern the danger of the given populations on human in an optimal way

in the sense that the natural environment of prey and predator populations is not

destabilized.

2.1. An overview of some Holling types functional responses. In general,

the prey-predator systems called also Lotka-Volterra models describe different inter-

actions between two or more populations (maybe the competition can be included).

To have a more real relationship with ecological domains, Holling introduced earlier

what is known as a functional responses of predator, namely types I, II and III.

Another kinds can be also involved depending on the dynamics behavior of the con-

sumer (predator) and prey, like type IV and Ivlev’s functional responses, which will

be described concisely later on.
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Abstractly, a functional response can be defined as the relationship between an

individual’s rate of consumption (here we talk about a consumption of predator)

and food’s density (i.e., prey’s density). This amounts to saying that a functional

response reflects the capture ability of the predator to prey or in other words, the

functional response is introduced to describe the change in the rate of consumption

of prey by predator when the density of prey varies. In the plotting point of view,

each type of functional response I, II or III has a special characteristic. In fact,

type I, or the linear case of the predator response, is the situation when the plot of

the number of prey consumed (per unit of time) as a function of prey density shows a

linear relationship between the number of prey consumed and the prey density. The

Holling type II, called also concave upward response, is the case when the gradient of

the curve decreases monotonically with increasing prey density, probably saturating

at a constant value of prey consumption. For information, the Lotka-Volterra model

involving this functional response is known as the Rosenzweig-MacArthur model.

The type III response is known between the specialists of population dynamics as

the sigmoid response having a concave downward part at low food density. Actually,

for the Holling III, a sigmoidal behavior occurs when the gradient of the curve first

increases and then decreases with increasing prey density. This behavior is due to

the “learning behavior” in the predator population.

Now, we address some “ecological” interpretations of the three first Holling types

functional responses. The type I response is the result of simple assumption that the

probability of a given predator (usually the passive one) encountering prey in a fixed

time interval [0, Tt] within a fixed spatial region depends linearly on the prey density.

This can be expressed under the form Y = aTsX , where Y is the amount of prey

consumed by one predator,X is the prey density, Ts is the time available for searching

and a is a constant of proportionality, termed as the discovery rate (which is in our

case represented by the parameter b). In the absence of need to spend time handling

the prey, all the time can be used for searching, i.e., Ts = Tt, and we have the type I

response: assuming that the predators (having the density P ) act independently, in

time Tt the total amount of prey will be reduced by quantity aTtXP . In addition, if

each predator requires a handling time h for each individual prey that is consumed,

the time available for searching Ts is reduced: Ts = Tt−hY . Taking into account the
expression of Y in response type I, this leads to Y = aTtX − ahXY and this implies

Y = aTtX/(1 + ahX) and this is exactly the type II response. Therefore, in the

interval [0, Tt] the total amount of prey is reduced by the quantity aTtXP/(1 + ahX).

Let us point out that the term “ah” is dimensionless and can be interpreted as the

ability of a generic predator to kill and consume a generic prey and it possesses the

following characteristics times: “ah” is large if the handling time h is much longer

than the typical discovery time 1/a and “ah” is small in the opposite limit; in this case
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the type II response is reduced to type I. The Holling type III functional response can

be viewed as a generalization of type II and takes the form aTtX
k/(1 + ahXk) with

k > 1. In literature, this response is stimulated by supposing that learning behavior

occurs in the predator population with a consequent increase in the discovery rate

as more encounters with prey occurs (see [25] for more details). To see to wingspan

of the Lotka-Volterra models from many sides of investigations, we provide a non-

exhaustive list of some works dealing with crucial questions, which are discussed

widely. We begin with the system whose functional response is Holling I. One of the

important problems which takes a special attention, is the study of the steady states

and more accurately, in [40] a prey-predator system with nonlinear diffusion effects

is considered. Such nonlinear diffusion effects have an impact on a biological species

as well as their resource-biomass (i.e., the capacity of their environment). Herein,

the workers assume that the dispersive force and the diffusion depend on population

pressure from other species. The question of equilibrium of Lotka-Volterra systems

with Holling type I functional type response takes also a broad study theoretically

and numerically in [54], specially the interior one, as well as their dynamical behavior

such as the cyclic-fold, saddle-fold, homoclinic saddle connection. The Holling I

introduced here is from the range of the so-called Beddington-DeAngelis functional

response. Remaining in the type I, the authors in [44] tried to prove the existence

of an asymptotically stable pest-eradication for a prey-predator system modeled by

an ordinary differential equation, when the impulsive period is some critical value

less by implementing Floquet theorem and a small amplitude perturbation method.

Such a solution of eradication is somehow the mixing between a synthetic strategy

(insecticides or pesticides for instance) and biological control, e.g. the natural enemies

“killing” the dangerous pests (the prey here) without causing a serious damages to

the two population densities (see also [59] for a similar study).

Even the similarity appearance between their curves, functional responses of type I

and type II have two considerable differences: the first one was pointed out before

and it concerns the predator time handling of prey. Contrary to the Holling type II,

the time handling is missed for predators in type I, which means that the consumers

have a little difficulty capturing and assimilating prey but they switch their time

to other activities once their ingestion rate is great enough to satisfy their ener-

getic needs. The second difference is in the dynamical behavior. In fact, while the

Holling type II displays the local Hopf bifurcation, the Holling type I makes clear a

global cyclic-fold bifurcation. These differences between Holling I and Holling II, in

particular the first, lead a numerous works to take into account the predator time

handling in their different models. We emphasize here that Holling II possesses a

generalization, which is exactly Beddington-DeAngelis functional response cited pre-

viously. This functional takes the form ΦBD(N,P ) = cN/(e+N + h1P ), where N
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and P should be the densities of prey and predator, while e stands for the half-

saturation constant, i.e., the amount of prey at which the per capita predation rate

is half of its maximum c and h1 is a positive constant (see [54] for further details

about this functional response). Among the works interested in Lotka-Volterra with

Holling type II we cite for instance [48], [55]. In [55], a statistical study was pre-

sented to see if one can replace Holling type II by functional response from the type

of Beddington-DeAngelis, Crowly-Martin or Hassel-Valey model for a divers cases

related to the predator feeding rate. Peng et al. in [48] were concerned with the ques-

tion of the steady-states of some reaction-diffusion models and they established the

non-existence of a non-constant equilibrium solutions of two prey-predator systems

with Holling II when the interaction between the two populations is strong as they

claimed and where the constant measuring the ability of generic predator to kill and

consume generic prey is equal to 1.

By the way, a wide classical ecological literature assumed that mathematical mod-

els with Holling type II (or in general the non-sigmoid) functional response involving

a diffusion terms match thoroughly in description of the pattern formation of a

phytoplankton-zooplankton system. The affirmative answers are basically related to

experiments realized in laboratories on zooplankton feeding, which are carried out in

small-sized containers or bottles. But if one wants to investigate zooplankton grazing

control in real ecosystems (may be the oceans), it will be more relevant to introduce

the Holling type III response as stated in the introduction of [46]. Actually, the

main focus of [46] was to set a generic model which explains the observed alteration

of type between the different functional responses of plankton systems and gives,

as he presumed, an evidence that for such a system the Holling type III is more

adequate than other kinds. In the vocation of well-posedness, the global existence,

uniqueness and the boundedness of a strong solution of partial differential equation

with a special case of Holling III was brought out in [11]. This strong solution was

approximated numerically using a spectral method and a Runge-Kutta time solver.

The modelling using the Holling type III does not stop here, it can play also a crucial

role to model the entomophagous species (see [16] for more details).

But when a functional response describes the interaction between predator and

prey when the prey exhibits group defense (like buffalo) or has ability to hide

itself (like chameleon), then we talk about the Holling type IV functional re-

sponse or the so-called Monod-Haldane function. This function takes the form

mX/(γ + b1X +X2), where X is the prey density, m > 0 is the complete satu-

ration, whereas γ and b1 denote, respectively, the half-saturation constant and b1
the prey environmental carrying capacity. A space independent system of Lotka-

Volterra kind using type IV was under consideration in [45] and the principal purpose

of this item is to assess the impact of the harvesting on equilibria of both prey and
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predator populations. The quandaries used here are, as the authors cited, based on

the dynamical theory combined with a technique of Hopf bifurcation. A numerical

analysis is provided to compare the dependence of the dynamical behavior on the

harvesting effort for the prey between Holling types III and IV (see the reference

for more information). Of Course, there is a difference between the first three types

of functional responses and the fourth one is that the latter is non-monotonic for

X > 0, contrary to type I, II and III.

We close this overview by the so-called Ivlev functional response which can be

implicated to ecological applicabilities such as host-parasitoid system and animal

coat pattern. The Ivlev response is classified as a Holling type II according to [57]

and the references therein and its expression is given by g(X) = 1−e−λ1X , wherein λ1
is the efficiency of predator capture of prey and X is the density of prey. For an

investigation of a limit cycle question of a two-dimensional prey-predator system

with the response g, one can take a glance in [42].

2.2. Modelling of system (1). In this paragraph, we try to answer to the fol-

lowing question: what can our system (1) model? Before responding, we recall, as

mentioned in the abstract and introduction, that (1) is an age and space structured

Lotka-Volterra with the Holling type I functional response. This choice of response

is not random because in our knowledge it has an effect to stabilize the densities of

the prey and predator populations.

To deal with our question, we must take into account that the two populations

must be deleted with a suitable control, either industrial or biological which consists

in growing up a common natural enemy’s density without passing a given threshold.

A close adaptation to this situation are two examples: the first one belongs to the

ecological field and concerns the mosquito-spiders, when the first population (prey)

must be killed since it is a cause of many harmful diseases which can lead to the death

of human, like the virus named West Nile Virus (in literature called briefly WNV).

The consumer, which are the spiders here have to be extincted because some kinds

of them are very venomous and can kill human, like the Funnel-Web spiders; we cite

for instance the Atrax-robustus and A. formidabilis.

The second example comes from bacteriology field, namely “Escherichia coli-

Bdellovibrio” system. It is well-known that Escherichia coli (E. coli) is a bacte-

ria which normally lives in the intestines of people and animals and most of them

are harmless and actually are an important part of healthy human intestinal tracts.

However, some of them become very dangerous for human life when one consumes

for example an undercooked meat; we mean here E. coli O157:H7. This type of

E. coli bacteria produces a toxin that causes hemolytic uremic syndrome (HUS), a

disease that can steer to a permanent kidney damage among very young and old
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people and even can kill them (see [41]). In general, the pathogenic E. coli can be

split into six pathotypes which can cause diarrhea: the shiga toxin-producing E. coli,

enterotoxigenic E. coli, enteropathogenic E. coli, enteroaggregative E. coli, enteroin-

vasive E. coli and diffusely adherent E. coli. On the other hand, we must be careful

on the use of the powerful strategy to stop emergence of these toxic bacteria in the

intestines like enhancing the amount of bdellovibrio bacteriovorus since this latter

is a predator of the so-called “gram-negative bacteria” specially the harmless and

healthy E. coli. Thus, it turns also out to control this bacterial predator.

3. Well-posedness and Carleman estimates

3.1. Well-posedness result. For this section and for the sequel, we assume that

the dispersion coefficients ki, i = 1, 2, satisfy the hypotheses

(5)

{
ki ∈ C([0, 1]) ∩ C1((0, 1]), ki > 0 in (0, 1] and ki(0) = 0,

∃ γ ∈ [0, 1): xk′i(x) 6 γki(x), x ∈ (0, 1].

The last condition on ki means in the case of ki(x) = xαi that 0 6 αi < 1. Similarly,

all results of this paper can be obtained also in the case of 1 6 αi < 2 taking, instead

of Dirichlet conditions on x = 0, the Newmann condition (ki(x)ux)x(0) = 0. At this

level, we emphasize that our current analysis of the null controllability property (4) of

paradigm (1) with the Dirichlet boundary condition on x = 0 (i.e., the weakly degen-

erate case) is similar to the study with the Newmann boundary condition on x = 0

(i.e., the strongly degenerate case). However, there is a slight difference between the

two situations which is the only one and arises in the proof of Proposition 3.4 (see

the sketch beneath).

On the other hand, we assume that the rates µ1, µ2, b, µ3, β1 and β2 verify

(6)

{
µ1, µ2, b, µ3, β1, β2 ∈ L∞(Q),

µ1, µ2, b, µ3, β1, β2 > 0 a.e. in Q.

Here, we open parentheses to say that contrary to some references like [1], [2], [6], we

do not require the mortality rates to satisfy
∫ A

0 µi(t − s, A − s, x) ds = ∞, i = 1, 2,

since these conditions do not play any role in the well-posedness of the result or in

the null controllability computations.

In summary, to justify that our model (1) is well-posed we rewrite it under an ab-

stract Cauchy problem, then we combine some references, namely [9], [17], [24], [30],

[47], [51], [58], to get our result. This result needs the introduction of a pertinent
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framework represented by a weighted Sobolev spaces defined for i = 1, 2 by

(7)





H1
ki
(0, 1) = {u ∈ L2(0, 1): u is abs. cont. in [0, 1] :

√
kiux ∈ L2(0, 1), u(1) = u(0) = 0},

H2
ki
(0, 1) = {u ∈ H1

ki
(0, 1): kiux ∈ H1(0, 1)},

endowed, respectively, with the norms

{ ‖u‖2
H1

ki
(0,1)

= ‖u‖2L2(0,1) +
∥∥√kiux

∥∥2
L2(0,1)

, u ∈ H1
ki
(0, 1),

‖u‖2
H2

ki
(0,1)

= ‖u‖2
H1

ki
(0,1)

+ ‖(kiux)x‖2L2(0,1), u ∈ H2
ki
(0, 1),

with i = 1, 2 (see [9], [17], [24] or the references therein for the properties of such a

spaces).

Now, put for i = 1, 2, Aiθ = (ki(x)θx)x with ki verifying (5). The domains of the

operators Ai, i = 1, 2, are exactly H2
ki
(0, 1), i = 1, 2, given in (7) and it is well-known

that such an operators are closed, self-adjoint and negative with dense domains in

L2(0, 1), which implies that they generate a C0-semigroups in L2(0, 1) (see [9], [17],

[24] for precise proofs).

On the other hand, consider the operators Ai, i = 1, 2, defined by

(8)





Aiθ = −∂θ
∂a

+Aiθ ∀ θ ∈ D(Ai),

D(Ai) =
{
u ∈ L2(0, A;D(Ai));

∂u

∂a
∈ L2(0, A;H1

ki
(0, 1));

u(0, x) =

∫ A

0

βi(a, x)u(a, x) da
}
.

From [58], Theorem 4, page 23 or [58], Theorem 5, page 26 and since (Ai, D(Ai)),

i = 1, 2, are infinitesimal generators of C0-semigroups as mentioned before, one can
conclude that (Ai, D(Ai)), i = 1, 2, generate C0-semigroups in L2(QA). In this

context, we advise the reader to take a glance for a similar discussion of the well-

posedness result into [30], Theorem 2.1.

Adapting these notations, the abstract Cauchy problem associated to (1) is for-

mulated as

(9) X ′(t) = (A+B(t))X(t) + F (X(t)) + f(t), X(0) =

(
y0

p0

)
,

where

X(t) =

(
y(t)

p(t)

)
, A =

(A1 0

0 A2

)
, D(A) = D(A1)×D(A2),

B(t) =

(
Mµ1

0

0 Mµ2

)
, F (X(t)) =

(
Mb

Mµ3

)
, f(t) =

(
ϑχω

0

)

361



with the generators Ai, i = 1, 2, defined by (8),

Mµi
w = −µiw, i = 1, 2, Mb(y, p) = −byp and Mµ3

(y, p) = µ3yp.

As we can see, the operator (A, D(A)) is a diagonal matrix of generators of C0-
semigroups; as a consequence, (A, D(A)) is also a generator of a C0-semigroup in
L2(Q). On the other hand, the operator B(t) can be viewed as a bounded pertur-

bation of A so that one has D(A+B(t)) = D(A).

Gathering all these arguments with the results in [47], Lemma 3.1 and in [51],

Theorem 2.1 we somehow justify our theorem of well-posedness:

Theorem 3.1. The following points hold:

(1) The operator (A+B(t), D(A)) generates a C0-semigroup in L2(Q).

(2) Under assumptions (5) and (6) and for all ϑ ∈ L2(Q) and (y0, p0) ∈ D(A1) ×
D(A2), system (9) admits a unique mild solution X belonging to C([0, T ];

D(A1)×D(A2)) and verifies the integral equation

(10) ∀ t ∈ [0, T ], X(t) = e(A+B)tX0 +

∫ t

0

e(A+B)(t−s)(F (X(s)) + f(s)) ds.

Before to continuing, we shall make the following remark:

R em a r k 3.2. Since D(Ai), i = 1, 2, are dense in L2(QA), Theorem 3.1 can

be extended to the space L2(QA) for the initial data (y0, p0) as well as our null

controllability result (4).

3.2. Carleman inequality results. In this paragraph, we focus on the so-called

Carleman estimates. Generally speaking, Carleman estimates are a priori estimates

for the solutions of the adjoint systems and their derivatives. The first result of

this section concerns the adjoint system of the Lotka-Volterra system (1). Classi-

cally, the adjoint system is derived by multiplying the governing equations of the

direct problem by Lagrange multipliers which, means that the adjoint state is the

Lagrange multiplier for the studied PDE. To obtain this model, we afterwards inte-

grate over the domains of the existing variables (herein, the time, the gene type and

the age variables). Note that it is not necessary to multiply the boundary and the

initial conditions of the direct problem by Lagrange multipliers because they become

identically null.

In our case, the associated adjoint model of (1) is stated in the following proposi-

tion.
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Proposition 3.3. The adjoint system of (1) is given by

∂u

∂t
+
∂u

∂a
+ (k1(x)ux)x − µ1(t, a, x)u − b(t, a, x)up(11)

= − β1u(t, 0, x) in Q,

∂v

∂t
+
∂v

∂a
+ (k2(x)vx)x − µ2(t, a, x)v + µ3(t, a, x)vy

= − β2v(t, 0, x) in Q,

u(t, a, 1) = u(t, a, 0) = v(t, a, 1) = v(t, a, 0) = 0 on (0, T )× (0, A),

u(T, a, x) = uT (a, x); v(T, a, x) = vT (a, x) in QA,

u(t, A, x) = v(t, A, x) = 0 in QT ,

where (y, p) is the solution of (1) and u and v stand, respectively, for the adjoint

variables of y and p.

P r o o f. Firstly, we define the Lagrangian L related to (1) by

(12) L(y, p, u, v, ϑ, u0, v0)

= J(y, p, ϑ)

+

∫

Q

u
(∂y
∂t

+
∂y

∂a
− (k1(x)yx)x + µ1(t, a, x)y + b(t, a, x)yp− ϑχω

)
dt da dx

+

∫

Q

v
(∂p
∂t

+
∂p

∂a
− (k2(x)px)x + µ2(t, a, x)p− µ3(t, a, x)yp

)
dt da dx

+

∫

QA

u0(y(0)− y0) da dx+

∫

QA

v0(p(0)− p0) da dx,

where the functional J is given by

J(y, p, ϑ) =
1

2

∫ 1

0

∫ A

δ

(y2(T, a, x) + p2(T, a, x)) da dx+
1

2

∫

Q

ϑ2χω dt da dx.

Now, put

I1 =

∫

Q

u
(∂y
∂t

+
∂y

∂a
− (k1(x)yx)x + µ1(t, a, x)y + b(t, a, x)yp

)
dt da dx

and

I2 =

∫

Q

v
(∂p
∂t

+
∂p

∂a
− (k2(x)px)x + µ2(t, a, x)p− µ3(t, a, x)yp

)
dt da dx.
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With the aid of the integration by parts technique, taking into account the first

newborns equation of (1) and assuming that

(13)

{
u(t, A, x) = v(t, A, x) = 0 in (0, T )× (0, 1),

u(t, a, 0) = u(t, a, 1) = v(t, a, 0) = v(t, a, 1) = 0 on (0, T )× (0, A),

we obtain

I1 =

∫

QA

u(T, a, x)y(T, a, x) da dx(14)

−
∫

QA

u(0, a, x)y(0, a, x) da dx

−
∫

Q

y
(∂u
∂t

+
∂u

∂a
+ (k1ux)x − µ1u+ β1u(t, 0, x)− bup

)
dt da dx,

and

I2 =

∫

QA

v(T, a, x)p(T, a, x) da dx(15)

−
∫

QA

v(0, a, x)p(0, a, x) da dx

−
∫

Q

p
(∂v
∂t

+
∂v

∂a
+ (k2vx)x − µ2v + β2v(t, 0, x) + µ3uy

)
dt da dx.

Combining (12) with (14) and (15) we get the following formula of L:

L(y, p, u, v, ϑ, u0, v0)

=
1

2

∫

QA

(y2(T, a, x) + p2(T, a, x)) da dx

+
1

2

∫

Q

ϑ2χω dt da dx−
∫

Q

ϑuχω dt da dx

+

∫

QA

(u0(y(0)− y0) + v0(p(0)− p0)) da dx

+

∫

QA

u(T, a, x)y(T, a, x) da dx−
∫

QA

u(0, a, x)y(0, a, x) da dx

−
∫

Q

y
(∂u
∂t

+
∂u

∂a
+ (k1ux)x − µ1u+ β1u(t, 0, x)− bup

)
dt da dx

+

∫

QA

v(T, a, x)p(T, a, x) da dx−
∫

QA

v(0, a, x)p(0, a, x) da dx

−
∫

Q

p
(∂v
∂t

+
∂v

∂a
+ (k2vx)x − µ2v + β2v(t, 0, x) + µ3uy

)
dt da dx.
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The above expression of L can be rewritten as

L(y, p, u, v, ϑ, u0, v0)(16)

=

∫

QA

(1
2
y2(T, a, x)χ(δ,A) + u(T, a, x)y(T, a, x)

)
da dx

+

∫

QA

(1
2
p2(T, a, x)χ(δ,A) + v(T, a, x)p(T, a, x)

)
da dx

+

∫

Q

(1
2
ϑ2χω − ϑuχω

)
dt da dx+

∫

QA

y(0)(u0 − u(0, a, x)) da dx

−
∫

QA

u0y0 da dx+

∫

QA

p(0)(v0 − v(0, a, x)) da dx−
∫

QA

v0p0 da dx

−
∫

Q

y
(∂u
∂t

+
∂u

∂a
+ (k1ux)x − µ1u+ β1u(t, 0, x)− bup

)
dt da dx

−
∫

Q

p
(∂v
∂t

+
∂v

∂a
+ (k2vx)x − µ2v + β2v(t, 0, x) + µ3uy

)
dt da dx.

Thus, for any h ∈ L2(Q), one has dLh = ∂L
∂y h+

∂L
∂p h+

∂L
∂uh+

∂L
∂v h+

∂L
∂u0

h+ ∂L
∂v0

h+ ∂L
∂ϑh.

Keeping in mind that ∂L
∂u and

∂L
∂u0
are, respectively, the main equation and the

initial condition satisfied by y, as well as ∂L
∂v and

∂L
∂v0
are, respectively, the main

equation and the initial condition satisfied by p, dLh = ∂L
∂y h+ ∂L

∂p h+ ∂L
∂ϑh.

Now, to reach an optimum of L, one must resolve the equation dLh = 0 for

all h ∈ L2(Q). Generally, in our situation we will impose sufficient conditions like
∂L
∂y h = ∂L

∂p h = ∂L
∂ϑh = 0.

Actually, to attempt the formula of the adjoint system (11), we just need to have
∂L
∂y h = ∂L

∂p h = 0. The third equation will be used later to express the control ϑ.

On the other hand, recall that for all h ∈ L2(Q) we have

∂L

∂y
h =

∫

QA

(y(T, a, x)χ(δ,A) + u(T, a, x))h(T, a, x) da dx

+

∫

QA

(u0 − u(0, a, x))h(0, a, x) da dx

−
∫

Q

h
(∂u
∂t

+
∂u

∂a
+ (k1ux)x − µ1u+ β1u(t, 0, x)− bup

)
dt da dx

and

∂L

∂p
h =

∫

QA

(p(T, a, x)χ(δ,A) + v(T, a, x))h(T, a, x) da dx

+

∫

QA

(v0 − v(0, a, x))h(0, a, x) da dx

−
∫

Q

h
(∂v
∂t

+
∂v

∂a
+ (k2vx)x − µ2v + β2v(t, 0, x) + µ3vy

)
dt da dx.
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Sufficient conditions which can be applied to get both ∂L
∂y h = ∂L

∂p h = 0 are, re-

spectively,

(17)





u(T, a, x) = −y(T, a, x)χ(δ,A) in (0, A)× (0, 1),

u(0, a, x) = u0(a, x) in (0, A)× (0, 1),

∂u

∂t
+
∂u

∂a
+ (k1ux)x − µ1u− bup = −β1u(t, 0, x) in Q,

and

(18)





v(T, a, x) = −p(T, a, x)χ(δ,A) in (0, A)× (0, 1),

v(0, a, x) = v0(a, x) in (0, A)× (0, 1),

∂v

∂t
+
∂v

∂a
+ (k2vx)x − µ2v + µ3vy = −β2v(t, 0, x) in Q.

Finally, the thesis follows gathering (13), (17) and (18) with

uT (a, x) = −y(T, a, x)χ(δ,A)(a) in (0, A)× (0, 1)

and

vT (a, x) = −p(T, a, x)χ(δ,A)(a) in (0, A)× (0, 1).

�

For the strongly degenerate case, we follow the same computations to ob-

tain the adjoint system with the Newmann boundary condition at x = 0 (i.e.,

(ki(x)ux)x(0) = 0, i = 1, 2) instead of Dirichlet boundary conditions at x = 0 in

system (11).

Traditionally, the proof of the Carleman estimates of the full adjoint system (11)

is based tightly on the choice of the so-called weight functions. In our case, these

functions are set for all (t, a, x) ∈ Q as

(19)





ϕi := Θ(t, a)ψi(x), i = 1, 2,

Θ(t, a) :=
1

(t(T − t))4a4
,

ψi(x) := λi

(∫ x

0

r

ki(r)
dr − di

)
, i = 1, 2,

ϕ(t, a, x) := Θ(t, a)eκσ(x),

Φ(t, a, x) := Θ(t, a)Ψ(x),

Ψ(x) := eκσ(x) − e2κ‖σ‖∞ ,

where σ is the function given by

(20)





σ ∈ C2([0, 1]),

σ(x) > 0 in (0, 1), σ(0) = σ(1) = 0,

σx(x) 6= 0 in [0, 1] \ ω0,
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where ω0 ⊂⊂ ω is an open subset. The existence of σ is proved in [37], Lemma 1.1

using a device of differential geometry. λi, di and κ are supposed to verify the

assumptions

(21)





d1 >
1

k1(1)(2 − γ)
,

λ1
λ2

>
d2

d1 −
∫ 1

0 rk
−1
1 (r) dr

,

κ >
4 ln(2)

‖σ‖∞
,

d2 >
5

k2(1)(2 − γ)
,

with

λ2 ∈ I =
[k2(1)(2− γ)(e2κ‖σ‖∞ − 1)

d2k2(1)(2 − γ)− 1
,
4(e2κ‖σ‖∞ − eκ‖σ‖∞)

3d2

)
,

which can be shown nonempty (see the proof of Lemma 5.3 in Appendix). On the

other hand, in the light of the first and the fourth conditions in (21) on d1 and d2, one

can observe that ψi(x) < 0, i = 1, 2, for all x ∈ [0, 1] and Θ(t, a) → ∞ as t→ 0+, T−

and a→ 0+.

The first step being our full ω-Carleman estimate is to show an intermediate

Carleman type inequality stated in Theorem 3.9 beneath. To this end, one needs two

basic propositions concerned with Carleman type inequalities in both the degenerate

and non-degenerate case for one equation model. The first one is:

Proposition 3.4. Consider the following system with h ∈ L2(Q), µ ∈ L∞(Q)

and k verifying (5):

∂u

∂t
+
∂u

∂a
+ (k(x)ux)x − µ(t, a, x)u = h in Q,(22)

u(t, a, 1) = u(t, a, 0) = 0 on (0, T )× (0, A),

u(T, a, x) = uT (a, x) in QA,

u(t, A, x) = 0 in QT .

Then there exist two positive constants C and s0 such that every solution u of (22)

satisfies for all s > s0 the inequality

∫

Q

s3Θ3 x2

k(x)
u2e2sϕ dt da dx+

∫

Q

sΘk(x)u2xe
2sϕ dt da dx(23)

6 C

(∫

Q

h2e2sϕ dt da dx+ sk(1)

∫ A

0

∫ T

0

Θux(t, a, 1)
2e2sϕ(t,a,1) dt da

)
,
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where ϕ and Θ are the weight functions defined by

(24)





ϕ := Θ(t, a)ψ(x),

Θ(t, a) :=
1

(t(T − t))4a4
,

ψ(x) := c1

(∫ x

0

r

k(r)
dr − c2

)
,

with c2 > 1/(k(1)(2− γ)), c1 > 0 and γ being the parameter defined by (5).

P r o o f. For the proof of Proposition 3.4, we refer the reader to [26], Propo-

sition 3.1. By the way, if we want to study the strong degenerate case, i.e., the

dispersion coefficient k verifies instead of (5), the assumptions

(25)

{
k ∈W 1,∞([0, 1]), k > 0 in (0, 1] and k(0) = 0,

∃ γ5 ∈ [1, 2): xk′(x) 6 γ5k(x), x ∈ (0, 1].

In this case and as is mentioned before, we must replace the Dirichlet boundary

condition on x = 0 in system (22) by the Newmann boundary condition on x = 0

given by (k(x)ux)x(0) = 0. On the other hand, if one takes a glance on the proof

of [26], Proposition 3.1, we see that the procedure is similar for the weakly and

strongly degenerate cases except the integral denoted I33 given by

(26) I33 = −2s3
∫

Q

(k(x)ϕxνx)(ϕ
2
xk(x)ν) dt da dx,

where ϕ is given in (24) and ν = esϕu. Since (k(x))2(ϕx)
3 = (c1)

3(Θ)3x3/k(x), we

deduce from (26) that

I33 = − s3(c1)
3

∫

Q

(Θ)3
x3

k(x)

dν2

dx
dt da dx

= − s3(c1)
3

∫ A

0

∫ T

0

(Θ)3
[ x3

k(x)
ν2

]1
0
dt da

+ s3(c1)
3

∫

Q

(Θ)3
x2(3k(x)− xk′(x))

k2(x)
ν2 dt da dx.

Taking into account that ν(t, a, 1) = 0, a.e. in (0, T )× (0, A), we infer that

I33 = − s3(c1)
3

∫ A

0

∫ T

0

(Θ)3
[ x3

k(x)
ν2

]
x=0

dt da(27)

+ s3(c1)
3

∫

Q

(Θ)3
x2(3k(x)− xk′(x))

k2(x)
ν2 dt da dx.
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In the light of the hypotheses (25), the function x 7→ xγ5/k(x) is nondecreasing

in (0, 1). Therefore,

∀x ∈ (0, 1), 0 <
xγ5

k(x)
6

1

k(1)
.

Consequently,

∀x ∈ (0, 1), 0 <
x3

k(x)
6
x3−γ5

k(1)
.

Subsequently,

∀x ∈ (0, 1), 0 <
x3

k(x)
ν2 6

x3−γ5

k(1)
ν2.

Using (25) again, we conclude that lim
x→0+

x3−γ5 = 0. Hence,

lim
x→0+

x3−γ5

k(1)
ν2(·, ·, x) = 0,

which involves that

lim
x→0+

x3

k(x)
ν2(·, ·, x) = 0.

Finally, with the help of (27) we deduce that

I33 = s3(c1)
3

∫

Q

(Θ)3
x2(3k(x)− xk′(x))

k2(x)
ν2 dt da dx.

The remainder of the proof of [26], Proposition 3.1 can be treated similarly as for

the weakly degenerate case. �

Proposition 3.5. Let us consider the system

∂z

∂t
+
∂z

∂a
+ (k(x)zx)x − µ(t, a, x)z = h in Q1,(28)

z(t, a, b1) = z(t, a, b2) = 0 on (0, T )× (0, A),

where Q1 = (0, T )× (0, A) × (b1, b2), (b1, b2) ⊂ (0, 1), h ∈ L2(Q), k ∈ C1([0, 1]) is a

positive function and µ ∈ L∞(Q1). Then there exist two positive constants C and s0
such that for any s > s0, the solution z of (28) verifies the estimate

∫

Q1

(s3ϕ3z2 + sϕz2x)e
2sΦ dt da dx(29)

6 C

(∫

Q1

h2e2sΦ dt da dx+

∫

ω

∫ A

0

∫ T

0

s3ϕ3z2e2sΦ dt da dx

)
,

where the weight functions ϕ, Θ and Φ are defined by (19) and σ by (20).
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For the proof of Proposition 3.5, careful computations allow us to adapt the same

procedure of [1], Lemma 2.1 to show (29) in the case where k is a positive general

non-degenerate coefficient, with our weight function Θ given by (19) and the source

term h. Besides the two last Propositions 3.4 and 3.5, we must bring out another

important result.

Lemma 3.6. Under assumptions (21), the functions ϕ1, ϕ2 and Φ stated in (19)

satisfy the following inequalities:

(30)





ϕ1 6 ϕ2,

4

3
Φ < ϕ2 6 Φ.

P r o o f. By the definitions of ϕi, i = 1, 2, and Φ and taking into account that Θ

is positive, showing the results of (30) is equivalent to showing

(31)





ψ1 6 ψ2,

4

3
Ψ < ψ2 6 Ψ.

The first inequality in (31) is assured by the second assumption in (21), while the

second one is deduced from λ2 ∈ I and this completes the proof. �

Due to the nontrivial form of the adjoint system (11) and to ensure a “good”

calculus of its Carleman estimates and then the associated observability inequality,

the forthcoming notion, which we must introduce, is mollification. Abstractly, a

mollification of a given function f is an operator of convolution of f and a C∞-

function called “a mollifier”, whose support is exactly the closed ball of center 0

and radius ε̃ > 0 small enough. We recall abstractly and without evidence some

characteristics of a mollification.

Firstly, we call “a mollifier” in Rn, n > 1, each function ψ3 satisfying the following

properties:

(32)





Supp(ψ3) = B(0, 1),

ψ3(X) > 0 ∀X ∈ R
n,∫

Rn

ψ3(X) dX = 1,

where B(0, 1) stands for the closed ball of center 0 and radius 1. Many examples of

functions verifying (32) can be built but one of the most popular mollifiers is given by

(33) ψ3(X) =





1

M̃
e−1/(1−|X|2) if |X | < 1,

0 if |X | > 1.
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Here, M̃ =
∫
|X|<1

e−1/(1−|X|2) dX and |·| denotes one of the usual norms of Rn (for

example, take the euclidian norm).

Now, put for all X ∈ R
n, the function

(34) ψ3,ε̃(X) = ε̃−nψ3

(X
ε̃

)

with ε̃ > 0 small enough and ψ3 being the mollifier of (33). Usually and according

to the properties of mollifiers, it is well-known that lim
ε→0

ψ3,ε̃(X) = δ(X), where δ is

exactly the Dirac’s function.

Using expression (34), we have the following definition.

Definition 3.7. Let G ⊂ R
n be an open set and f ∈ L1

loc(G). We call the

mollification of f denoted by fε̃ the convolution operator ψ3,ε̃ ∗ f given by

(35) ∀X ∈ G, fε̃(X) = ψ3,ε̃ ∗ f(X) =

∫

G

ψ3,ε̃(X − r)f(r) dr.

It is worth pointing out that if G ⊂ R
n is an open set, one can extend by the

value 0 any function f ∈ Lq(G), q ∈ [1,∞) (or f ∈ C∞
c (G)) to Lq(Rn), q ∈ [1,∞)

(or f ∈ C∞
c (Rn)).

The definition of mollification (35) generates some interesting and useful properties

for the sequel, which are listed in the following proposition.

Proposition 3.8. Let G ⊂ R
n be an open set.

(1) If f ∈ Lq(G), q ∈ [1,∞], then fε̃ ∈ C∞(G) and ‖fε̃‖Lq(G) 6 ‖f‖Lq(G);

(2) If f ∈ C0(G), then fε̃ → f as ε̃→ 0 uniformly on G; i.e.,

lim
ε̃→0

sup
X∈G

|fε̃(X)− f(X)| = 0;

(3) If f ∈ Lq(G), q ∈ [1,∞[, then lim
ε̃→0

‖fε̃ − f‖Lq(G) = 0.

At the end, we recall that the space C∞(G) with G ⊂ R
n is an open subset

endowed with the topology of the semi-norm

(36) ∀ f ∈ C∞(G), pK,j(f) = sup
X∈K,|m|6j

|∂mf(X)|,
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herein, m = (m1,m2, . . . ,mn) is a multi-index, |m| :=
n∑

i=1

mi, K ⊂ G is a compact

subset and j ∈ N arbitrarily large. For the sake of simplicity we will denote this

semi-norm by ‖·‖j,K . This principal of mollification will be applied in our case via
two situations:

The first one is when n = 3, G = Q = (0, T ) × (0, A) × (0, 1) and q = 2. Since

the solution (y, p) ∈ L2(Q)× L2(Q). Thus, if X and r are vectors from Q, then the

mollifications associated, respectively, to y and p will be defined for all X ∈ Q by

(37)

{
yε̃(X) =

∫
Q ψ3,ε̃(X − r)y(r) dr,

pε̃(X) =
∫
Q
ψ3,ε̃(X − r)p(r) dr,

where ψ3,ε̃ is defined by (34). Besides, since yε̃ and pε̃ are C
∞(Q)-functions,

through (36) we have

(38)





‖yε̃‖j,K := sup
(t,a,x)∈K,|m|6j

|∂myε̃(t, a, x)|,

‖pε̃‖j,K := sup
(t,a,x)∈K,|m|6j

|∂mpε̃(t, a, x)|,

where K ⊂ Q is a compact subset, j is still an integer arbitrarily large and m is the

multi-index such that |m| =
3∑

i=1

mi.

The second one is when n = 2, G = QT = (0, T )× (0, 1) and q = 2. In fact, the

quantities y(t, 0, x) and p(t, 0, x) for all (t, x) ∈ QT given in the renewal equations

of (1) belong to L2(QT ) because (y, p) ∈ L2(Q) × L2(Q) and the fertility rates βi,

i = 1, 2, are in L∞(Q). The associated mollifications of y(t, 0, x) and p(t, 0, x) are

exactly the following convolution operators on QT :

(39)

{
gy,ε̃(t, x) := yε̃(t, 0, x) = ψ3,ε̃ ∗ y(t, 0, x), (t, x) ∈ QT ,

gp,ε̃(t, x) := pε̃(t, 0, x) = ψ3,ε̃ ∗ p(t, 0, x), (t, x) ∈ QT .

Like the first situation, since gy,ε̃ and gp,ε̃ are C
∞(QT )-functions, we have

(40)





‖gy,ε̃‖j,K := sup
(t,x)∈K,|m|6j

|∂myε̃(t, 0, x)|,

‖gp,ε̃‖j,K := sup
(t,x)∈K,|m|6j

|∂mpε̃(t, 0, x)|,

where K ⊂ QT is a compact subset, j is still an integer arbitrarily large and m is

the multi-index such that |m| =
2∑

i=1

mi.

Henceforth, it will be suitable and pertinent, in the light of the first point of Propo-

sition 3.8 (especially its first part) that the study of Carleman estimates and then
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observability inequality will be focused in a first time on the following intermediate

adjoint system instead of (11):

∂u

∂t
+
∂u

∂a
+ (k1(x)ux)x − µ1(t, a, x)u − b(t, a, x)upε̃ = −β1u(t, 0, x) in Q,(41)

∂v

∂t
+
∂v

∂a
+ (k2(x)vx)x − µ2(t, a, x)v + µ3(t, a, x)vyε̃ = −β2v(t, 0, x) in Q,

u(t, a, 1) = u(t, a, 0) = v(t, a, 1) = v(t, a, 0) = 0 on (0, T )× (0, A),

u(T, a, x) = uT (a, x); v(T, a, x) = vT (a, x) in QA,

u(t, A, x) = v(t, A, x) = 0 in QT .

Obtaining the observability inequality of (41), the observability inequality of (11) is

an immediate consequence of the third point of Proposition 3.8.

Putting this arsenal of devices, we begin firstly by performing an intermediate

Carleman type estimate replacing the functions “−β1u(t, 0, x)” and “−β2u(t, 0, x)”
in (41) with two L2(Q)-functions h1 and h2, respectively. This result is stated in the

following theorem.

Theorem 3.9. Consider the system

∂u

∂t
+
∂u

∂a
+ (k1(x)ux)x − µ1(t, a, x)u − b(t, a, x)upε̃ = h1 in Q,(42)

∂v

∂t
+
∂v

∂a
+ (k2(x)vx)x − µ2(t, a, x)v + µ3(t, a, x)vyε̃ = h2 in Q,

u(t, a, 1) = u(t, a, 0) = v(t, a, 1) = v(t, a, 0) = 0 on (0, T )× (0, A),

u(T, a, x) = uT (a, x); v(T, a, x) = vT (a, x) in QA,

u(t, A, x) = v(t, A, x) = 0 in QT ,

where h1 and h2 are L
2(Q)-functions and yε̃ and pε̃ are given by (37). Assume that

the dispersion coefficients ki, i = 1, 2, satisfy (5) (or (25)) and let A, T > 0 be fixed.

Then, there exist two positive constants Cε̃ and s0 such that every solution (u, v)

of (42) (or with Newmann conditions on x = 0) verifies, for all s > s0, the inequality

∫

Q

(
s3Θ3 x2

k1(x)
u2 + sΘk1(x)u

2
x

)
e2sϕ1 dt da dx(43)

+

∫

Q

(
s3Θ3 x2

k2(x)
v2 + sΘk2(x)v

2
x

)
e2sϕ2 dt da dx

6 Cε̃

(∫

Q

(h21 + h22)e
2sΦ dt da dx+

∫

q

s3Θ3(u2 + v2)e2sΦ dt da dx

)
,

where all the weight functions are defined by (19) and ε̃ is defined by (34).
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P r o o f. Let us introduce the smooth cut-off function ξ : R → R defined by

(44)





0 6 ξ(x) 6 1, x ∈ R,

ξ(x) = 1, x ∈ [0, 13 (2x1 + x2)],

ξ(x) = 0, x ∈ [ 13 (2x2 + x1), 1],

where (x1, x2) ⊂ ω. Let (u, v) be the solution of (42) and set w := ξu and z := ξv

and put ω′ := (13 (2x1 + x2),
1
3 (2x2 + x1)). Then (w, z) satisfies the following system:

∂w

∂t
+
∂w

∂a
+ (k1(x)wx)x − µ1(t, a, x)w(45)

= ξh1 + b(t, a, x)wpε̃ + ξxk1ux + (k1ξxu)x in Q,

∂z

∂t
+
∂z

∂a
+ (k2(x)zx)x − µ2(t, a, x)z

= ξh2 − µ3(t, a, x)zyε̃ + ξxk2vx + (k2ξxv)x in Q,

w(t, a, 1) =w(t, a, 0) = z(t, a, 1) = z(t, a, 0) = 0 on (0, T )× (0, A),

w(T, a, x) =wT (a, x); z(T, a, x) = zT (a, x) in QA,

w(t, A, x) = z(t, A, x) = 0 in QT .

Using Proposition 3.4 for the inhomogeneous term “ξh1 + b(t, a, x)wpε̃ + ξxk1ux +

(k1ξxu)x”, the definition of ξ and Young’s inequality, we get the following inequality:

∫

Q

(
sΘk1w

2
x + s3Θ3x

2

k1
w2

)
e2sϕ1 dt da dx(46)

6 C

(∫

Q

(ξ2(h1 + bupε̃)
2 + (ξxk1ux + (k1ξxu)x)

2)e2sϕ1 dt da dx

+ sk1(1)

∫ A

0

∫ T

0

Θw2
x(t, a, 1)e

2sϕ1(t,a,1) dt da

)

6 C

∫

Q

(ξ2h21 + b2u2p2ε̃ + (ξxk1ux + (k1ξxu)x)
2)e2sϕ1 dt da dx.

Thanks again to the definition of ξ, we have

∫ 1

0

(ξxk1ux + (k1ξxu)x)
2e2sϕ1 dx 6

∫

ω′

(8(k1ξx)
2u2x + 2(k1ξx)

2
xu

2)e2sϕ1 dx(47)

6 C

∫

ω′

(u2 + u2x)e
2sϕ1 dx.

The third assumption in (5) (or the second assumption in (25)) implies that the

function x 7→ x2/k1(x) is nondecreasing.
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On the other hand, keeping in mind that pε̃ ∈ C∞(Q) (see the first point of

Proposition 3.8) and the hypothesis on b in (6), the Hardy-Poincaré inequality in [9]

for the function uesϕ1 implies

∫ 1

0

b2u2p2ε̃e
2sϕ1 dx 6

‖b‖2∞
k1(1)

‖pε̃‖2j,K
∫ 1

0

k1(x)

x2
(uesϕ1)2 dx

6 CHP
‖b‖2∞
k1(1)

‖pε̃‖2j,K
∫ 1

0

k1(x)(ue
sϕ1)2x dx,

where CHP > 0 is the constant of Hardy-Poincaré and ‖pε̃‖j,K is defined by rela-
tion (38). Thus, from the definition of ψ1 in (19), we obtain

∫ 1

0

b2u2p2ε̃e
2sϕ1 dx 6 C

∫ 1

0

k1(x)u
2
xe

2sϕ1 dx+ C

∫ 1

0

s2Θ2 x2

k1(x)
u2e2sϕ1 dx.

Hence, for s quite large we have

(48)

∫ 1

0

b2u2p2ε̃e
2sϕ1 dx 6

1

2

∫ 1

0

sΘk1(x)u
2
xe

2sϕ1 dx+
1

2

∫ 1

0

s3Θ3 x2

k1(x)
u2e2sϕ1 dx.

Gathering inequalities (46)–(48) for s quite large, the following inequality holds:

∫

Q

(
sΘk1w

2
x + s3Θ3x

2

k1
w2

)
e2sϕ1 dt da dx(49)

6 C

∫

Q

h21e
2sϕ1 dt da dx+ C1

∫

ω′

∫ A

0

∫ T

0

(u2 + u2x)e
2sϕ1 dt da dx

+
1

2

(∫

Q

sΘk1(x)u
2
xe

2sϕ1 dt da dx+

∫

Q

s3Θ3 x2

k1(x)
u2e2sϕ1 dt da dx

)
.

Applying the same on “ξh2 − µ3(t, a, x)zyε̃ + ξxk2vx + (k2ξxv)x” and taking into

account that yε̃ ∈ C∞(Q), we conclude

∫

Q

(
sΘk2z

2
x + s3Θ3x

2

k2
z2
)
e2sϕ2 dt da dx(50)

6 C1

∫

Q

h22e
2sϕ2 dt da dx+ C2

∫

ω′

∫ A

0

∫ T

0

(v2 + v2x)e
2sϕ2 dt da dx

+
1

2

(∫

Q

sΘk2(x)v
2
xe

2sϕ2 dt da dx+

∫

Q

s3Θ3 x2

k2(x)
v2e2sϕ2 dt da dx

)
.
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Summing side by side (49) and (50), using the fact that ϕ1 6 ϕ2 (see Lemma 3.6)

we can see that for s quite large,

∫

Q

(
sΘk1w

2
x + s3Θ3x

2

k1
w2

)
e2sϕ1 dt da dx+

∫

Q

(
sΘk2z

2
x + s3Θ3x

2

k2
z2
)
e2sϕ2 dt da dx

6 C4

∫

Q

(h21 + h22)e
2sϕ2 dt da dx

+ C5

∫

ω′

∫ A

0

∫ T

0

(u2 + v2 + u2x + v2x)e
2sϕ2 dt da dx

+
1

2

(∫

Q

sΘk1(x)u
2
xe

2sϕ1 dt da dx+

∫

Q

s3Θ3 x2

k1(x)
u2e2sϕ1 dt da dx

)

+
1

2

(∫

Q

sΘk2(x)v
2
xe

2sϕ2 dt da dx+

∫

Q

s3Θ3 x2

k2(x)
v2e2sϕ2 dt da dx

)
.

In the light of Caccioppoli’s inequality (127), the last inequality becomes

∫

Q

(
sΘk1w

2
x + s3Θ3x

2

k1
w2

)
e2sϕ1 dt da dx(51)

+

∫

Q

(
sΘk2z

2
x + s3Θ3x

2

k2
z2
)
e2sϕ2 dt da dx

6 C6

(∫

Q

(h21 + h22)e
2sϕ2 dt da dx+

∫

q

s2Θ2(u2 + v2)e2sϕ2 dt da dx

)
.

Now, let W := ηu and Z := ηv with η = 1 − ξ. Then W and Z are supported

in (x1, 1) and verify the following system:

∂W

∂t
+
∂W

∂a
+ (k1(x)Wx)x − µ1(t, a, x)W(52)

= ηh1 + b(t, a, x)Wpε̃ + ηxk1ux + (k1ηxu)x in Qx1
,

∂Z

∂t
+
∂Z

∂a
+ (k2(x)Zx)x − µ2(t, a, x)Z

= ηh2 − µ3(t, a, x)Zyε̃ + ηxk2vx + (k2ηxv)x in Qx1
,

W (t, a, 1) =W (t, a, x1) = Z(t, a, 1) = Z(t, a, x1) = 0 on (0, T )× (0, A),

W (T, a, x) =WT (a, x); Z(T, a, x) = ZT (a, x) in QA,

W (t, A, x) =Z(t, A, x) = 0 in QT ,

where Qx1
= (0, T ) × (0, A) × (x1, 1). Then the system satisfied by W and Z is

non-degenerate.
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Hence, applying Proposition 3.5 to the first equation of (52) for b1 = x1 and b2 = 1

and h = ηh1 + b(t, a, x)Wp+ ηxk1ux + (k1ηxu)x, the following estimate occurs:

∫

Q

(s3ϕ3W 2 + sϕW 2
x )e

2sΦ dt da dx

6 C

(∫

Q

(ηh1 + b(t, a, x)Wpε̃ + ηxk1ux + (k1ηxu)x)
2e2sΦ dt da dx

+

∫

ω

∫ A

0

∫ T

0

s3Θ3u2e2sΦ dt da dx

)
.

Accordingly, Caccioppoli’s inequality stated in [26], Lemma 5.1, the definition of

the cut-off function η, Young’s inequality and s quite large lead to

(53)

∫

Q

(s3ϕ3W 2 + sϕW 2
x )e

2sΦ dt da dx

6 C̃

(∫

Q

(η2h21e
2sΦ + b2W 2p2ε̃e

2sΦ + (ηxk1ux + (k1ηxu)x)
2e2sΦ) dt da dx

+

∫

ω

∫ A

0

∫ T

0

s3Θ3u2e2sΦ dt da dx

)

6 C̃1

(∫

Q

(η2h21e
2sΦ + b2W 2p2ε̃e

2sΦ) dt da dx

+

∫

ω′

∫ A

0

∫ T

0

(8(k1ηx)
2u2x + 2((k1ηx)x)

2u2)e2sΦ dt da dx

)

+ C̃

∫

ω

∫ A

0

∫ T

0

s3Θ3u2e2sΦ dt da dx

6 C̃2

(∫

Q

(η2h21e
2sΦ + b2W 2p2ε̃e

2sΦ) dt da dx

+

∫

ω′

∫ A

0

∫ T

0

(u2 + u2x)e
2sΦ dt da dx

)

+ C̃

∫

ω

∫ A

0

∫ T

0

s3Θ3u2e2sΦ dt da dx

6 C̃3

(∫

Q

(η2h21e
2sΦ + b2W 2p2ε̃e

2sΦ) dt da dx

+

∫

ω

∫ A

0

∫ T

0

s3Θ3u2e2sΦ dt da dx

)
,

where Φ and ϕ are defined in (19) and ω′ is given at the beginning of this proof.
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On the other hand, using the fact that x 7→ x2/k2(x) is nondecreasing, pε̃ ∈
C∞(Q), applying the Hardy-Poincaré inequality to the function W esΦ and taking s

quite large, the same procedure employed to obtain (48) steers to

∫

Q

b2W 2p2ε̃e
2sΦ dt da dx(54)

6 c

(∫

Q

k2W
2
x e

2sΦ dt da dx+

∫

Q

s2Θ2 x2

k2(x)
W 2e2sΦ dt da dx

)

6
1

2

∫

Q

(s3ϕ3W 2 + sϕW 2
x )e

2sΦ dt da dx.

Therefore, injecting (54) in (53) we arrive to

∫

Q

(s3ϕ3W 2 + sϕW 2
x )e

2sΦ dt da dx(55)

6 C̃4

(∫

Q

h21e
2sΦ dt da dx+

∫

ω

∫ A

0

∫ T

0

s3Θ3u2e2sΦ dt da dx

)
.

Replying the same device for the source term h := ηh2 − µ3(t, a, x)Zyε̃ + ηxk2vx +

(k2ηxv)x and thanks again to the argument yε̃ ∈ C∞(Q) we infer that

∫

Q

(s3ϕ3Z2 + sϕZ2
x)e

2sΦ dt da dx(56)

6 C̃5

(∫

Q

h22e
2sΦ dt da dx+

∫

ω

∫ A

0

∫ T

0

s3Θ3v2e2sΦ dt da dx

)
.

Subsequently, adding (55) to (56) side by side, we merely observe that

∫

Q

(s3ϕ3(W 2 + Z2)sϕ(W 2
x + Z2

x))e
2sΦ dt da dx(57)

6 C̃6

(∫

Q

(h21 + h22)e
2sΦ dt da dx

+

∫

ω

∫ A

0

∫ T

0

s3Θ3(u2 + v2)e2sΦ dt da dx

)
.

Using the fact that u = w+W and v = z+Z, ϕ1 6 ϕ2 6 Φ, estimates (51) and (57)

lead to estimate (43). �

For special functions h1 and h2, Theorem 3.9 play a crucial role in demonstrating

the following intermediate Carleman estimate.
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Theorem 3.10. Assume that assumptions (5) (or (25)) and (6) hold. Let T,A > 0

be fixed such that T ∈ (0, δ) with δ satisfying (3). Then there exist two positive

constants Cε̃ (independent of δ) and s0 such that for all s > s0, every solution

of (41) (or with Newmann conditions on x = 0) (u, v) satisfies

∫

Q

(
s3Θ3 x2

k1(x)
u2 + sΘk1(x)u

2
x

)
e2sϕ1 dt da dx(58)

+

∫

Q

(
s3Θ3 x2

k2(x)
v2 + sΘk2(x)v

2
x

)
e2sϕ2 dt da dx

6 Cε̃

(∫

q

s3Θ3(u2 + v2)e2sΦ dt da dx

+

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx

)
,

where ε̃ is given by (34).

P r o o f. Let h1 := −β1u(t, 0, x) and h2 := −β2v(t, 0, x). Therefore, thanks to
hypotheses (6) on β1 and β2 and estimate (43) we have the existence of two positive

constants C and s0 such that for all s > s0 the following inequality holds:

s3
∫

Q

Θ3
( x2

k1(x)
u2e2sϕ1 +

x2

k2(x)
v2e2sϕ2

)
dt da dx(59)

+ s

∫

Q

Θ(k1(x)u
2
xe

2sϕ1 + k2(x)v
2
xe

2sϕ2) dt da dx

6 Cε̃

(∫

Q

((β1u(t, 0, x))
2 + (β2v(t, 0, x))

2)e2sΦ dt da dx

+

∫

q

s3Θ3(u2 + v2)e2sΦ dt da dx

)

6 C7,ε̃

(∫ 1

0

∫ T

0

(u2(t, 0, x) + v2(t, 0, x)) dt dx

+

∫

q

s3Θ3(u2 + v2)e2sΦ dt da dx

)
.

Set for all (t, a, x) ∈ Q, U(t, a, x) = u(T−t, A−a, x), V (t, a, x) = v(T−t, A−a, x),
Yε̃(t, a, x) = yε̃(T − t, A− a, x), Pε̃(t, a, x) = pε̃(T − t, A− a, x). Then one has

∂U

∂t
+
∂U

∂a
− (k1(x)Ux)x + µ1(T − t, A− a, x)U + b(T − t, A− a, x)UPε̃(60)

=β1(T − t, A− a, x)U(t, A, x) in Q,

∂V

∂t
+
∂V

∂a
+ (k2(x)Vx)x + µ2(T − t, A− a, x)V − µ3(T − t, A− a, x)V Yε̃

=β2(T − t, A− a, x)V (t, A, x) in Q,
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U(t, a, 1) =U(t, a, 0) = V (t, a, 1) = V (t, a, 0) = 0 on (0, T )× (0, A),

U(t, 0, x) =V (t, 0, x) = 0 in QT ,

U(0, a, x) =U0(a, x) = uT (A− a, x);

V (0, a, x) =V0(a, x) = vT (A− a, x) in QA.

We emphasize here that similar implicit formulas of u and v given beneath are already

used in the proof of observability inequality in [30] and before in the one of the main

Carleman estimates and the observability inequality in [13].

In fact, integrating along the characteristic lines we get

(61)





U(t, a, ·) =
∫ a

0

S(a− l)(β1(T − t, A− l, ·)U(t, A, ·)

−b(T − t, A− l, ·)U(t, l, ·)Pε̃(t, l·)) dl if t > a,

U(t, a, ·) = S(t)U0(a− t, ·) +
∫ t

0

S(t− l)(β1(T − l, A− a, ·)U(l, A, ·)

−b(T − l, A− a, ·)U(l, a, ·)Pε̃(l, a, ·)) dl if t 6 a,

and

(62)





V (t, a, ·) =
∫ a

0

L(a− l)(β2(T − t, A− l, ·)V (t, A, ·)

+µ3(T − t, A− l, ·)V (t, l, ·)Yε̃(t, l·)) dl if t > a,

V (t, a, ·) = L(t)V0(a− t, ·) +
∫ t

0

L(t− l)(β2(T − l, A− a, ·)V (l, A, ·)

+µ3(T − l, A− a, ·)V (l, a, ·)Yε̃(l, a·)) dl if t 6 a,

where S(t)t>0 and L(t)t>0 are the bounded semigroups generated, respectively, by

the operators A3U := −(k1(x)Ux)x+µ1(T −t, A−a, x)U and A4V := −(k2(x)Vx)x+

µ2(T − t, A− a, x)V .

On the other hand, in the light of the transformations between U and u and also

between V and v and if one replaces t by T − t and a by A − a in the implicit

formulas (61) and (62) the functions u and v can be expressed as

(63)





u(t, a, ·) =
∫ A−a

0

S(A− a− l)(β1(t, A− l, ·)u(t, 0, ·)

−b(t, A− l, ·)u(t, A− l, ·)pε̃(t, A− l·)) dl if a > t+ (A− T ),

u(t, a, ·) = S(T − t)uT (a+ T − t, ·) +
∫ T

t

S(l − t)(β1(l, a, ·)u(l, 0, ·)

−b(l, a, ·)u(l, a, ·)pε̃(l, a·)) dl if a 6 t+ (A− T ),
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and

(64)





v(t, a, ·) =
∫ A−a

0

L(A− a− l)(β2(t, A− l, ·)v(t, 0, ·)

+µ3(t, A− l, ·)v(t, A− l, ·)yε̃(t, A− l·)) dl if a > t+ (A− T ),

v(t, a, ·) = L(T − t)vT (a+ T − t, ·) +
∫ T

t

L(l− t)(β2(l, a, ·)v(l, 0, ·)

+µ3(l, a, ·)v(l, a, ·)yε̃(l, a·)) dl if a 6 t+ (A− T ).

Thus, by relations (39) the following equalities hold:

(65)





u(t, 0, ·) = S(T − t)uT (T − t, ·) +
∫ T

t

S(l − t)(β1(l, 0, ·)− b(l, 0, ·)gp,ε̃(l, ·))
×u(l, 0, ·) dl,

v(t, 0, ·) = L(T − t)vT (T − t, ·) +
∫ T

t

L(l− t)(β2(l, 0, ·) + µ3(l, 0, ·)gy,ε̃(l, ·))
×v(l, 0, ·) dl.

Passing to the absolute value of the first equality in (65), we get the following relation:

|u(t, 0, x)|

=

∣∣∣∣S(T − t)uT (T − t, x) +

∫ T

t

S(l− t)(β1(l, 0, x)− b(l, 0, x)gp,ε̃(l, x))u(l, 0, x) dl

∣∣∣∣

6 |S(T − t)uT (T − t, x)|+
∫ T

t

|S(l − t)(β1(l, 0, x)− b(l, 0, x)gp,ε̃(l, x))u(l, 0, x)| dl.

Combining the last inequality with the fact that (S(t))t>0 is a C0-semigroup, we
deduce readily that

|u(t, 0, x)|
6 |S(T − t)uT (T − t, x)|+

∫ T

t

|Meλ1(l−t)(β1(l, 0, x)− b(l, 0, x)gp,ε̃(l, x))u(l, 0, x)| dl

6 |S(T − t)uT (T − t, x)|+
∫ T

t

|Meλ1T (β1(l, 0, x)− b(l, 0, x)gp,ε̃(l, x))u(l, 0, x)| dl,

where

(66) M > 1 and λ1 ∈ R.

Applying Hölder’s inequality to the last estimate, we obtain

|u(t, 0, x)|2 6 2|S(T − t)uT (T − t, x)|2

+ 2

(∫ T

t

|Meλ1T (β1(l, 0, x)− b(l, 0, x)gp,ε̃(l, x))u(l, 0, x)| dl
)2

6 2|S(T − t)uT (T − t, x)|2

+

∫ T

t

2TM2e2λ1T |β1(l, 0, x)− b(l, 0, x)gp,ε̃(l, x)|2|u(l, 0, x)|2 dl.
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Accordingly,

|u(t, 0, x)|2 6 2|S(T − t)uT (T − t, x)|2

+

∫ T

t

4TM2e2λ1T (β2
1(l, 0, x) + b2(l, 0, x)gp,ε̃(l, x)

2)|u(l, 0, x)|2 dl.

Gronwall-Bellman’s lemma applied with respect to the time variable time t in (67)

implies

|u(t, 0, x)|2 6 2|S(T − t)uT (T − t, x)|2 +
∫ T

t

8TM2e2λ1T (|S(T − s)uT (T − s, x)|2)

× (β2
1(s, 0, x) + b2(s, 0, x)g2p,ε̃(s, x))

× exp

(∫ s

t

4TM2e2λ1T (β2
1(s, 0, x) + b2(s, 0, x)g2p,ε̃(s, x)) dτ

)
ds.

Thanks to hypotheses (6) on the natural rates βi, i = 1, 2, and b and using the second

relation of (40) we conclude

(67) |u(t, 0, x)|2 6 2|S(T − t)uT (T − t, x)|2 + M̃5

∫ T

t

|S(T − s)uT (T − s, x)|2 ds

with
M̃5 = 8TM2e2λ1T (‖β1‖2∞ +A‖b‖2∞‖β2‖2∞‖gp,ε̃‖2j,K)

× exp (4T 2M2e2λ1T (‖β1‖2∞ +A‖b‖2∞‖β2‖2∞‖gp,ε̃‖2j,K)).

Integrating inequality (67) over (0, T )× (0, 1), we can see that

∫ 1

0

∫ T

0

|u(t, 0, x)|2 dt dx 6 2

∫ 1

0

∫ T

0

|S(T − t)uT (T − t, x)|2 dt dx(68)

+ M̃5

∫ 1

0

∫ T

0

∫ T

t

|S(T − s)uT (T − s, x)|2 ds dt dx

6 2

∫ 1

0

∫ T

0

|S(r)uT (r, x)|2 dt dx

+ M̃5

∫ 1

0

∫ T

0

∫ T−t

0

|S(m)uT (m,x)|2 ds dt dx,

herein, m = T − s and r = T − t. Taking into account that T ∈ (0, δ), we have the

existence of a positive constant C̃8 such that

(69)

∫ 1

0

∫ T

0

|u(t, 0, x)|2 dt dx 6 C̃8

∫ 1

0

∫ T

0

|uT (m,x)|2 dm dx

6 C̃8

∫ 1

0

∫ δ

0

|uT (m,x)|2 dm dx,

where C̃8 =M2e2λ1T (2 + TM̃5) and M and λ1 are the same as in (66).
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Similarly and with the help of the first point of (40), we can prove that

(70)

∫ 1

0

∫ T

0

|v(t, 0, x)|2 dt dx 6 C̃9

∫ 1

0

∫ T

0

|vT (l, x)|2 dl dx

6 C̃9

∫ 1

0

∫ δ

0

|vT (l, x)|2 dl dx.

Implementing (69) and (70) in (59) we reach the Carleman estimate (58). �

Before continuing, we shall evoke the following remark.

R em a r k 3.11. In general, if we want to express the implicit formula of a popula-

tion dynamics model’s solution, the characteristic method is the pertinent candidate.

The principle of this method is to write the solution of the studied model covering

all the whole (0, T ) × (0, A) by deleting one of the two variables, time or age in a

two main sub-parts of (0, T )× (0, A). Classically, these sub-parts are separated via a

given line whose equation is a = t+c, where c > 0, which in our case is equal to A−T .
Following this, we obtain the formula of our solution both in the two parts a > t+c

and a 6 t+ c and this is exactly what happened in the implicit formulas of u and v

defined, respectively, by relations (63) and (64).

If A = T , i.e., (0, T )× (0, A) is a square, we get the classical implicit formulas in

the two parts a > t and a 6 t by dividing the pavement (0, T )× (0, A) with respect

to the first bisector given by the equation a = t.

Since our aim is to prove the null controllability property (4) for one control

force problem, one must somehow “delete” the adjoint variable to the non-controlled

solution, which is in our case v from the right-hand side of Carleman estimate (58).

Hence, we presume the following result:

Theorem 3.12. Let the assumptions on ki, i = 1, 2, (5) (or (25)) and on the

natural rates (6) be verified. Let A, T > 0 be given and fixed such that T ∈ (0, δ),

where δ verifies (3). Then every solution (u, v) of (41) (or with Newmann conditions

on x = 0) satisfies

∫

Q

(
s3Θ3 x2

k1(x)
u2 + sΘk1(x)u

2
x

)
e2sϕ1 dt da dx(71)

+

∫

Q

(
s3Θ3 x2

k1(x)
v2 + sΘk1(x)v

2
x

)
e2sϕ2 dt da dx

6 Cε̃

(∫

q

u2 dt da dx+

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx

)
.

This theorem is an immediate outcome of Theorem 3.10 and the following lemma.
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Lemma 3.13. Assume that (5) (or (25)) and (6) hold and let A, T > 0 be given

and fixed such that T ∈ (0, δ), where δ verifies (3). Then there exists a positive

constant M (which is independent from δ) such that for every solution (u, v) of (41)

(or with Newmann conditions on x = 0) the following inequality occurs

(72)

∫

ω

∫ A

0

∫ T

0

s3Θ3v2e2sΦ dt da dx 6M

∫ 1

0

∫ δ

0

v2T (a, x) da dx;

here M is different from the one in (66).

P r o o f. The proof of Lemma 3.13 is similar to the one of observability inequal-

ity (73) in the step to prove inequality (85) beneath specially relations (86) (in the

case a > t+(A−T )) and (113) and (114) (in the case a 6 t+(A−T )). We must also
take into account inequality (116) in Remark 4.2 and set R1(t, a, x) := s3/2Θ3/2esΦ,

where Θ and Φ are the weight functions given in (19).

Finally, it deserves to point out that the boundedness of R1 (actually (R1)
2) is a

consequence of the fact that for all r̃ ∈ R, sup
Q
sr̃Θr̃e2sΦ <∞. �

The full ω-Carleman estimate (71) can be used in a standard way to obtain a

relevant observability inequality of system (41) (or with Newmann conditions on

x = 0). This together with the third point of Proposition 3.8 lead to the observabil-

ity inequality of (11) and afterwards the null controllability result for the coupled

population dynamics system (1) with one control force.

4. Observability inequality and null controllability result

4.1. Observability inequality result. This paragraph is devoted to the observ-

ability inequality of system (41) (or with Newmann conditions on x = 0). The proof

is based essentially on Carleman estimate (71) and Hardy-Poincaré inequality with

the help of Gronwall-Bellman’s lemma.

Proposition 4.1. Assume that (5) (or (25)) and (6) hold. Let A, T > 0 be

given and fixed such that T < δ with δ verifying (3). Then there exists a positive

constant Cδ,ε̃ such that for every solution (u, v) of (41) (or with Newmann conditions

on x = 0) the following observability inequality is satisfied:

∫ 1

0

∫ A

0

(u2(0, a, x) + v2(0, a, x)) da dx(73)

6 Cδ,ε̃

(∫

q

u2 dt da dx+

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx

)
.
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P r o o f. For κ1 > 0 to be defined later, let ũ = eκ1tu and ṽ = eκ1tv, where (u, v)

is the solution of (11). Then (ũ, ṽ) verifies the system

∂ũ

∂t
+
∂ũ

∂a
+ (k1(x)ũx)x − (µ1 + κ1 + bpε̃)ũ = −β1ũ(t, 0, x) in Q,(74)

∂ṽ

∂t
+
∂ṽ

∂a
+ (k2(x)ṽx)x − (µ2 + κ1 − µ3yε̃)ṽ = −β2ṽ(t, 0, x) in Q,

ũ(t, a, 1) = ũ(t, a, 0) = ṽ(t, a, 1) = ṽ(t, a, 0) = 0 on (0, T )× (0, A),

ũ(T, a, x) = eκ1TuT (a, x); ṽ(T, a, x) = eκ1T vT (a, x) in QA,

ũ(t, A, x) = ṽ(t, A, x) = 0 in QT .

Multiplying the first and the second equation of (74) by ũ and ṽ, respectively, and

integrating by parts the new equations over Qt = (0, t)× (0, A)× (0, 1), taking into

account the rest of equations in (74), we get

(75)

− 1

2

∫ 1

0

∫ A

0

ũ2(t, a, x) da dx+
1

2

∫ 1

0

∫ A

0

ũ2(0, a, x) da dx+
1

2

∫ 1

0

∫ t

0

ũ2(τ, 0, x) dτ dx

+

∫

Qt

k1ũ
2
x dτ da dx+

∫

Qt

(κ1 + µ1 + bpε̃)ũ
2 dτ da dx =

∫

Qt

β1ũũ(τ, 0, x) dτ da dx

and

(76)

− 1

2

∫ 1

0

∫ A

0

ṽ2(t, a, x) da dx+
1

2

∫ 1

0

∫ A

0

ṽ2(0, a, x) da dx+
1

2

∫ 1

0

∫ t

0

ṽ2(τ, 0, x) dτ dx

+

∫

Qt

k2ṽ
2
x dτ da dx+

∫

Qt

(κ1 + µ1 − µ3yε̃)ṽ
2 dτ da dx =

∫

Qt

β2ṽṽ(τ, 0, x) dτ da dx.

Summing (75) and (76), we have

∫ 1

0

∫ A

0

(ũ2(0, a, x) + ṽ2(0, a, x)) da dx+

∫ 1

0

∫ t

0

(ũ2(τ, 0, x) + ṽ2(τ, 0, x)) dτ dx

+ 2

∫

Qt

(k1ũ
2
x + k2ṽ

2
x) dτ da dx+ 2

∫

Qt

(µ1 + bpε̃)ũ
2 dτ da dx

+ 2

∫

Qt

(µ2 − µ3yε̃)ṽ
2 dτ da dx+ 2

∫

Qt

κ1(ũ
2 + ṽ2) dτ da dx

= 2

(∫

Qt

β1ũũ(τ, 0, x) dτ da dx+

∫

Qt

β2ṽṽ(τ, 0, x) dτ da dx

)

+

∫ 1

0

∫ A

0

(ũ2(t, a, x) + ṽ2(t, a, x)) da dx.
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Thus,

∫ 1

0

∫ A

0

(ũ2(0, a, x) + ṽ2(0, a, x)) da dx(77)

+

∫ 1

0

∫ t

0

(ũ2(τ, 0, x) + ṽ2(τ, 0, x)) dτ dx+ 2

∫

Qt

bpε̃ũ
2 dτ da dx

− 2

∫

Qt

µ3yε̃ṽ
2 dτ da dx+ 2

∫

Qt

κ1(ũ
2 + ṽ2) dτ da dx

6 2

(∫

Qt

β1ũũ(τ, 0, x) dτ da dx+

∫

Qt

β2ṽṽ(τ, 0, x) dτ da dx

)

+

∫ 1

0

∫ A

0

(ũ2(t, a, x) + ṽ2(t, a, x)) da dx.

With the help of Young’s inequality, one can check out the following relations:

2

∫

Qt

β1ũũ(τ, 0, x) dτ da dx(78)

= 2

∫

Qt

β1
4
√
ε
ũ4

√
εũ(τ, 0, x) dτ da dx

6
‖β1‖2∞
16ε

∫

Qt

ũ2 dτ da dx+ 16ε

∫

Qt

ũ2(τ, 0, x) dτ da dx

and

(79) 2

∫

Qt

β1ṽṽ(τ, 0, x) dτ da dx

6
‖β2‖2∞
16ε

∫

Qt

ṽ2 dτ da dx+ 16ε

∫

Qt

ṽ2(τ, 0, x) dτ da dx.

As a consequence of (77), (78) and (79) one has

∫ 1

0

∫ A

0

(ũ2(0, a, x) + ṽ2(0, a, x)) da dx+

∫ 1

0

∫ t

0

(ũ2(τ, 0, x) + ṽ2(τ, 0, x)) dτ dx(80)

+ 2

∫

Qt

bpε̃ũ
2 dτ da dx− 2

∫

Qt

µ3yε̃ṽ
2 dτ da dx

+ 2

∫

Qt

κ1(ũ
2 + ṽ2) dτ da dx

6
‖β1‖2∞
16ε

∫

Qt

ũ2 dτ da dx+
‖β2‖2∞
16ε

∫

Qt

ṽ2 dτ da dx

+ 16Aε

∫ 1

0

∫ t

0

(ũ2(τ, 0, x) + ṽ2(τ, 0, x)) dτ dx

+

∫ 1

0

∫ A

0

(ũ2(t, a, x) + ṽ2(t, a, x)) da dx.
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For ε < 1/(16A), we deduce from (80) that

∫ 1

0

∫ A

0

(ũ2(0, a, x) + ṽ2(0, a, x)) da dx+ 2

∫

Qt

bpε̃ũ
2 dτ da dx

− 2

∫

Qt

µ3yε̃ṽ
2 dτ da dx+ 2

∫

Qt

κ1(ũ
2 + ṽ2) dτ da dx

6
max(‖β1‖2∞, ‖β2‖2∞)

16ε

∫

Qt

(ũ2 + ṽ2) dτ da dx

+

∫ 1

0

∫ A

0

(ũ2(t, a, x) + ṽ2(t, a, x)) da dx.

Subsequently,

∫ 1

0

∫ A

0

(ũ2(0, a, x) + ṽ2(0, a, x)) da dx+ 2

∫

Qt

κ1(ũ
2 + ṽ2) dτ da dx(81)

6 − 2

∫

Qt

bpε̃ũ
2 dτ da dx+ 2

∫

Qt

µ3yε̃ṽ
2 dτ da dx

+
max(‖β1‖2∞, ‖β2‖2∞)

16ε

∫

Qt

(ũ2 + ṽ2) dτ da dx

+

∫ 1

0

∫ A

0

(ũ2(t, a, x) + ṽ2(t, a, x)) da dx.

In the light of assumptions (6) on b and µ3 and using the fact that yε̃, pε̃ ∈ C∞(Q),

relation (81) steers to

∫ 1

0

∫ A

0

(ũ2(0, a, x) + ṽ2(0, a, x)) da dx+ 2

∫

Qt

κ1(ũ
2 + ṽ2) dτ da dx(82)

6 2‖b‖∞‖pε̃‖2j,K
∫

Qt

ũ2 dτ da dx

+ 2‖ µ3‖∞‖yε̃‖2j,K
∫

Qt

ṽ2 dτ da dx

+
max(‖β1‖2∞, ‖β2‖2∞)

16ε

∫

Qt

(ũ2 + ṽ2) dτ da dx

+

∫ 1

0

∫ A

0

(ũ2(t, a, x) + ṽ2(t, a, x)) da dx

6

(
2max(‖b‖∞‖pε̃‖2j,K , ‖µ3‖∞‖yε̃‖2j,K)

+
max(‖β1‖2∞, ‖β2‖2∞)

16ε

)∫

Qt

(ũ2 + ṽ2) dτ da dx

+

∫ 1

0

∫ A

0

(ũ2(t, a, x) + ṽ2(t, a, x)) da dx.
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Taking now κ1 > max(‖b‖∞‖pε̃‖2j,K , ‖µ3‖∞‖yε̃‖2j,K)+max(‖β1‖2∞, ‖β2‖2∞)/(32ε) and

thanks to the definitions of ũ and ṽ, inequality (82) is reduced to

(83)∫ 1

0

∫ A

0

(u2(0, a, x) + v2(0, a, x)) da dx 6 eκ1T

∫ 1

0

∫ A

0

(u2(t, a, x) + v2(t, a, x)) da dx.

Integrating (83) over (14T,
3
4T ), we get

(84)

∫ 1

0

∫ A

0

(u2(0, a, x) + v2(0, a, x)) da dx

6
2eκ1T

T

∫ 1

0

∫ A

0

∫ 3T/4

T/4

(u2(t, a, x) + v2(t, a, x)) dt da dx.

Henceforth, the crucial step to establish the observability inequality (73) is to show

the existence of a positive constant Ĉ such that

(85)

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

(u2(t, a, x) + v2(t, a, x)) dt da dx

6 Ĉ

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx.

To this end, we use the implicit formulas of u and v given, respectively, by (63)

and (64), the formulas of the initial datum with respect to the age (65) as well as the

expressions of (39). Such a proof will be split on the cases when a > t+(A−T ) and

a 6 t+(A−T ) (see again the two references [13] and [30] for a similar argumentation
and also Remark 3.11). In fact, if a > t+ (A− T ), after careful calculus one has

(86)





u(t, a, ·) =
∫ A−a

0

S(A− a− l)β1(t, A− l, ·)S(T − t)uT (T − t, ·) dl

+

∫ A−a

0

S(A− a− l)

(
β1(t, A− l, ·)

∫ T

t

S(m− t)(β1(m, 0, ·)

−b(m, 0, ·)gp,ε̃(m, ·))u(m, 0, ·) dm
)
dl

−
∫ A−a

0

S(A− a− l)b(t, A− l, ·)u(t, A− l, ·)pε̃(t, A− l, ·) dl,

v(t, a, ·) =
∫ A−a

0

L(A− a− l)β2(t, A− l, ·)L(T − t)vT (T − t, ·) dl

+

∫ A−a

0

L(A− a− l)

(
β2(t, A− l, ·)

∫ T

t

L(m− t)(β2(m, 0, ·)

+µ3(m, 0, ·)gy,ε̃(m, ·))v(m, 0, ·) dm
)
dl

+

∫ A−a

0

L(A− a− l)µ3(t, A− l, ·)v(t, A − l, x)yε̃(t, A− l, ·) dl,

388



where (S(t))t>0 and (L(t))t>0 are the semi-groups defined after relations (61)

and (62). Thus, we claim from (86) that exists M̃3, M̃4 > 0 such that

(87)





∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

u2(t, a, x) dt da dx 6 M̃3

∫ 1

0

∫ δ

0

u2T (a, x) da dx,

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

v2(t, a, x) dt da dx 6 M̃4

∫ 1

0

∫ δ

0

v2T (a, x) da dx.

The proofs of the two last inequalities are similar, so we restrict ourselves to show

the first one. From the first equality of (86) one has

|u(t, a, x)| =
∣∣∣∣
∫ A−a

0

S(A− a− l)β1(t, A− l, x)S(T − t)uT (T − t, x) dl(88)

+

∫ A−a

0

S(A− a− l)

(
β1(t, A− l, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)
dl

−
∫ A−a

0

S(A− a− l)b(t, A− l, x)u(t, A− l, x)p(t, A− l, x) dl

∣∣∣∣.

Subsequently,

|u(t, a, x)| 6
∣∣∣∣
∫ A−a

0

S(A− a− l)β1(t, A− l, x)S(T − t)uT (T − t, x) dl

∣∣∣∣(89)

+

∣∣∣∣
∫ A−a

0

S(A− a− l)

(
β1(t, A− l, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)
dl

∣∣∣∣

+

∣∣∣∣
∫ A−a

0

S(A− a− l)b(t, A− l, x)u(t, A− l, x)pε̃(t, A− l, x) dl

∣∣∣∣

6

∫ A−a

0

|S(A− a− l)β1(t, A− l, x)S(T − t)uT (T − t, x)| dl

+

∫ A−a

0

∣∣∣∣S(A− a− l)

(
β1(t, A− l, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)∣∣∣∣ dl

+

∫ A−a

0

|S(A− a− l)b(t, A− l, x)u(t, A− l, x)pε̃(t, A− l, x)| dl.
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With the variable change r = A− l, (89) becomes

|u(t, a, x)| 6
∫ A

a

|S(r − a)β1(t, r, x)S(T − t)uT (T − t, x)| dr

+

∫ A

a

∣∣∣∣S(r − a)

(
β1(t, r, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)∣∣∣∣ dr

+

∫ A

a

|S(r − a)b(t, r, x)u(t, r, x)pε̃(t, r, x)| dr.

Since (S(t))t>0 is a C0-semigroup, then

(90) ‖S(r − a)‖ 6Meλ1(r−a) 6MeAλ1 ,

where M and λ1 are the same as in (66). Hence,

|u(t, a, x)| 6
∫ A

a

|S(r − a)β1(t, r, x)S(T − t)uT (T − t, x)| dr

+

∫ A

a

MeAλ1

∣∣∣∣
(
β1(t, r, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)∣∣∣∣dr

+

∫ A

a

MeAλ1 |b(t, r, x)u(t, r, x)pε̃(t, r, x)| dr.

Afterwards,

|u(t, a, x)|2 6

(∫ A

a

|S(r − a)β1(t, r, x)S(T − t)uT (T − t, x)| dr(91)

+

∫ A

a

MeAλ1

∣∣∣∣
(
β1(t, r, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)∣∣∣∣ dr

+

∫ A

a

MeAλ1 |b(t, r, x)u(t, r, x)pε̃(t, r, x)| dr
)2

6 3

(∫ A

a

|S(r − a)β1(t, r, x)S(T − t)uT (T − t, x)| dr
)2

+ 3

(∫ A

a

MeAλ1

∣∣∣∣
(
β1(t, r, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)∣∣∣∣ dr
)2

+ 3

(∫ A

a

MeAλ1 |b(t, r, x)u(t, r, x)pε̃(t, r, x)| dr
)2

.
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Applying now Hölder’s inequality to (91) we obtain

|u(t, a, x)|2 6 3

∫ A

a

A|S(r − a)β1(t, r, x)S(T − t)uT (T − t, x)|2 dm(92)

+ 3

∫ A

a

AM2e2Aλ1 |b(t, r, x)u(t, r, x)pε̃(t, r, x)|2 dr

+ 3

∫ A

a

AM2e2Aλ1

(
β1(t, r, x)

∫ T

t

S(m− t)(β1(m, 0, x)

− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)2

dr.

On the other hand, the relation

‖S(m− t)‖ 6Meλ1(m−t) 6MeTλ1 ,

together with the fact that gp,ε̃ ∈ C∞(QT ), hypotheses (6) on β1 and b and again

Hölder inequality lead, respectively, to the following successive estimates

(93)

3

∫ A

a

AM2e2Aλ1

×
(
β1(t, r, x)

∫ T

t

|S(m− t)(β1(m, 0, x)− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x)| dm
)2

dr

6 3AM4e2(A+T )λ1

×
∫ A

a

s

(∫ T

t

β1(t, r, x)(β1(m, 0, x)− b(m, 0, x)gp,ε̃(m,x))u(m, 0, x) dm

)2

dr

6 6AM4e2(A+T )λ1(‖β1‖2∞ + ‖b‖2∞‖gp,ε̃‖2∞)

∫ A

a

(∫ T

t

β1(t, r, x)u(m, 0, x) dm

)2

dr

6 6ATM4e2(A+T )λ1(‖β1‖2∞ + ‖b‖2∞‖gp,ε̃‖2∞)

∫ A

a

∫ T

t

β2
1(t, r, x)u

2(m, 0, x) dm dr,

wherein M and λ1 are the same as in (66).

The combination of (92) and (93) steers to the following inequality:

|u(t, a, x)|2 6 3

∫ A

a

A|S(r − a)β1(t, r, x)S(T − t)uT (T − t, x)|2 dr(94)

+ 6ATM4e2(A+T )λ1(‖β1‖2∞ + ‖b‖2∞‖gp,ε̃‖2∞)

×
∫ A

a

∫ T

t

β2
1(t, r, x)u

2(m, 0, x) dm dr

+

∫ A

a

3AM2e2Aλ1 |b(t, r, x)pε̃(t, r, x)|2|u(t, r, x)|2 dr.
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Put

(95)





M̃11 := 6ATM4e2(A+T )λ1(‖β1‖2∞ + ‖b‖2∞‖gp,ε̃‖2∞),

B(t, a, x) := 3

∫ A

a

A|S(r − a)β1(t, r, x)S(T − t)uT (T − t, x)|2 dr

+M̃11

∫ A

a

∫ T

t

β2
1(t, r, x)u

2(m, 0, x) dm dr in Q,

D(t, r, x) := 3AM2e2Aλ1 |b(t, r, x)pε̃(t, r, x)|2.

Under these notations, (94) becomes

(96) |u(t, a, x)|2 6 B(t, a, x) +

∫ A

a

D(t, r, x)|u(t, r, x)|2 dr.

Applying Gronwall-Bellman’s lemma to (96) with respect to the age variable a we get

(97) |u(t, a, x)|2 6 B(t, a, x) +

∫ A

a

B(t, s, x)D(t, s, x)e
∫

s

a
D(t,r,x) dr ds,

where s denotes a variable of integration and not the parameter of Carleman esti-

mates.

To approve our claim (87), it remains to find upper bounds of “B(t, a, x)” and

“
∫ A

a
B(t, s, x)D(t, s, x)e

∫
s

a
D(t,r,x) dr ds”.

Indeed, thanks again to (90), the formula of B given in (95) allows us to say that

B(t, a, x) 6 3AM2e2λ1A‖β1‖2∞
∫ A

a

|S(T − t)uT (T − t, x)|2 dr(98)

+ M̃11‖β1‖2∞
∫ A

a

∫ T

t

u2(m, 0, x) dm dr

6 3A2M2e2λ1A‖β1‖2∞|S(T − t)uT (T − t, x)|2

+ M̃11A‖β1‖2∞
∫ T

t

u2(m, 0, x) dm,

where the constant M̃11 is defined by (95). This involves

∫ A

a

B(t, s, x) ds 6 3A3M2e2λ1A‖β1‖2∞|S(T − t)uT (T − t, x)|2(99)

+ M̃11A
2‖β1‖2∞

∫ T

t

u2(m, 0, x) dm.
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Also, one can check out in a straightforward way that

e
∫

s

a
D(t,r,x) dr = exp

(
3AM2e2Aλ1

∫ s

a

|b(t, r, x)pε̃(t, r, x)|2 dr
)

(100)

6 exp (3AM2e2Aλ1‖b‖2∞‖pε̃‖2j,K(s− a))

6 exp (3A2M2e2Aλ1‖b‖2∞‖pε̃‖2j,K).

Here in the first inequality, we employed the fact that pε̃ ∈ C∞(Q). The index j

and the compact K are defined in (40). Recall again that s here is the symbol of

an integration variable and not the parameter of Carleman estimates. Therefore, in

the light of the expression of D defined in (95) and estimates (99) and (100) we can

deduce that

∫ A

a

B(t, s, x)D(t, s, x)e
∫

s

a
D(t,r,x) dr ds(101)

6 3AM2e2Aλ1‖b‖2∞‖pε̃‖2j,K

× exp (3A2M2e2Aλ1‖b‖2∞‖pε̃‖2j,K)

∫ A

a

B(t, s, x) ds

6 9A4M4e4Aλ1‖β1‖2∞‖b‖2∞‖pε̃‖2j,K
× exp (3A2M2e2Aλ1‖b‖2∞‖pε̃‖2j,K)|S(T − t)uT (T − t, x)|2

+ 3M̃11A
3‖β1‖2∞‖b‖2∞‖pε̃‖2j,Ke2Aλ1

× exp (3A2M2‖b‖2∞‖pε̃‖2j,Ke2Aλ1)

∫ T

t

u2(m, 0, x) dm.

Accordingly, via inequalities (97), (98) and (101) the following result holds:

|u(t, a, x)|2(102)

6 (9A4M4e4Aλ1‖β1‖2∞‖b‖2∞‖pε̃‖2j,K exp (3A2M2e2Aλ1‖b‖2∞‖pε̃‖2j,K)

+ 3A2M2e2λ1A‖β1‖2∞)|S(T − t)uT (T − t, x)|2

+ (3M̃11A
3‖β1‖2∞‖b‖2∞‖pε̃‖2j,Ke2Aλ1 exp (3A2M2‖b‖2∞‖pε̃‖2j,Ke2Aλ1)

+ M̃11A‖β1‖2∞)

∫ T

t

u2(m, 0, x) dm.

Set

(103)





M̃12 := 9A4M4e4Aλ1‖β1‖2∞‖b‖2∞‖pε̃‖2j,K exp (3A2M2e2Aλ1‖b‖2∞‖pε̃‖2j,K)

+3A2M2e2λ1A‖β1‖2∞,
M̃13 := 3M̃11A

3‖β1‖2∞‖b‖2∞‖pε̃‖2j,Ke2Aλ1 exp (3A2M2‖b‖2∞‖pε̃‖2j,Ke2Aλ1)

+M̃11A‖β1‖2∞.
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Thus, inequality (102) is simplified in the following way:

(104) |u(t, a, x)|2 6 M̃12|S(T − t)uT (T − t, x)|2 + M̃13

∫ T

t

u2(m, 0, x) dm.

Integration of (104) over (14T,
3
4T )× (0, δ − 3

4T )× (0, 1) steers to

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|u(t, a, x)|2 dt da dx(105)

6 M̃12

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|S(T − t)uT (T − t, x)|2 dt da dx

+ M̃13

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

∫ T

t

u2(m, 0, x) dm dt da dx

6 M̃12

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|S(T − t)uT (T − t, x)|2 dt da dx

+
T

2

(
δ − 3T

4

)
M̃13

∫ 1

0

∫ T

0

u2(m, 0, x) dm dx.

The variable change s̃ = T − t in the first integral of the right-hand side of (105)

allows us to say that

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|u(t, a, x)|2 dt da dx(106)

6

(
δ − 3T

4

)
M̃12

∫ 1

0

∫ 3T/4

T/4

|S(s̃)uT (s̃, x)|2 ds̃ dx

+
T

2

(
δ − 3T

4

)
M̃13

∫ 1

0

∫ T

0

u2(m, 0, x) dm dx.

Since T < δ and exploiting relation (69), one can transform (106) to

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|u(t, a, x)|2 dt da dx(107)

6

(
δ − 3T

4

)
M̃12

∫ 1

0

∫ 3T/4

T/4

M2e2λ1T |uT (s̃, x)|2 ds̃ dx

+
T

2

(
δ − 3T

4

)
M̃13

∫ 1

0

∫ δ

0

u2(m, 0, x) dm dx.

Hence,

(108)

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|u(t, a, x)|2 dt da dx 6 M̃3

∫ 1

0

∫ δ

0

|uT (a, x)|2 da dx,
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where M̃3 = (δ − 3
4T )(M

2e2λ1T M̃12 +
1
2T C̃8M̃13) with M and λ1 being the same as

in (66), C̃8 is given in (69), the positive constants M̃12 and M̃13 are given in (103)

and M̃11 is defined by (95).

Consequently, the first relation of (87) is achieved. Likewise, we can prove the

second inequality of (87) using the same procedure as we mentioned previously.

Finally, inequality (85) is true in the case where a > t+ (A− T ).

Let us now address the case when a 6 t+ (A− T ). Like the first case, mixing the

implicit formula (63) and (64) (in the case when a 6 t+(A−T )) and (65) we obtain
(109)



u(t, a, ·) = S(T − t)uT (a+ T − t, ·)

+

∫ T

t

S(l− t)β1(l, a, ·)S(T − l)uT (T − l, ·) dl

+

∫ T

t

S(l− t)β1(l, a, ·)

×
(∫ T

l

S(m− l)(β1(m, 0, ·)− b(m, 0, ·)gp,ε̃(m, ·))u(m, 0, ·) dm
)
dl

−
∫ T

t

S(l− t)b(l, a, ·)pε̃(l, a·)u(l, a, ·) dl,

v(t, a, ·) = L(T − t)vT (a+ T − t, ·)

+

∫ T

t

L(l− t)β2(l, a, ·)L(T − l)vT (T − l, ·) dl

+

∫ T

t

L(l− t)β2(l, a, ·)

×
(∫ T

l

L(m− l)(β2(m, 0, ·) + µ3(m, 0, ·)gy,ε̃(m, ·))v(m, 0, ·) dm
)
dl

+

∫ T

t

L(l− t)µ3(l, a, ·)yε̃(l, a·)v(l, a, ·) dl.

Set for all (t, a, x) ∈ Q, R(t, a, x) :=
∫ T

t S(l − t)β1(l, a, ·)S(T − l)uT (T − l, ·) dl +∫ T

t S(l − t)β1(l, a, ·)
(∫ T

l S(m − l)(β1(m, 0, ·) − b(m, 0, ·)gp,ε̃(m, ·))u(m, 0, ·) dm
)
dl −∫ T

t
S(l − t)b(l, a, ·)pε̃(l, a·)u(l, a, ·) dl. Following this, the first solution u becomes

(110) ∀ (t, a, x) ∈ Q, u(t, a, x) = S(T − t)uT (a+ T − t, ·) +R(t, a, x).

If one mimics the same blend of semi-group theory, Gronwall-Bellman’s lemma and

Hölder inequality used in the computations in the case “a > t + (A − T )”, we can

establish the existence of the positive constant M̃3 of (108) such that

(111)

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|R(t, a, x)|2 dt da dx 6 M̃3

∫ 1

0

∫ δ

0

|uT (a, x)|2 da dx.
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On the other hand, we can observe that

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|S(T − t)uT (a+ T − t, x)|2 dt da dx

=

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|S(t̃)uT (a+ t̃, x)|2 dt̃ da dx

6M2e3λ1T/2

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|uT (a+ t̃, x)|2 dt̃ da dx,

where M and λ1 are the same as in (66) and t̃ := T − t. With the variable change

ã = a+ t̃, it follows that

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|S(T − t)uT (a+ T − t, x)|2 dt da dx(112)

6M2e3λ1T/2

∫ 1

0

∫ δ−3T/4

0

∫ a+3T/4

a+T/4

|uT (ã, x)|2 dã da dx

6M2e3λ1T/2

∫ 1

0

∫ δ−3T/4

0

∫ A

T/4

|uT (ã, x)|2 dã da dx

6

(
δ − 3T

4

)
M2e3λ1T/2

∫ 1

0

∫ A

T/4

|uT (ã, x)|2 dã dx

6

(
δ − 3T

4

)
M2e3λ1T/2

∫ 1

0

∫ A

0

|uT (ã, x)|2 dã dx,

the second inequality obtained in (112) is an outcome of the inclusion (a + 1
4T ,

a+ 3
4T ) ⊂ (14T, δ), for all a ∈ (0, δ − 3

4T ).

It is now clear from (110), (111) and (112) that there exists a positive constant M̃5

such that

(113)

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|u(t, a, x)|2 dt da dx 6 M̃5

∫ 1

0

∫ δ

0

|uT (a, x)|2 da dx,

accurately, M̃5 := 2(M̃3 + (δ − 3
4T )M

2e3λ1T/2).

In the same manner, one can bring out a similar inequality for the solution v

through the second implicit formula in (109), i.e., the existence of M̃6 > 0 such that

(114)

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

|v(t, a, x)|2 dt da dx 6 M̃6

∫ 1

0

∫ δ

0

|vT (a, x)|2 da dx.
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Hence, summing up (113) and (114), inequality (85) holds in the current case. Ab-

stractly,

∫ 1

0

∫ δ−3T/4

0

∫ 3T/4

T/4

(u2(t, a, x) + v2(t, a, x)) dt da dx

6 Ĉ

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx

is satisfied in both cases a > t+(A−T ) and a 6 t+(A−T ) and when Ĉ is a positive
constant. The last inequality together with (84) imply that

∫ 1

0

∫ A

0

(u2(0, a, x) + v2(0, a, x)) da dx

6
2eκ1T

T

∫ 1

0

∫ δ

δ−3T/4

∫ 3T/4

T/4

(u2(t, a, x) + v2(t, a, x)) dt da dx

+ Ĉ
2eκ1T

T

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx.

Subsequently, with the help of the Hardy-Poincaré inequality and the definitions

of ϕi, i = 1, 2, stated in (19) we arrive to

∫ 1

0

∫ A

0

(u2(0, a, x) + v2(0, a, x)) da dx

6 Ĉ
2eκ1T

T

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx

+ M̃7
2eκ1T

T

(∫ 1

0

∫ δ

δ−3T/4

∫ 3T/4

T/4

sΘk1(x)u
2
x(t, a, x)e

2sϕ1 dt da dx

+

∫ 1

0

∫ δ

δ−3T/4

∫ 3T/4

T/4

sΘk2(x)v
2
x(t, a, x)e

2sϕ2 dt da dx

)
.

The proof of observability inequality (73) is finished thanks to (115) and applying

the Carleman estimate (71) stated in Theorem 3.12 in the second term on the right-

hand side of the last inequality. �

R em a r k 4.2. The proofs of (86), (113) and (114) can be adopted to demon-

strate that for any bounded function R1 in Q depending on time t, age a and gene

type x, the functions u := R1u and v := R1v realize the inequalities

(115)

∫

ω

∫ A

0

∫ T

0

|u(t, a, x)|2 dt da dx 6 M̃14

∫ 1

0

∫ δ

0

|uT (a, x)|2 da dx,
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and

(116)

∫

ω

∫ A

0

∫ T

0

|v(t, a, x)|2 dt da dx 6 M̃15

∫ 1

0

∫ δ

0

|uT (a, x)|2 da dx,

where (u, v) is the solution of (41), ω is the region where the control ϑ acts and M̃14

and M̃15 are given positive constants which do not depend on δ.

With the density dilemma provided in the third point of Proposition 3.8, one can

extend Proposition 4.1 to:

Proposition 4.3. Assume that (5) (or (25)) and (6) hold. Let A, T > 0 be given

and fixed such that T < δ, where δ verifies (3). Then there exists a positive con-

stant Cobs,δ such that for every solution (u, v) of (11) (or with Newmann conditions

on x = 0) the following observability inequality is satisfied:

∫ 1

0

∫ A

0

(u2(0, a, x) + v2(0, a, x)) da dx(117)

6 Cobs,δ

(∫

q

u2 dt da dx+

∫ 1

0

∫ δ

0

(u2T (a, x) + v2T (a, x)) da dx

)
.

With the aid of the observability inequality (117) we are now able to show the

result of null controllability (4) related to the Lotka-Volterra model (1).

4.2. Null controllability result. This paragraph deals with the null controlla-

bility property (4) of the Holling type I functional predator response system (1) (or

with Newmann conditions on x = 0). It is stipulated as follows:

Theorem 4.4. Assume that (5) (or (25)) and (6) hold. Let A, T > 0 be given and

fixed such that T < δ, where δ verifies (3). Then for all (y0, p0) ∈ L2(QA)×L2(QA)

there exists a control ϑ ∈ L2(q) depending on δ such that the associated solution

(y, p) of (1) (or with Newmann conditions on x = 0) verifies

(118)

{
y(T, a, x) = 0, a.e. in (δ, A)× (0, 1),

p(T, a, x) = 0, a.e. in (δ, A)× (0, 1).

Recall that q = (0, T )× (0, A)× ω.

P r o o f. Let ε > 0 and consider the cost function

Jε =
1

2ε

∫ 1

0

∫ A

δ

(y2(T, a, x) + p2(T, a, x)) da dx+
1

2

∫

q

ϑ2(t, a, x) dt da dx.
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We can prove that Jε is continuous, convex and coercive. Then it admits at least

one minimizer ϑε and we have

(119) ϑε = −uε(t, a, x)χω(x) in Q

with uε being the solution of the following system:

∂uε
∂t

+
∂uε
∂a

+ (k1(x)(uε)x)x − µ1(t, a, x)uε − b(t, a, x)uεpε(120)

= −β1uε(t, 0, x) in Q,

uε(t, a, 1) = uε(t, a, 0) = 0 on (0, T )× (0, A),

uε(T, a, x) =
1

ε
yε(T, a, x)χ(δ,A) in (0, A)× (0, 1),

uε(t, A, x) = 0 in QT .

Consider also vε the solution of the system

∂vε
∂t

+
∂vε
∂a

+ (k2(x)(vε)x)x − µ2(t, a, x)vε + µ3(t, a, x)vεyε(121)

= −β2vε(t, 0, x) in Q,

vε(t, a, 1) = vε(t, a, 0) = 0 on (0, T )× (0, A),

vε(T, a, x) =
1

ε
pε(T, a, x)χ(δ,A) in QA,

vε(t, A, x) = 0 in QT ,

where (yε, pε) is the solution of (1) associated to the control ϑε. Multiplying the first

equation of (120) by yε and integrating over Q we obtain

∫

Q

yε

(∂uε
∂t

+
∂uε
∂a

+ (k1(x)(uε)x)x − µ1(t, a, x)uε − b(t, a, x)uεpε

)
dt da dx

= −
∫

Q

uε

(∂yε
∂t

+
∂yε
∂a

− (k1(x)(yε)x)x + µ1(t, a, x)yε + b(t, a, x)yεpε

)
dt da dx

+

∫ 1

0

∫ A

0

yε(T, a, x)uε(T, a, x) da dx

−
∫ 1

0

∫ A

0

yε(0, a, x)uε(0, a, x) da dx

−
∫ 1

0

∫ T

0

yε(t, 0, x)uε(t, 0, x) dt dx.
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Thus,

∫

Q

yε

(∂uε
∂t

+
∂uε
∂a

+ (k1(x)(uε)x)x − µ1(t, a, x)uε − b(t, a, x)uεpε

)
dt da dx(122)

= −
∫

Q

uεϑεχω dt da dx+

∫ 1

0

∫ A

δ

1

ε
y2ε(T, a, x) da dx

−
∫ 1

0

∫ A

0

yε(0, a, x)uε(0, a, x) da dx

−
∫ 1

0

∫ A

0

∫ T

0

β1yε(t, a, x)uε(t, 0, x) dt da dx.

Also, one can see that

∫

Q

yε

(∂uε
∂t

+
∂uε
∂a

+ (k1(x)(uε)x)x − µ1(t, a, x)uε − b(t, a, x)uεpε

)
dt da dx(123)

= −
∫ 1

0

∫ A

0

∫ T

0

β1yε(t, a, x)uε(t, 0, x) dt da dx.

Consequently, (122) and (123) lead to

(124)

∫

q

ϑ2ε dt da dx+

∫ 1

0

∫ A

δ

1

ε
y2ε(T, a, x) da dx =

∫ 1

0

∫ A

0

yε(0, a, x)uε(0, a, x) da dx.

Similarly, multiplying the first equation of (121) by pε and integrating over Q, we

can conclude that

(125)

∫ 1

0

∫ A

δ

1

ε
p2ε(T, a, x) da dx =

∫ 1

0

∫ A

0

pε(0, a, x)vε(0, a, x) da dx.

Summing (124) and (125) side by side and applying Young’s inequality we have

∫

q

ϑ2ε dt da dx+
1

ε

∫ 1

0

∫ A

δ

(y2ε(T, a, x) + p2ε(T, a, x)) da dx

=

∫ 1

0

∫ A

0

yε(0, a, x)uε(0, a, x) da dx

+

∫ 1

0

∫ A

0

pε(0, a, x)vε(0, a, x) da dx

6
1

4Cobs,δ

∫ 1

0

∫ A

0

(u2ε(0, a, x) + v2ε (0, a, x)) da dx

+ Cobs,δ

∫ 1

0

∫ A

0

(y20(a, x) + p20(a, x)) da dx

with Cobs,δ being the constant of observability inequality (117).
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This together with observability inequality (117) allow us to say that

∫

q

ϑ2ε dt da dx+
1

ε

∫ 1

0

∫ A

δ

(y2ε(T, a, x) + p2ε(T, a, x)) da dx

6
1

4

(∫

q

u2ε dt da dx+

∫ 1

0

∫ δ

0

(u2ε,T (a, x) + v2ε,T (a, x)) da dx

)

+ Cobs,δ

∫ 1

0

∫ A

0

(y20(a, x) + p20(a, x)) da dx.

Replacing by the expressions of uε,T and vε,T in the last inequality and keeping in

mind relation (119), the last inequality reads as

3

4

∫

q

ϑ2ε dt da dx+
1

ε

∫ 1

0

∫ A

δ

(y2ε(T, a, x) + p2ε(T, a, x)) da dx

6 Cobs,δ

∫ 1

0

∫ A

0

(y20(a, x) + p20(a, x)) da dx.

Hence, it follows that

(126)





∫

q

ϑ2ε dt da dx 6
4Cobs,δ

3

∫ 1

0

∫ A

0

(y20(a, x) + p20(a, x)) da dx,

∫ 1

0

∫ A

δ

y2ε(T, a, x) da dx 6 εCobs,δ

∫ 1

0

∫ A

0

(y20(a, x) + p20(a, x)) da dx,

∫ 1

0

∫ A

δ

p2ε(T, a, x) da dx 6 εCobs,δ

∫ 1

0

∫ A

0

(y20(a, x) + p20(a, x)) da dx.

Then, we can extract two subsequences of (yε, pε) and ϑε denoted also by (yε, pε)

and ϑε that converge weakly towards (y, p) and ϑ in L
2((0, T )× (0, A), H1

k1
(0, 1) ×

H1
k2
(0, 1)) and L2(q), respectively.

Now, by a variational technic, we prove that (y, p) is a solution of (1) corresponding

to the control ϑ and, by the second and the third estimates of (126), (y, p) satisfies (4).

Another deduction from (126), specially the first inequality, is that the researched

control ϑ depends on δ. �

R em a r k 4.5. Theorem 4.4 is important since it amounts to saying that we can

control with one control force a very wide age classes of the two coupled populations

(prey and predator) in a minimum time of control and then with a minimum cost

control Cobs,δ.
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5. Appendix

As is mentioned in the introduction, this section is devoted to the proofs of some

intermediate results useful to show the full ω-Carleman estimate associated to sys-

tem (11). Firstly, we begin by Caccioppoli’s inequality stated in the following lemma.

Lemma 5.1. Let ω′ be a subset of ω such that ω′ ⊂⊂ ω. Let (u, v) be a solu-

tion of (42) (or with Newmann conditions on x = 0). Then there exists a positive

constant Cε̃ such that

∫

ω′

∫ A

0

∫ T

0

(u2x + v2x)e
2sϕi dt da dx(126)

6 Cε̃

(∫

q

s2Θ2(u2 + v2)e2sϕi dt da dx+

∫

q

(h21 + h22)e
2sϕi dt da dx

)

with ϕi, i = 1, 2, defined by (19).

P r o o f. The proof of this result is similar to the one of [26], Lemma 5.1. Indeed,

consider the smooth cut-off function ζ defined by

(127)





0 6 ζ(x) 6 1, x ∈ R,

ζ(x) = 0, x < x1 and x > x2,

ζ(x) = 1, x ∈ ω′.

Put (·)l = ∂·
∂l , where l = t, a, x. For (u, v), the solution of (42), one has

0 =

∫ T

0

d

dt

(∫ 1

0

∫ A

0

ζ2e2sϕi(u2 + v2) da dx

)
dt(128)

= 2s

∫ 1

0

∫ A

0

∫ T

0

ζ2(ϕi)t(u
2 + v2)e2sϕi dt da dx

+ 2

∫ 1

0

∫ A

0

∫ T

0

ζ2uute
2sϕi dt da dx

+ 2

∫ 1

0

∫ A

0

∫ T

0

ζ2vvte
2sϕi dt da dx

= 2s

∫ 1

0

∫ A

0

∫ T

0

ζ2(ϕi)t(u
2 + v2)e2sϕi dt da dx

+ 2

∫ 1

0

∫ A

0

∫ T

0

ζ2u(h1 − ua − (k1ux)x + µ1u+ bupε̃)e
2sϕi dt da dx

+ 2

∫ 1

0

∫ A

0

∫ T

0

ζ2v(h2 − va − (k2vx)x + µ2v − µ3vyε̃)e
2sϕi dt da dx.

402



Then integrating by parts we obtain

2

∫

Q

ζ2(k1u
2
x + k2v

2
x)e

2sϕi dt da dx

= − 2s

∫

Q

ζ2(u2 + v2)ψi(Θa +Θt)e
2sϕi dt da dx

− 2

∫

Q

ζ2(uh1 + vh2)e
2sϕi dt da dx− 2

∫

Q

ζ2(µ1u
2 + µ2v

2)e2sϕi dt da dx

+

∫

Q

(k1(ζe
2sϕi)x)xu

2 dt da dx+

∫

Q

(k2(ζe
2sϕi)x)xv

2 dt da dx

− 2

∫

Q

ζ2bu2pε̃e
2sϕi dt da dx+ 2

∫

Q

ζ2µ3v
2yε̃e

2sϕi dt da dx.

On the other hand, by the definitions of ζ given in (128), ψi, i = 1, 2, and Θ given

in (19), using Young’s inequality and taking s quite large, one can prove the existence

of a positive constant c such that

2

∫

Q

ζ2(k1u
2
x + k2v

2
x)e

2sϕi dt da dx

> 2min
(
min
x∈ω′

k1(x), min
x∈ω′

k2(x)
) ∫

ω′

∫ A

0

∫ T

0

(u2x + v2x)e
2sϕi dt da dx,

∫

Q

(k1(ζe
2sϕi)x)xu

2 dt da dx 6 c

∫

ω

∫ A

0

∫ T

0

s2Θ2u2e2sϕi dt da dx,

∫

Q

(k2(ζe
2sϕi)x)xv

2 dt da dx 6 c

∫

ω

∫ A

0

∫ T

0

s2Θ2v2e2sϕi dt da dx,

− 2s

∫

Q

ζ2(u2 + v2)ψi(Θa +Θt)e
2sϕi dt da dx

6 c

∫

ω

∫ A

0

∫ T

0

s2Θ2(u2 + v2)e2sϕi dt da dx,

− 2

∫

Q

ζ2(uh1 + vh2)e
2sϕi dt da dx

6 c

∫

ω

∫ A

0

∫ T

0

s2Θ2(u2 + v2)e2sϕi dt da dx

+ c

∫

ω

∫ A

0

∫ T

0

(h21 + h22)e
2sϕi dt da dx,

− 2

∫

Q

ζ2(µ1u
2 + µ2v

2)e2sϕi dt da dx 6 c

∫

ω

∫ A

0

∫ T

0

s2Θ2(u2 + v2)e2sϕi dt da dx.

Now, keeping in mind the first hypotheses in (6) on b and µ3, since yε̃, pε̃ ∈ C∞(Q)

and taking again s quite large, we can infer that there exist another positive con-
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stants c1 and c2 such that

−2

∫

Q

ζ2bu2pε̃e
2sϕi dt da dx 6 c1

∫

ω

∫ A

0

∫ T

0

s2Θ2u2e2sϕi dt da dx,

2

∫

Q

ζ2µ3v
2yε̃e

2sϕi dt da dx 6 c2

∫

ω

∫ A

0

∫ T

0

s2Θ2v2e2sϕi dt da dx,

where c1 and c2 depend, respectively, on the semi-norms of pε̃ and yε̃ defined by (38).

Combining all the previous inequalities we reach finally estimate (127). �

R em a r k 5.2.

(1) In Lemma 5.1, the set ω′ is chosen so that 0, which is exactly the point of

degeneracy of the dispersion coefficients ki, i = 1, 2, does not belong to ω′. More

generally, if the degeneracy occurs at a point x0 ∈ (0, 1), one must take x0 out

of ω′ in the case of interior degeneracy to establish a Caccioppoli’s type inequality

(see [34] for more details in this context).

(2) Lemma 5.1 remains true in L2(Q) using the density argument cited in the third

point of Proposition 3.8 since yε̃ and pε̃ approximate, respectively, y and p, the

solutions of (1) in L2(Q) when ε̃ goes to 0.

We close this section by the following result.

Lemma 5.3. Assume that conditions (21) hold. Then the interval

I =
[k2(1)(2− γ)(e2κ‖σ‖∞ − 1)

d2k2(1)(2 − γ)− 1
,
4(e2κ‖σ‖∞ − eκ‖σ‖∞)

3d2

)

is not empty.

P r o o f. Indeed one has

4(e2κ‖σ‖∞ − eκ‖σ‖∞)

3d2
− k2(1)(2 − γ)(e2κ‖σ‖∞ − 1)

d2k2(1)(2− γ)− 1

=
4(e2κ‖σ‖∞ − eκ‖σ‖∞)(d2k2(1)(2− γ)− 1)− 3d2k2(1)(2 − γ)(e2κ‖σ‖∞ − 1)

3d2(d2k2(1)(2− γ)− 1)

=
e2κ‖σ‖∞(d2k2(1)(2 − γ)− 4)− 4eκ‖σ‖∞(d2k2(1)(2 − γ)− 1)

3d2(d2k2(1)(2− γ)− 1)

+
k2(1)(2− γ)

d2k2(1)(2− γ)− 1

=
eκ‖σ‖∞(eκ‖σ‖∞(d2k2(1)(2− γ)− 4)− 4(d2k2(1)(2 − γ)− 1))

3d2(d2k2(1)(2− γ)− 1)

+
k2(1)(2− γ)

d2k2(1)(2− γ)− 1
.
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Using the fact that d2 > 5/(k2(1)(2− γ)), we can conclude that

4(d2k2(1)(2− γ)− 1)

(d2k2(1)(2− γ)− 4)
6 16.

Since κ > 4 ln(2)/‖σ‖∞, we have eκ‖σ‖∞ > 16. Therefore, the previous difference is

positive and subsequently I 6= ∅. �

A c k n ow l e d gm e n t s. The author is very thankful to the anonymous reviewer

for fruitful questions and meticulous remarks and comments as well as to the journal

editor.
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