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Abstract. We shall establish an explicit formula for the Davenport series in terms of trivial
zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite
series involving a PNT (Prime Number Theorem) related to arithmetic function a, with
the periodic Bernoulli polynomial weight B, (nx) and PNT arithmetic functions include
the von Mangoldt function, Mébius function and Liouville function, etc. The Riesz sum of
order 0 or 1 gives the well-known explicit formula for respectively the partial sum or the
Riesz sum of order 1 of PNT functions. Then we may reveal the genesis of the Popov explicit
formula as the integrated Davenport series with the Riesz sum of order 1 subtracted. The
Fourier expansion of the Davenport series is proved to be a consequence of the functional
equation, which is referred to as the Davenport expansion. By the explicit formula for
the Davenport series, we also prove that the Davenport expansion for the von Mangoldt
function is equivalent to the Kummer’s Fourier series up to a formula of Ramanujan and
a fortiori is equivalent to the functional equation for the Riemann zeta-function.

Keywords: explicit formula; Davenport expansion; Kummer’s Fourier series; Riemann
zeta-function; functional equation

MSC 2020: 11M41, 11NO05, 11J54

1. INTRODUCTION AND POPOV’S EXPLICIT FORMULA

Let ¢(s) be the Riemann zeta-function and let A(n) be the von Mangoldt function
defined by

¢(s) o~ AW
1.1 - = , o0:=Res>1.
(L1) ()~ 2w
For basic knowledge on zeta-functions, we refer to [6], [12], [24], [29] etc.
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Let {y} = y — [y] denote the fractional part of y € R with [y] the integral part
of y, i.e., the greatest integer not exceeding y. Let

(12) Bete) = Bolla)) = X () Bl

k=0
be the »th periodic Bernoulli polynomial, where > € N, By is the kth Bernoulli
number. It has the Fourier expansion

o 2! e eQninx

(1.3) B.(x) = _W 007

n#0

We use the following cases

= 1 11 .
Bl(x):{x}—iz—gzgsm%mx, x ¢,

By (z) = {a}* — {«} + ] Z cos 2nna.

Patkowski in [19] proved the generalized Popov formula (see [23]):
1 Aln) r(n ny 2
S P ({z} )

+Z( r—o+1 _C(r—g)) ot

2(r—o—1)(r—o) r—o /r+l—p
+§:( 2k+r+1 _C:(’I“—l—Qk)) pr2k-l
—\2(2k+ 7 —1)(2k + 1) r+2k Jr+2k+1’
where
2 —log2n -
21. ) - )
(15) h’T(m) = r C(l _ 7") ./I,‘_T
(2(1—r)(2—r)_ 1—r ) ;o Tl

and the first sum on the right of (1.4) is over all nontrivial zeros g in the critical strip
and the second is the sum over trivial zeros —2k, k € N. We assume throughout that
all the nontrivial zeros of {(s) are simple.

The argument depends on the following identity. For r > 1, z >0 and 1 < ¢ < 2,

o 53 aR({E-{3)

1 2—5 C(1 =9\ x
_Q_Tci/(c)(Qs(s—l)_ 1-s )Z(HT_l)Q—sds'
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The main result of [21] is Theorem 1.1, which gives an explicit formula for the

sum 3 3 (f(n)/n" ) ({n/z} — {n/x}?) similar to (1.4) with A(n) replaced by f(n).
n>x 00

The sets {f(n)} are generated by the Dirichlet series L(s) = ) f(n)/n® absolutely
n=1

convergent for o > 1.
In this paper, we assume L(s) is of the form

(L.7) L= T 26 g 5 o)

absolutely convergent for o > 1 and Z(s) is a meromorphic function which has no
zeros at the zeros of ((s) (this corresponds to simplicity of zeros of the Riemann
zeta-function) and such that

(1.8) L(s) = O(log |s])

for |s| large (save for neighborhoods of trivial zeros). Equation (1.8) is satisfied by
L(s) = ={'(s)/¢(s), see [24], Satz 4.3, page 227, [6], page 108, etc.
We call the (formal) expansion

) . 2 ) . Lo B
(1,9) Z anB%(nm) = — (27[1)% Z(e2mlx + (_1) ‘o QKIII)CZ, =1 Z aq
n=1

1=1 d|l

the Davenport expansion and we refer to the left-hand side series as the Daven-
port series, where {a,} are arithmetical functions which appear in PNT. Since
B’ (z) = »B,_1(z), we may work with the integrated Davenport series and shift
to the lower order by termwise differentiation as long as the differentiated series is
uniformly convergent, cf. [4], [5], [31], etc.

Our aim is to give an explicit formula (in terms of trivial zeros) for the Davenport
series or the integrated one with respectively

f(n) _ f(n)

(1.10) e ey

where r > 1 and f(n) are generated by (1.7), cf. Theorem 1.2 and Corollary 2.1. We
restrict our selves to the cases

(1.11) f(n)=A(n), (Z(s) ==C(s)), f(n)=mnln), (Z(s)=1),

and illustrate this by Theorem 1.2 for the von Mangoldt function A(n). Subtracting
the explicit formula in Lemma 1.2 from the formula in Lemma 1.1 yields the Popov
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formula, see Theorem 1.1. Equating the explicit formula with the Davenport ex-
pansion (see Theorem 2.1) we deduce Corollary 1.1 to the effect that the Davenport
expansion for the von Mangoldt function is equivalent to the functional equation for
the Riemann zeta-function, cf. concluding remarks.

Replacing (1.1) by (1.7), (1.6) reads

w2 5 S I - (5) - 55 [ (- D) e -9 as

n>x

where —1 < b < 0. This follows from

- 2mi s+1 7
which is proved in [19], but we cannot follow the proof and we shall use

(1.14) %({x}2 —{z}) = _ZLT[i o ﬁ{(—s — 1)z~ % ds, —% <b<O0.

We shall see the effect of adding

11 1
I:= ———_/ 5T ds
2 2TEI (b) S(S =+ 1)

to the identity (1.14). Shifting the integration path to 0 = ¢ > 0 in

11 1
I=—-— — 112 (s,
22m (b—1) S(S+ ].)
we find that
0 z>1
11 1 1 ’ ’
_I:___/ 2 T2ds — (22 — ) = 1
227 Jio) s(s+1) 2( ) —5(3:2—3:), 0<z<1
since ) )
1 1 2 g *(I—a7 ), =>1,
2mi () S(S+1) O, 0<£L’<1

This corresponds to cancellation of the terms with 0 < z < 1 in (1.22) and moving
the Riesz sum to the right.

Formula (1.14) must be a special case of Mikolas formula, see [17], Proposition 1
and [18]:
1 I(s)

(1.15) B..(z) = —(—1) 2! —

! 7 ((1—s— )"
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where 0 < ¢ < 1, which has been used in the literature, e.g., in [20]. A slightly
different but equivalent form of (1.15) is used for B, (z), cf. [2]:

1

@) Balw) = ez [ (@4 (1T ) 2) s
(116) (ZK)%E;{ (l‘) = —%'% 2 cos g(%— S)F(S)C(S + %)(2]133)75 ds.
m ()

For the integral in (1.15) to be absolutely convergent, —1 < ¢ < —1 must hold in
view of [29], (5.1.3), page 81. This corresponds to shifting the integration path to
the left too =d, -1 <d < —% (the left side limit —1 is for excluding poles) and we
encounter a simple pole at s = 0 with residue

1

Hence, (1.15) leads to

(1.17) B, (r) - B, = _(_1)%%|i I'(s)

! B T L P

where —1 < d < —% and the integral is absolutely convergent. The case » = 2 is
consistent with Popov’s weight {n/x} — {n/z}?.

We use the special case of (1.17) with > = 2, which occurs on writing s for —s —1
(b=-d-1)

1 1 1 1
1.18 “Bo(z) — =By = —— | ——((—s—1z—"d
(1.18) 5 2(7) 5 B2 27 ) S(S+1)C( s— 1z~ ds,
where
1
(1.19) —5<b<0

and (1.14) follows.
This is reminiscent of Hamburger’s result (see [8]) on the Fourier series for Ba(x).
Formula (4.2) in [2], (¢ > 0)

—(Bu(z) = Bu(2)) = Y _(x —n)""

explains the addition of I above and suggests the division of the sum on the left
of (1.23) into two: n < x and n > z, i.e.,

pa ASAY sy

n<x n>x
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The first sum on the right is
1 A(n)
(1.21) 5 > —

n ((%)2 N %) = _ﬁ Z #(x—n)v

n<x n<w

which is the Riesz sum of order 1 (in Lemma 1.2). Thus, the following principle
comes out.

The whole sum over n = 1,2,... in (1.22) with periodic Bernoulli polynomial
weight consists of n < = part (Riesz sum of order 1) and n > x part (Popov’s for-
mula). The whole sum has two expressions — the (integrated) Davenport expansion
which is a consequence of the functional equation (see Theorem 2.1) and the ex-
plicit formula involving trivial zeros (see Theorem 1.2). Comparison of them yields
Kummer’s Fourier series in the case of the von Mangoldt function.

Although (1.12) gives a direct proof of Popov’s theorem, Theorem 1.1, it does not
give any more information. Thus, in view of (1.14), instead of (1.12) we are to use

Y (R )
= — %m o ﬁg(—s —1)L(s+r+1)x°ds
= — QLm /(C) Wlm_s)((l —8)L(s+r—1)a""2ds,

where 1 < ¢ :=b+2 < 3. As long as the series J := 2 > f(n)/n"*! is conver-
(

gent, we may think of (1.22) as the Davenport expansion (wi il By weight) with the
series %Bg.] subtracted, cf., e.g., (1.32) in Theorem 1.2.

As is stated, instead of going on general lines, we restrict ourselves to the case of
the von Mangoldt function and state the explicit formula for the Davenport sum,
cf. Theorem 1.2.

Lemma 1.1. For x > 1 we have

a2 JEA((F (2] - - (G ) sane 1)

> C(2k +1) ok
Z(2k+1)(2k+2)x .

A(n)
N2

_|_

k=1
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Proof. Wespecify r = 1 and L(s) = —('(s)/{(s) and apply the Cauchy residue
theorem to the rectangle with vertices at (¢ £1iT"), (—N =£1iT"). The horizontals tend
to 0 as T'— oo and the vertical one also tends to 0 as N — oo by (1.8). Hence, the
integral in (1.22) is the sum of residues at poles in the strip —N < o0 < ¢, s =1 s
a double pole and the residue is

1
(1.24) %(—log%—f— 1+logz +7),
where we use (/(0) = —1 log 2t and

¢'(s) 1
1.2 — = — -1
(1.25) o) =+ OG- 1)

and where 7 is the Euler constant, cf., e.g., [6], page 81.

At a zero p, the denominator ¢(s) has a simple pole and is of form ¢’ (g)(s—0)+. ..
If it is a nontrivial zero, then it is cancelled by the zero of ((1 — s). If it is a trivial
zeros = —2k, k = 1,2,.. ., the residue is ((2k + 1)/((2k + 1)(2k + 2))z~2*~2. Hence,

the sum of residues is E C(2k +1)/((2k + 1)(2k + 2))z~2F=2. Hence, the assertion
follows. =

Lemma 1.2. For z > 1 we have the explicit formula

(1.26) Z#(m—n): (—1+logz — v)x + log 2

nse 0o

1 _
_Z 9—1 Zl%(%ﬂ)x o

Proof. Recall Perron’s formula

1 , ~ 1 T(s)p(s)xst*
(1.27) —_— ag(z —A)" = —/ ———————ds,
T(x+1) )\kzg:z 21 Jioy T(s+ 2+ 1)
&)
where p(s) = Y a,/n®, the left-hand side sum is called the Riesz sum of or-
k=1

der s¢ and the right-hand side is the G-function Gi?G}? (z‘l i g ) and becomes
(2mi) 1 f(c)(s(s +1)...(s+ 2))"'27*ds for s a positive integer. Here the prime on
the summation sign means that the term corresponding to n = x is to be halved in
the case » = 0. For Riesz sums, cf. [15], Chapter 6.

We use the case » = 1:
(1.28) Z an(z —n) 211 /@ﬁgp(s)xs*l ds, ¢>1, z>0.

n<x
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To treat (1.21), we shall find an explicit formula for

A(n) _ 1 1 s+ 1)y s
(129) Z n (x_n)Q_T[i/(C)S(S-I-l) <_ C(s—l—l))x Thds

in analogy with [12], (14), page 21. The residue at the double pole at s = 0 is

(1.30) (—1+logz — )z

and the residue at s = —1 is log2n. Computation of residues at the zeros of ( is

similar to that in the proof of Lemma 1.1.

O

Differentiation of (1.26) leads to the explicit formula for > A(n)/n, see[12],

n<x

page 81. In what follows we simply say by differentiation without giving details

on termwise differentiability of the (second) infinite series. For we may appeal to

the well-established results on convergence in symmetric sum Xhm Szt (o —
—
and Landau’s differencing method, cf., e.g., [30]. Flol<x

Incorporating Lemmas 1.1 and 1.2 in (1.20), we obtain Popov’s result.

Theorem 1.1. For |x| > 1 we have

I S R I RS RS o ==

Q—l

o0
—2k 2
+Z2k;2k+1

k=1
> C(2k +1) ko

—— &
 ( 2k;+1 )(k+1)

Lemma 1.1 also reads:

Theorem 1.2. For 0 < z < 1 we have

1 1 ¢ 1= A
(1.32) o3 nz::l (;;5271 cos 2mnax + 52(2) =5 nzzjl 7(1721) ({nz}? — {na})
= g((x—l)log%c—l—l—logx—'y)

C(2k+1) L2kH2
(2k+1)(2k+2)

_|_
it
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By differentiation, we have

(1.33) —% i 10571 sin 2nnz = i # ({nx} — %)
n=1 n=1

1
= —xlog2n — 5(—10g2n—10gm—'y)

+Z C(2k +1) L2k

The first equality in (1.33) is the Davenport expansion, see Theorem 2.1.
To prove Corollary 1.1 below we need

Lemma 1.3 (Ramanujan). For 0 < A € Z and |z| < |a| we have

00 A
(131 Y S, @) mix _ 3 (2) =k, —2)2>% = C'(=),a)

m=

N
E
I

o

A
=3 0 = A @)+ (e — )
k=1

Here ((s,a), ¥(a), Hy denote the Hurwitz zeta-function, the Euler digamma func-

tion, harmonic number, respectively.

Lemma 1.3 with A = 0 and Lerch’s formula

I'(z)
1.35 "0,2) =lo
(1.35) ¢'(0,z) = log Nor
yield a special case of Wilton’s formula (1923):
(1.36) ZC n,a)— =logl'(a —x) — logT(a) + ¥(a)z, |z| <|al.

The odd part is

s 2k+1
(1.37) Z C2k+1,a ;k: i %(bgf(a —z) —logl'(a+x)) + ¢¥(a)x
k=1

cf. [27], page 159. Hence, the last sum in (1.33) is

[eS)
l‘2k+1

(1.38) ZQ(Zk + 1)2k i %(logf(l —xz)—logT(1+x)) — vz, |z|<1.
k=1
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Corollary 1.1. Theorem 1.2 implies Kummer’s Fourier series

1
(1.39) logT'(z) = log /7 — (v + log 2m) By (z) — 5 log sin Tz

1
—|—Z (;gnnsiHQRnx, O<z <l

n=1
The Davenport expansion for the von Mangoldt function is equivalent to the func-
tional equation for the Riemann zeta-function (up to Ramanujan’s formula (1.34)).

Proof. On using the reciprocal relation I'(z)I'(1—z) = n/ sin nz, (1.38) becomes

2k+1

;k_'_ 7= 5(— logsin tz —log z+logn) —logI'(z) — vz, |z| < 1.

WK

(1.40) > ¢(2k+1)

E
I

1

Substituting this in (1.33) proves (1.39). The second assertion follows from the fact
that Kummer’s Fourier series is equivalent to the functional equation and Theo-
rem 2.1. (I

2. DAVENPORT EXPANSIONS

Arithmetical Fourier series (1.9) have been treated in [15], pages 196-209, which
are divided into two classes: Diophantine Fourier series considered by [9], [11], and
others involving divisor functions, and arithmetical Fourier series involving the PNT
functions studied by [4], [5], [6] and others. Here the former is more related to
the functional equation and the latter to the zero-free region. Let @, (s,x) be the
Dirichlet series considered by Hardy and Littlewood, see [9] (by Barnes multiple
zeta-function), [11] (by zeta-functions with Grossen characters) [16], page 103:

|

»(nx)
ns

(2]‘) @%(8,1}) = Z

where B,, () is the periodic Bernoulli polynomial in (1.2).
The authors in [10], page 116 proved the a.e. convergence of the Fourier series
to @, (s, x):

%' > U%_s(k) orik
2.2 P, (s, ~ — - nikz
22) (5:2) ~ ~ iy k;w N
)

for 3 < Res < 1, where 04 (n) is the sum-of-divisors function

oa(n) =Y d*
d|n
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To think of (2.1) as a Davenport series, we must think of n~° as the coefficient and
forget about zeta-function aspects. But since using (2.1) as the zeta-function gives
a far-reaching and prominent results, we think it proper to distinguish them from
the case of PNT coefficients {a,, }—the Davenport expansion.

The paper [13] treats both Diophantine Fourier series and arithmetical Fourier
series as Davenport expansions and is very informative on convergence of the Daven-
port expansions in various function spaces and relations with fractal geometry. He
calls the Davenport series in (1.9) as the Davenport expansion (with respect to the
Riesz basis in a Sobolev space) and we use the term in a narrower sense. We refer

o [2], [17], [20], [22], which are published subsequently for Diophantine Fourier se-
ries. The book [16] is not listed but is an essential source-book. Regarding Davenport
expansions, the following are missing although they are essential material: [3], [25]
(both are concerned with convergence in L?), [26] (pointwise but to be regarded
as L? convergence), [31] (pointwise convergence and share the Kubert function as-
pect with [25]). The paper [14] also deals with L? convergence. The argument is
to be made more elaborate taking into account absolute convergence. However, this
can be dispensed with, thanks to the following theorem.

Theorem 2.1. The Davenport expansion for the von Mangoldt function, Mébius
function and Liouville function are consequences of the functional equation (for the

Riemann zeta-function):

(2.3) % i ZEQ Ba(nz) = % i J(n COS 2mna,
n=1 n=1

where

(24) fln) =Y _d"""f(d).

d|n

The differentiated form is the traditional Davenport expansion

(2.5) ij’: % ({na:} ) = _iz i f(n) sin 2nnx.

Proof. Recall (1.22) in the form

(2.6) %an — ({nz}? — {na})
1 1 2—s s
= = 5y, T~ e+ = e
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where 1 < ¢ < 2. We substitute

(2.7) C(1—s)L(s+7r—1)=rt/2

n (2.6) and change the order of summation and integration to deduce that
(2 8)

3 2 I 7 I(s/2) s
5 EZ: +1 ({nz}* — {nz}) = = EZ: f(n o /(C) 2503 —5)/2) (7na)®* ds.

In order to evaluate the resulting integral, we use the differentiated form

o~ f() 1 7 I'(s/2) s
(2.9) nz::l 7 ({na:} - 5) = ——/ z:: f(n 7 /(c) W(ﬂnm) ds.

The integral is the G-function

—_

Sb=1/2

(2.10) G(l):g (zi b, bi_ 1 ) 7 sin2y/z

2
with z = (nmnz)? and b = 0. Hence, substituting this, (2.9) leads to (2.5). O
Remark 2.1. In the case r = 1 we apply the functional equation as
2 o0
= 8)L(s) = 2t gt

1—5

say, and (2.9) reads
o~ f(n) 1y _ S I['(s/2) s
(2.11) nz::l 7({7”} — 5) = ——/ z:: 7 / W(ﬂnm) ds.

From (2.4), we have
(2.12) S ) =
d|n

Hence as f = A, f = u, f = A, we have g(n) = logn, g(n) = 6,1 (Kronecker
delta), g(n) = x2(n) (the characteristic function of squares), whence we have familiar

formulas

1, n = square,
(2.13) YDAD =0, Y pd) =6, Y Ad) = {O !
d|n d|n

i , M # square.
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We consider the case of the Mébius function based on [28]. Correspondingly to
Theorem 2.1, we have:

Corollary 2.1 ([19], Theorem 2.1).

1 1 1o
(2.14) 2—20052nnx _C— = 5;

T

nsin 2mnx = u(n 1 1, (=1 1
@15 TS () ) = 2, (2™

In computing residues in this case, we apply the formula

(=1)"C(2k + 1)(2k)!

T2k92k+1 ’ keN.

(2.16) ¢ (—2k) =

Unlike Corollary 1.1, this gives only the power series expansions for the sine and
cosine functions.
For the Liouville function defined by

the Davenport expansion reads

o0 o)
A(n) 1 11,
(2.18) ;T({na:}— 5) = —%nz::lﬁsm%m x.
We cannot give an explicit formula for the left-hand side of (2.17) as in Theorem 1.2
(since residue calculus does not apply) although the explicit formula for the Riesz
sum is known by [7]. We hope to return to this elsewhere.

Concluding remarks. The integral expression (1.22) (which in turn depends on

(a special case of) Mikolas formula (1.15)) for the Davenport series > a, B, (nz)
n=1

is the key. The presence of ((1 — s) has two effects: by applying the functional
equation, it leads to the Davenport expansion (see Theorem 2.1) and by applying
the residue theorem, the nontrivial zeros of {(1 — s) cancel the poles at nontrivial
zeros of ((s), thus yielding an explicit formula (see Theorem 1.2) in terms of trivial
zeros. This study provides a vast amount of further research problems including
the Davenport series with Clausen function weight. Also note that distributions are
considered in [13] and a distribution-theoretic explicit formula has been developed,
cf., e.g., [1]. We hope to return to them elsewhere.
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