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Abstract. We shall establish an explicit formula for the Davenport series in terms of trivial
zeros of the Riemann zeta-function, where by the Davenport series we mean an infinite
series involving a PNT (Prime Number Theorem) related to arithmetic function an with
the periodic Bernoulli polynomial weight Bκ (nx) and PNT arithmetic functions include
the von Mangoldt function, Möbius function and Liouville function, etc. The Riesz sum of
order 0 or 1 gives the well-known explicit formula for respectively the partial sum or the
Riesz sum of order 1 of PNT functions. Then we may reveal the genesis of the Popov explicit
formula as the integrated Davenport series with the Riesz sum of order 1 subtracted. The
Fourier expansion of the Davenport series is proved to be a consequence of the functional
equation, which is referred to as the Davenport expansion. By the explicit formula for
the Davenport series, we also prove that the Davenport expansion for the von Mangoldt
function is equivalent to the Kummer’s Fourier series up to a formula of Ramanujan and
a fortiori is equivalent to the functional equation for the Riemann zeta-function.

Keywords: explicit formula; Davenport expansion; Kummer’s Fourier series; Riemann
zeta-function; functional equation

MSC 2020 : 11M41, 11N05, 11J54

1. Introduction and Popov’s explicit formula

Let ζ(s) be the Riemann zeta-function and let Λ(n) be the von Mangoldt function

defined by

(1.1) −ζ
′(s)

ζ(s)
=

∞
∑

n=1

Λ(n)

ns
, σ := Re s > 1.

For basic knowledge on zeta-functions, we refer to [6], [12], [24], [29] etc.
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Let {y} = y − [y] denote the fractional part of y ∈ R with [y] the integral part

of y, i.e., the greatest integer not exceeding y. Let

(1.2) Bκ (x) = Bκ ({x}) =
κ
∑

k=0

(

κ

k

)

Bκ−k{x}k

be the κth periodic Bernoulli polynomial, where κ ∈ N, Bk is the kth Bernoulli

number. It has the Fourier expansion

(1.3) Bκ (x) = − κ!

(2πi)κ

∞
∑

n=−∞
n6=0

e2πinx

nκ
.

We use the following cases

B1(x) = {x} − 1

2
= −1

π

∞
∑

n=1

1

n
sin 2πnx, x /∈ Z,

B2(x) = {x}2 − {x}+ 1

6
=

1

π
2

∞
∑

n=1

1

n2
cos 2πnx.

Patkowski in [19] proved the generalized Popov formula (see [23]):

(1.4)
1

2

∑

n>x

Λ(n)

nr+1

({n

x

}

−
{n

x

}2)

= hr(x) +
∑

̺

( r − ̺+ 1

2(r − ̺− 1)(r − ̺)
− ζ(r − ̺)

r − ̺

) x̺−r−1

r + 1− ̺

+

∞
∑

k=1

( 2k + r + 1

2(2k + r − 1)(2k + r)
− ζ(r + 2k)

r + 2k

) x−r−2k−1

r + 2k + 1
,

where

(1.5) hr(x) =















2− log 2π

2x
, r = 1,

( r

2(1− r)(2 − r)
− ζ(1 − r)

1− r

)x−r

r
, r > 1

and the first sum on the right of (1.4) is over all nontrivial zeros ̺ in the critical strip

and the second is the sum over trivial zeros −2k, k ∈ N. We assume throughout that

all the nontrivial zeros of ζ(s) are simple.

The argument depends on the following identity. For r > 1, x > 0 and 1 < c < 2,

(1.6)
1

2

∑

n>x

Λ(n)

nr+1

({n

x

}

−
{n

x

}2)

=
1

2πi

∫

(c)

( 2− s

2s(s− 1)
− ζ(1 − s)

1− s

)ζ′

ζ
(s+ r − 1)

xs−2

2− s
ds.

870



The main result of [21] is Theorem 1.1, which gives an explicit formula for the

sum 1
2

∑

n>x
(f(n)/nr+1)({n/x}− {n/x}2) similar to (1.4) with Λ(n) replaced by f(n).

The sets {f(n)} are generated by the Dirichlet series L(s) =
∞
∑

n=1
f(n)/ns absolutely

convergent for σ > 1.

In this paper, we assume L(s) is of the form

(1.7) L(s) =
∞
∑

n=1

f(n)

ns
=
Z(s)

ζ(s)
, Z(s) =

∞
∑

n=1

g(n)

ns

absolutely convergent for σ > 1 and Z(s) is a meromorphic function which has no

zeros at the zeros of ζ(s) (this corresponds to simplicity of zeros of the Riemann

zeta-function) and such that

(1.8) L(s) = O(log |s|)

for |s| large (save for neighborhoods of trivial zeros). Equation (1.8) is satisfied by
L(s) = −ζ′(s)/ζ(s), see [24], Satz 4.3, page 227, [6], page 108, etc.
We call the (formal) expansion

(1.9)

∞
∑

n=1

anBκ (nx) = − κ!

(2πi)κ

∞
∑

l=1

(e2πilx + (−1)
κ
e−2πilx)cl, cl = l−κ

∑

d|l

ad

the Davenport expansion and we refer to the left-hand side series as the Daven-

port series, where {an} are arithmetical functions which appear in PNT. Since
B′

κ
(x) = κBκ−1(x), we may work with the integrated Davenport series and shift

to the lower order by termwise differentiation as long as the differentiated series is

uniformly convergent, cf. [4], [5], [31], etc.

Our aim is to give an explicit formula (in terms of trivial zeros) for the Davenport

series or the integrated one with respectively

(1.10) an =
f(n)

nr
or an =

f(n)

nr+1
,

where r > 1 and f(n) are generated by (1.7), cf. Theorem 1.2 and Corollary 2.1. We

restrict our selves to the cases

(1.11) f(n) = Λ(n), (Z(s) = −ζ′(s)), f(n) = µ(n), (Z(s) = 1),

f(n) = λ(n), (Z(s) = ζ(2s))

and illustrate this by Theorem 1.2 for the von Mangoldt function Λ(n). Subtracting

the explicit formula in Lemma 1.2 from the formula in Lemma 1.1 yields the Popov
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formula, see Theorem 1.1. Equating the explicit formula with the Davenport ex-

pansion (see Theorem 2.1) we deduce Corollary 1.1 to the effect that the Davenport

expansion for the von Mangoldt function is equivalent to the functional equation for

the Riemann zeta-function, cf. concluding remarks.

Replacing (1.1) by (1.7), (1.6) reads

(1.12)
1

2

∑

n>x

f(n)

nr+1

({n

x

}

−
{n

x

}2)

=
1

2πi

∫

(b)

( s+ 1

2s(s− 1)
− ζ(s)

s

)

L(r− s)
x−s−1

s+ 1
ds,

where −1 < b < 0. This follows from

(1.13)
1

2
({x}2 − {x}) = 1

2πi

∫

(b)

( s+ 1

2s(s− 1)
− ζ(s)

s

) xs+1

s+ 1
ds,

which is proved in [19], but we cannot follow the proof and we shall use

(1.14)
1

2
({x}2 − {x}) = − 1

2πi

∫

(b)

1

s(s+ 1)
ζ(−s− 1)x−s ds, −1

2
< b < 0.

We shall see the effect of adding

I := −1

2

1

2πi

∫

(b)

1

s(s+ 1)
xs+1 ds

to the identity (1.14). Shifting the integration path to σ = c > 0 in

I =
1

2

1

2πi

∫

(b−1)

1

s(s+ 1)
xs+2 ds,

we find that

−I =
1

2

1

2πi

∫

(c)

1

s(s+ 1)
xs+2 ds− 1

2
(x2 − x) =







0, x > 1,

−1

2
(x2 − x), 0 < x 6 1

since
1

2πi

∫

(c)

1

s(s+ 1)
xs+2 ds =

{

x2(1− x−1), x > 1,

0, 0 < x 6 1.

This corresponds to cancellation of the terms with 0 < x < 1 in (1.22) and moving

the Riesz sum to the right.

Formula (1.14) must be a special case of Mikolás formula, see [17], Proposition 1

and [18]:

(1.15) Bκ (x) = −(−1)κκ!
1

2πi

∫

(c)

Γ(s)

Γ(s+ κ)
ζ(1 − s− κ)x−s ds,
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where 0 < c < 1, which has been used in the literature, e.g., in [20]. A slightly

different but equivalent form of (1.15) is used for Bκ (x), cf. [2]:

(2πi)κBκ (x) = −κ!
1

2πi

∫

(c)

(eπis/2 + (−1)κ e−πis/2)Γ(s)ζ(s+ κ)(2πx)−s ds

or

(1.16) (2π)κBκ (x) = −κ!
1

2πi

∫

(c)

2 cos
π

2
(κ − s)Γ(s)ζ(s + κ)(2πx)−s ds.

For the integral in (1.15) to be absolutely convergent, −1 < c < − 1
2 must hold in

view of [29], (5.1.3), page 81. This corresponds to shifting the integration path to

the left to σ = d, −1 < d < − 1
2 (the left side limit −1 is for excluding poles) and we

encounter a simple pole at s = 0 with residue






−1

2
, κ = 1,

(−1)κBκ , κ > 2.

Hence, (1.15) leads to

(1.17) Bκ (x)−Bκ = −(−1)
κ
κ!

1

2πi

∫

(d)

Γ(s)

Γ(s+ κ)
ζ(1 − s− κ)x−s ds,

where −1 < d < − 1
2 and the integral is absolutely convergent. The case κ = 2 is

consistent with Popov’s weight {n/x} − {n/x}2.
We use the special case of (1.17) with κ = 2, which occurs on writing s for −s− 1

(b = −d− 1)

(1.18)
1

2
B2(x) −

1

2
B2 = − 1

2πi

∫

(b)

1

s(s+ 1)
ζ(−s− 1)x−s ds,

where

(1.19) −1

2
< b < 0

and (1.14) follows.

This is reminiscent of Hamburger’s result (see [8]) on the Fourier series for B2(x).

Formula (4.2) in [2], (κ > 0)

1

κ
(Bκ (x)−Bκ (x)) =

∑

n6x

(x− n)κ−1

explains the addition of I above and suggests the division of the sum on the left

of (1.23) into two: n 6 x and n > x, i.e.,

(1.20)
1

2

∞
∑

n=1

Λ(n)

n2

({n

x

}2

−
{n

x

})

=
1

2

∑

n6x

+
1

2

∑

n>x

.
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The first sum on the right is

(1.21)
1

2

∑

n6x

Λ(n)

n2

((n

x

)2

− n

x

)

= − 1

2x2

∑

n6x

Λ(n)

n
(x− n),

which is the Riesz sum of order 1 (in Lemma 1.2). Thus, the following principle

comes out.

The whole sum over n = 1, 2, . . . in (1.22) with periodic Bernoulli polynomial

weight consists of n 6 x part (Riesz sum of order 1) and n > x part (Popov’s for-

mula). The whole sum has two expressions — the (integrated) Davenport expansion

which is a consequence of the functional equation (see Theorem 2.1) and the ex-

plicit formula involving trivial zeros (see Theorem 1.2). Comparison of them yields

Kummer’s Fourier series in the case of the von Mangoldt function.

Although (1.12) gives a direct proof of Popov’s theorem, Theorem 1.1, it does not

give any more information. Thus, in view of (1.14), instead of (1.12) we are to use

(1.22)
1

2

∞
∑

n=1

f(n)

nr+1

({n

x

}2

−
{n

x

})

= − 1

2πi

∫

(b)

1

s(s+ 1)
ζ(−s− 1)L(s+ r + 1)xs ds

= − 1

2πi

∫

(c)

1

(1− s)(2 − s)
ζ(1 − s)L(s+ r − 1)xs−2 ds,

where 1 < c := b + 2 < 3
2 . As long as the series J := 1

2

∞
∑

n=1
f(n)/nr+1 is conver-

gent, we may think of (1.22) as the Davenport expansion (with B2 weight) with the

series 1
2B2J subtracted, cf., e.g., (1.32) in Theorem 1.2.

As is stated, instead of going on general lines, we restrict ourselves to the case of

the von Mangoldt function and state the explicit formula for the Davenport sum,

cf. Theorem 1.2.

Lemma 1.1. For x > 1 we have

(1.23)
1

2

∞
∑

n=1

Λ(n)

n2

({n

x

}2

−
{n

x

})

= − 1

2x

((1

x
− 1

)

log 2π + 1 + log x− γ
)

+

∞
∑

k=1

ζ(2k + 1)

(2k + 1)(2k + 2)
x−2k−2.
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P r o o f. We specify r = 1 and L(s) = −ζ′(s)/ζ(s) and apply the Cauchy residue
theorem to the rectangle with vertices at (c± iT ), (−N ± iT ). The horizontals tend

to 0 as T → ∞ and the vertical one also tends to 0 as N → ∞ by (1.8). Hence, the
integral in (1.22) is the sum of residues at poles in the strip −N < σ < c, s = 1 is

a double pole and the residue is

(1.24)
1

2x
(− log 2π + 1 + log x+ γ),

where we use ζ′(0) = − 1
2 log 2π and

(1.25) −ζ
′(s)

ζ(s)
=

1

s− 1
− γ +O(s− 1),

and where γ is the Euler constant, cf., e.g., [6], page 81.

At a zero ̺, the denominator ζ(s) has a simple pole and is of form ζ′(̺)(s−̺)+ . . .
If it is a nontrivial zero, then it is cancelled by the zero of ζ(1 − s). If it is a trivial

zero s = −2k, k = 1, 2, . . ., the residue is ζ(2k + 1)/((2k + 1)(2k + 2))x−2k−2. Hence,

the sum of residues is
∞
∑

k=1

ζ(2k + 1)/((2k + 1)(2k + 2))x−2k−2. Hence, the assertion

follows. �

Lemma 1.2. For x > 1 we have the explicit formula

(1.26)
∑

n6x

Λ(n)

n
(x− n) = (−1 + log x− γ)x+ log 2π

−
∑

̺

x̺

̺(̺− 1)
−

∞
∑

k=1

1

2k(2k + 1)
x−2k.

P r o o f. Recall Perron’s formula

(1.27)
1

Γ(κ + 1)

∑

λk6x

′

αk(x− λn)
κ
=

1

2πi

∫

(c)

Γ(s)ϕ(s)xs+κ

Γ(s+ κ + 1)
ds,

where ϕ(s) =
∞
∑

k=1

αn/n
s, the left-hand side sum is called the Riesz sum of or-

der κ and the right-hand side is the G-function G1,0
1,1G

1,0
1,1

(

z−1 κ

0

)

and becomes

(2πi)−1
∫

(c)(s(s+ 1) . . . (s+ κ))−1z−s ds for κ a positive integer. Here the prime on

the summation sign means that the term corresponding to n = x is to be halved in

the case κ = 0. For Riesz sums, cf. [15], Chapter 6.

We use the case κ = 1:

(1.28)
∑

n6x

αn(x − n) =
1

2πi

∫

(c)

1

s(s+ 1)
ϕ(s)xs+1 ds, c > 1, x > 0.
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To treat (1.21), we shall find an explicit formula for

(1.29)
∑

n6x

Λ(n)

n
(x− n) =

1

2πi

∫

(c)

1

s(s+ 1)

(

−ζ
′(s+ 1)

ζ(s+ 1)

)

xs+1 ds

in analogy with [12], (14), page 21. The residue at the double pole at s = 0 is

(1.30) (−1 + log x− γ)x

and the residue at s = −1 is log 2π. Computation of residues at the zeros of ζ is

similar to that in the proof of Lemma 1.1. �

Differentiation of (1.26) leads to the explicit formula for
∑

n6x

Λ(n)/n, see[12],

page 81. In what follows we simply say by differentiation without giving details

on termwise differentiability of the (second) infinite series. For we may appeal to

the well-established results on convergence in symmetric sum lim
X→∞

∑

|̺|<X

x̺−1/(̺− 1)

and Landau’s differencing method, cf., e.g., [30].

Incorporating Lemmas 1.1 and 1.2 in (1.20), we obtain Popov’s result.

Theorem 1.1. For |x| > 1 we have

(1.31)
∑

n>x

Λ(n)

n2

({n

x

}

−
{n

x

}2)

=
1

x
(2− log 2π) +

∑

̺

x̺−2

̺(̺− 1)

+

∞
∑

k=1

1

2k(2k + 1)
x−2k−2

−
∞
∑

k=1

ζ(2k + 1)

(2k + 1)(k + 1)
x−2k−2.

Lemma 1.1 also reads:

Theorem 1.2. For 0 < x < 1 we have

(1.32)
1

2π
2

∞
∑

n=1

logn

n2
cos 2πnx+

1

12

ζ′

ζ
(2) =

1

2

∞
∑

n=1

Λ(n)

n2
({nx}2 − {nx})

= − x

2
((x− 1) log 2π + 1− log x− γ)

+
∞
∑

k=1

ζ(2k + 1)

(2k + 1)(2k + 2)
x2k+2.
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By differentiation, we have

(1.33) −1

π

∞
∑

n=1

logn

n
sin 2πnx =

∞
∑

n=1

Λ(n)

n

(

{nx} − 1

2

)

= − x log 2π − 1

2
(− log 2π − log x− γ)

+

∞
∑

k=1

ζ(2k + 1)

2k + 1
x2k+1.

The first equality in (1.33) is the Davenport expansion, see Theorem 2.1.

To prove Corollary 1.1 below we need

Lemma 1.3 (Ramanujan). For 0 6 λ ∈ Z and |z| < |α| we have

(1.34)

∞
∑

m=2

ζ(m,α)

m+ λ
zm+λ =

λ
∑

k=0

(

λ

k

)

ζ′(−k, α− z)zλ−k − ζ′(−λ, α)

−
λ
∑

k=1

1

k
ζ(k − λ, α)zk +

1

λ+ 1
(ψ(α) −Hλ)z

λ+1.

Here ζ(s, α), ψ(α), Hλ denote the Hurwitz zeta-function, the Euler digamma func-

tion, harmonic number, respectively.

Lemma 1.3 with λ = 0 and Lerch’s formula

(1.35) ζ′(0, x) = log
Γ(x)√
2π

yield a special case of Wilton’s formula (1923):

(1.36)

∞
∑

n=1

ζ(n, a)
xn

n
= log Γ(a− x)− log Γ(a) + ψ(a)x, |x| < |a|.

The odd part is

(1.37)

∞
∑

k=1

ζ(2k + 1, a)
x2k+1

2k + 1
=

1

2
(log Γ(a− x)− log Γ(a+ x)) + ψ(a)x

cf. [27], page 159. Hence, the last sum in (1.33) is

(1.38)
∞
∑

k=1

ζ(2k + 1)
x2k+1

2k + 1
=

1

2
(log Γ(1− x)− log Γ(1 + x))− γx, |x| < 1.
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Corollary 1.1. Theorem 1.2 implies Kummer’s Fourier series

(1.39) log Γ(x) = log
√

π − (γ + log 2π)B1(x) −
1

2
log sin πx

+

∞
∑

n=1

logn

πn
sin 2πnx, 0 < x < 1.

The Davenport expansion for the von Mangoldt function is equivalent to the func-

tional equation for the Riemann zeta-function (up to Ramanujan’s formula (1.34)).

P r o o f. On using the reciprocal relation Γ(x)Γ(1−x) = π/ sin πx, (1.38) becomes

(1.40)

∞
∑

k=1

ζ(2k+1)
x2k+1

2k + 1
=

1

2
(− log sin πx−log x+log π)−log Γ(x)−γx, |x| < 1.

Substituting this in (1.33) proves (1.39). The second assertion follows from the fact

that Kummer’s Fourier series is equivalent to the functional equation and Theo-

rem 2.1. �

2. Davenport expansions

Arithmetical Fourier series (1.9) have been treated in [15], pages 196–209, which

are divided into two classes: Diophantine Fourier series considered by [9], [11], and

others involving divisor functions, and arithmetical Fourier series involving the PNT

functions studied by [4], [5], [6] and others. Here the former is more related to

the functional equation and the latter to the zero-free region. Let Φκ (s, x) be the

Dirichlet series considered by Hardy and Littlewood, see [9] (by Barnes multiple

zeta-function), [11] (by zeta-functions with Grössen characters) [16], page 103:

(2.1) Φκ (s, x) =

∞
∑

n=1

Bκ (nx)

ns
,

where Bκ (x) is the periodic Bernoulli polynomial in (1.2).

The authors in [10], page 116 proved the a.e. convergence of the Fourier series

to Φκ (s, x):

(2.2) Φκ (s, x) ∼ − κ!

(2πi)κ

∞
∑

k=−∞
k 6=0

σκ−s(k)

kκ
e2πikx

for 1
2 < Re s 6 1, where σα(n) is the sum-of-divisors function

σα(n) =
∑

d|n

dα.
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To think of (2.1) as a Davenport series, we must think of n−s as the coefficient and

forget about zeta-function aspects. But since using (2.1) as the zeta-function gives

a far-reaching and prominent results, we think it proper to distinguish them from

the case of PNT coefficients {an}—the Davenport expansion.
The paper [13] treats both Diophantine Fourier series and arithmetical Fourier

series as Davenport expansions and is very informative on convergence of the Daven-

port expansions in various function spaces and relations with fractal geometry. He

calls the Davenport series in (1.9) as the Davenport expansion (with respect to the

Riesz basis in a Sobolev space) and we use the term in a narrower sense. We refer

to [2], [17], [20], [22], which are published subsequently for Diophantine Fourier se-

ries. The book [16] is not listed but is an essential source-book. Regarding Davenport

expansions, the following are missing although they are essential material: [3], [25]

(both are concerned with convergence in L2), [26] (pointwise but to be regarded

as L2 convergence), [31] (pointwise convergence and share the Kubert function as-

pect with [25]). The paper [14] also deals with L2 convergence. The argument is

to be made more elaborate taking into account absolute convergence. However, this

can be dispensed with, thanks to the following theorem.

Theorem 2.1. The Davenport expansion for the von Mangoldt function, Möbius

function and Liouville function are consequences of the functional equation (for the

Riemann zeta-function):

(2.3)
1

2

∞
∑

n=1

f(n)

nr+1
B2(nx) =

1

2π
3

∞
∑

n=1

f̃(n)

n2
cos 2πnx,

where

(2.4) f̃(n) =
∑

d|n

d1−rf(d).

The differentiated form is the traditional Davenport expansion

(2.5)

∞
∑

n=1

f(n)

nr

(

{nx} − 1

2

)

= − 1

π
2

∞
∑

n=1

f̃(n)

n
sin 2πnx.

P r o o f. Recall (1.22) in the form

(2.6)
1

2

∞
∑

n=1

f(n)

nr+1
({nx}2 − {nx})

= − 1

2πi

∫

(c)

1

(1− s)(2 − s)
ζ(1 − s)L(s+ r − 1)x2−s ds,
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where 1 < c < 2. We substitute

(2.7) ζ(1 − s)L(s+ r − 1) = π
1/2−s Γ(s/2)

Γ((1− s)/2)
ζ(s)L(s + r − 1)

= π
1/2−s Γ(s/2)

Γ((1− s)/2)

∞
∑

n=1

f̃(n)

ns

in (2.6) and change the order of summation and integration to deduce that

(2.8)

1

2

∞
∑

n=1

f(n)

nr+1
({nx}2 − {nx}) = 1

π
3/2

∞
∑

n=1

f̃(n)
1

2πi

∫

(c)

Γ(s/2)

(2− s)Γ((3 − s)/2)
(πnx)

2−s
ds.

In order to evaluate the resulting integral, we use the differentiated form

(2.9)

∞
∑

n=1

f(n)

nr

(

{nx} − 1

2

)

= − x

π
3/2

∞
∑

n=1

f̃(n)
1

2πi

∫

(c)

Γ(s/2)

Γ((3 − s)/2)
(πnx)

−s
ds.

The integral is the G-function

(2.10) G1,0
0,2

(

z
–

b, b− 1
2

)

=
zb−1/2

√
π

sin 2
√
z

with z = (πnx)2 and b = 0. Hence, substituting this, (2.9) leads to (2.5). �

Remark 2.1. In the case r = 1 we apply the functional equation as

ζ(1− s)L(s) = π
1/2−s Γ(s/2)

Γ((1− s)/2)

∞
∑

n=1

g(n)n−s,

say, and (2.9) reads

(2.11)

∞
∑

n=1

f(n)

n2

(

{nx} − 1

2

)

= − x

π
3/2

∞
∑

n=1

g(n)
1

2πi

∫

(c)

Γ(s/2)

Γ((3− s)/2)
(πnx)

−s
ds.

From (2.4), we have

(2.12)
∑

d|n

f(d) = g(n).

Hence as f = Λ, f = µ, f = λ, we have g(n) = logn, g(n) = δn1 (Kronecker

delta), g(n) = χ2(n) (the characteristic function of squares), whence we have familiar

formulas

(2.13)
∑

d|n

Λ(d) = n,
∑

d|n

µ(d) = δn1,
∑

d|n

λ(d) =

{

1, n = square,

0, n 6= square.
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We consider the case of the Möbius function based on [28]. Correspondingly to

Theorem 2.1, we have:

Corollary 2.1 ([19], Theorem 2.1).

(2.14)
1

2π
2
cos 2πnx− 1

12

1

ζ(2)
=

1

2

∞
∑

n=1

µ(n)

n2
({nx}2−{nx}) = 1

2π
2

∞
∑

k=1

(−1)
k

(2k)!
(2πx)

2k
.

The differentiated form amounts to the classical Davenport expansion

(2.15) −n sin 2πnx

π

=
∞
∑

n=1

µ(n)

n

(

{nx} − 1

2

)

= −1

π

∞
∑

k=0

(−1)k

(2k + 1)!
(2πx)2k+1.

In computing residues in this case, we apply the formula

(2.16) ζ′(−2k) =
(−1)

k
ζ(2k + 1)(2k)!

π
2k22k+1

, k ∈ N.

Unlike Corollary 1.1, this gives only the power series expansions for the sine and

cosine functions.

For the Liouville function defined by

(2.17)
ζ(2s)

ζ(s)
=

∞
∑

n=1

λ(n)

ns
, σ > 1,

the Davenport expansion reads

(2.18)

∞
∑

n=1

λ(n)

n

(

{nx} − 1

2

)

= −1

π

∞
∑

n=1

1

n2
sin 2πn2x.

We cannot give an explicit formula for the left-hand side of (2.17) as in Theorem 1.2

(since residue calculus does not apply) although the explicit formula for the Riesz

sum is known by [7]. We hope to return to this elsewhere.

Concluding remarks. The integral expression (1.22) (which in turn depends on

(a special case of) Mikolás formula (1.15)) for the Davenport series
∞
∑

n=1
anBκ (nx)

is the key. The presence of ζ(1 − s) has two effects: by applying the functional

equation, it leads to the Davenport expansion (see Theorem 2.1) and by applying

the residue theorem, the nontrivial zeros of ζ(1 − s) cancel the poles at nontrivial

zeros of ζ(s), thus yielding an explicit formula (see Theorem 1.2) in terms of trivial

zeros. This study provides a vast amount of further research problems including

the Davenport series with Clausen function weight. Also note that distributions are

considered in [13] and a distribution-theoretic explicit formula has been developed,

cf., e.g., [1]. We hope to return to them elsewhere.
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