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Abstract. We establish several finiteness characterizations and equations for the car-
dinality and the length of the set of overrings of rings with nontrivial zero divisors and
integrally closed in their total ring of fractions. Similar properties are also obtained for re-
lated extensions of commutative rings that are not necessarily integral domains. Numerical
characterizations are obtained for rings with some finiteness conditions afterwards.
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1. INTRODUCTION

Several equations for the number and the length of chains of intermediate rings
in extensions of integral domains have been recently established. Such results are
still in need when we consider extensions of more general rings. We study in this
work similar problems for the set of intermediate rings in some ring extensions with
nontrivial zero divisors, and the set of overrings of normal rings, see Definition 1.
We generalize results about the cardinality and the length of the set of overrings of
integrally closed domains to normal rings, when appropriate finiteness conditions are
satisfied.

Let R be a commutative ring with unity. A ring T containing R and contained in
the total ring of fractions of R is called an overring of R. We recall that a ring R
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with a finite set of overrings is called an FO ring. The ring R is called FC ring if
each chain of distinct overrings is finite, see [18]. Ring extensions R C S with only
finitely many intermediate rings have been named FIP extensions; and extensions
with finite chains of intermediate rings have been named FCP extensions, see [1].
These extensions have been recently studied by several authors, see [3], [5], [10],
[11], [13], [14], [24]. Approximations for the cardinality and the length of the set
of intermediate rings have been already obtained in [2] for normal pairs and more
recently in [29]. Normal pairs are extensions of integral domains introduced in [12],
where each intermediate ring in the ring extension R C S is integrally closed in S.
Normal pairs with zero-divisors are investigated in [9] and [15].

The number of intermediate rings has been calculated for integrally closed domains
and normal pairs; and quite recently for more general extensions of integral domains,
see [6] and [8]. An algorithm to compute such number has been established in [23]
for integrally closed domains. Also the list of such intermediate rings has been
obtained in [25]. More results about the number of intermediate rings have been also
established for many other classes of integral domains, see [16], [20], [26], [27], [28]
and [30]. This remains an open problem for many other classes of rings.

This work starts in the next second section with the investigation of the structure
of normal rings with only finitely many overrings showing that such rings are finite
direct products of normal domains satisfying several finiteness conditions such as FO
and FC , see Theorem 3. Then, in the third section, several equations concerning the
cardinality of the set of intermediate rings are established extending several recently
obtained results for integral domains to the more general setting of commutative
rings with nontrivial zerodivizors, see Theorem 8 and Corollary 9. These results
show that the number of overrings of a normal ring R depends on the ordering of
the prime ideals and on the minimal prime ideals of R. The last results of this
section deal with the number and nature of components in the decomposition of R
as a product of normal domains, see Corollaries 11 and 12. Several examples are
provided to present the extent of the obtained results, see Examples 10, 13 and 15.
Section 4 deals with the length of the set of overrings, see Propositions 20 and 21.
It is shown in particular that the length depends on the number of all primes and
minimal primes as in Propositions 20 and 21. Section 5 is reserved for numerical
characterizations involving the number of overrings and the length of some normal
domains, see Corollaries 23 and 24.

All rings considered in this work are assumed to be commutative and to contain
an identity element. Let R be a ring and D the subset of elements which are not
zero divisors in R, then the total ring of fractions D~!R is usually denoted Frac(R)
or T(R). This is equal to the field of fractions when R is an integral domain. If T
is a subring of 5, we always assume that it has the same identity element of S. The
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set of intermediate rings T, R C T C S, is usually denoted [R, S]|. Spec(R) denotes
as usual the set of prime ideals of R, and Max(R) the set of maximal ideals of R.

The ideal consisting of the zero element of a ring R will be denoted by 0. We recall
that an ideal I of Ry X Rs, the direct product of the commutative rings R; and Ro
with identity, is prime if and only if it has the form I; x Rs or Ry X Is, where I; is
prime in R;. Any other notation is standard as in [17].

2. FINITENESS CONDITIONS FOR NORMAL RINGS

An integral domain D is called normal (or integrally closed) if D is integrally
closed in its quotient field. According to Grothendick in [19] and Matsumura in [31],
page 64, this is extended to more general rings as follows.

Definition 1. A ring R is called normal if for every prime P C R, the localiza-
tion Rp is a normal domain.

We start with an example of normal rings.

Example 2. Let D = 757, and define FE with the following pullback construction
of commutative rings:

Z37 N sz

|
Qf)(z) — Ql] 2y /2Qfa] 2y ~ Q.

The integral domain D is a valuation domain of dimension 1 with Spec(D) =
{0,L = 27Z57}. The domain Z3z N Z5z is Priifer as it is an overring of Z. Then
E = 737 N 757 + xQ[z](,) is also a Priifer domain with a Y-graph as spectrum by
Theorem 2.1 of [4]. We also have Spec(E) = {0,M,P,N} such that 0 C M =
2Q[r](5) C P = 2Q[x]() +3(Z32NZ57),and 0 C M C N = 2Q[x](y) +5(Z37 N Z57).
The spectrum of R = D x E is given by Spec(D x E) = {0 x E,L x E,D x 0,
D x M,D x P,D x N} and is ordered as in Figure 1.

P N DxP D x N
L I M LxFE DxM
0 0 0x E D x0
Spec(D) Spec(E) Spec(D x E)
Figure 1.
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The localizations Rpxy, = (D X E)pxi1, = Er, and Ry, «g = (D X E);,xg = Dy,
confirm that R is a normal ring. The minimal prime ideals of R = D x E are
0 x E and D x 0. The localizations Rpxo = (D X E)pxo = Eog and Roxp =
(D x E)oxr = Do show that the total ring of fractions is Frac(R) =Frac(D x E) =
(D x E)oxg X (D x E)pxo= Doy x Ey=Frac(D) x Frac(E).

Example 2 provides an FO normal ring that is the direct product of FO Priifer
domains. In fact, this is one of several characterizations of such rings as it is shown
in the next result.

Theorem 3. Let R be a ring. Then the following statements are equivalent.

(1) R is an FO normal ring.

(2) R is a finite direct product of FO normal domains.

(3) R is a finite direct product of FC normal domains.

(4) R is an FC normal ring.

(5) R is a finite direct product of Priifer domains of finite spectrum.

(6) R is a finite direct product of Priifer domains of finite dimension and finite

maximal spectrum.

Proof. (1) = (2): Note that the map R — II R is injective by
meEMax(R)
Lemma 10.23.1 of [33]. Then the normal ring R is a reduced ring, as it is a subring of

the product of its localizations at all maximal ideals, which is reduced since each lo-
calization is a domain. The ring R has necessarily a finite number of minimal primes.
Then R = [] D;, where each D; is an FO normal domain, by Lemma 10.37.16 of [34].

(2) = (3): Each FO domain is an FC domain.

3)=(12)=(1)= ) = (1): Trivial.

(1) = (5): R =]]D; and Spec(R) is isomorphic to the finite union of the finite
spectra of D;.

(5) = (6): Trivial.

(6) = (1): Spec(D;) is finite for each D; in the decomposition of R as a direct
product of normal domain. Therefore, each D; is an FO normal domain implying
that R is an FO ring. ]
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3. THE NUMBER OF OVERRINGS OF NORMAL RINGS

In what follows we are going to compute the number and the length of the set of
overrings. We need first to recall and state some results and definitions.

Lemma 4 ([2], Lemma 3.1). Let (R, S) be a normal pair of integral domains R
and S, and let Max(R) = {M;: i € I}. Then for each M; € Max(R), there ex-
ists a pr1me R-ideal Q); such that: Sp\y, = Rg, and S = ﬂ € Max(R)Sp\n, =

= Rq- M
M; EMax(R) iel

The primes @; defined by Lemma 4 are playing a prime role in determining the
cardinality and the length of the set of overrings. Indeed, if (R,S) is a normal
pair, then according to [21], Spec(R,S) is defined to be the set {P € Spec(R):
P ¢ Q;, for all M; € Max(R)}. We denote the set of minimal elements of Spec(R, S)
by MinSpec(R, S).

Definition 5. Let R = H R; be a direct product of commutative rings, and
io € {1, 2, ...,n}. For every prlme ideal P of R;, and every set A of prime ideals
of RZO,

(1) Pe: H U;, where U;, = P and U; = R, for each i # ig, and
(2) A° '—{Pe P e A}

Using the fact that each prime ideal of the direct product is a direct product of the

form H U;, where U;, = P for some iy € {1,2,...,n}, and U; = R; for each i # iy,
=1
we obtaln the following results.

n
Proposition 6. Let R = [[ R; be a direct product of commuative rings. Then
i=1
the following statements hold true.

(1) Spec(ilill R) = L’Jl<spec<Ri>>e.
(2) Max(iljl Ri> U

(3) MinSpec(ﬁ Ri> = Ql(MinSpec(Ri))e.

i=1

'C:ﬂ

(Max(R;))®.

To state results about the cardinality of the set of intermediate rings, we first need
to recall some related definitions and results.

Assume that R is a commutative ring and A a finite set of prime ideals of R. Let P
and P’ be elements of A. If there is no element @ of A with P C Q C P/, we say
that the prime P’ covers P in A.
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We recall from [23], Theorem 2.3 the function « defined on Spec(R) by

if P is a maximal ideal of R,

1
a(P) = N e D . .
II (1 +a«(P)) if Pisnot a maximal ideal of R.
P’covers P
We usually use a4 instead of « if « is defined on a subset A of Spec(R). This
function is highly involved when we want to compute the number of overrings as it is
going to be shown from the next results. Regarding the effect of the function alpha

on related spectra we have the following result.

Lemma 7. Let (R, S) be a normal pair such that R = H R; and S = H S, are

i=1
direct products of integral domains R; C S; for all i € {1,2,...,m}. Then for each

prime ideal P in Spec(R;, S;) we have

O‘Spec(R,:,Si)(P) = (Spec(R,S) (Pe)~

Theorem 8. Let R; C S; be extensions of integral domains for i = 1,...,m,
R=R; xRy X... xRy, and S=51 xSy x...xS,,. If RC S is a FIP extension,
and (R, S) is a normal pair, then the cardinality of the set [R,S] of intermediate
rings is given by:

(R, S]] = I1 a(P).

PeMinSpec(R,S)

Proof. Since |[R;,S;)]| = 11 a(P) by [7], and
PeMinSpec(R;,S;)

f[ I[R:, S;]| by [14], we have

(2

|[RS|—H|R“S —H( 11 aspem,s,»,)(P))

PeMinSpec(R;,S;)

= ﬁ< I1 aSpec(R,S)(P)) = II a(P).

=1 *PeMinSpec(R;,S;) PeMinSpec(R,S)

This gives the required result and finishes the proof. (Il

Using the fact that Spec(R, Frac(R)) = Spec(R), we obtain the following result
that provides a generalization of [23], Corollary 2.4 from FO normal domains to FO

normal rings.
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Corollary 9. Let R be an FO normal ring. Then the number of overrings is
given by:

|[R, Frac(R)]| = H a(P).

PeMinSpec(R)

Let R be an FO normal ring, where R = ] R; is the decomposition of R as the

i=1
k m
product of normal domains. If R = [[ D; x [[ F;, where the D; are the non-field
i=1 i=k+1
m
components in this direct product, then [] agpec(r,)(0F;) = 1 and the number of
k i=k+1

overrings is given by |[R, Frac(R)]| = [] aspec(p;)({0})-
i=1
Let us now have an example of computing the number of overrings of a normal ring.

Example 10. Let D be a valuation domain of dimension 1 with Spec(D) =
{0,L}, and E a Priifer domain with a Y-graph as spectrum and Spec(F) =
{0,M,P,N} such that 0 C M C P,N. As a concrete example, we can take D
and E of Example 2. The spectrum of the normal ring R = D x E is shown in
Figure 1. We have

a0xE)=1+a(LxE)=1+1=2,
and
aDx0)=1+a(DxM)=1+1+a(D x P))(1+a(D x N))=5.
Therefore, the number of overrings of R is given by

|[R, Frac(R)]| = 11 a(P) = a0 x E)a(D x 0) = (2)(5) = 10.
PeMin(Spec(R))
The sets of overrings are [D,Frac(D)] = {D, Dy = Frac(D)}, and [E, Frac(E)] =
{E = EpNEN,Ep,EN, En, Eg = Frac(E)}. They are ordered by the usual inclusion

as in Figure 2.

DO I
D
Overrings of D Overrings of E

Figure 2.
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We have

[R,Frac(R)] = [D,Frac(D)] x [E, Frac(E))
={DXE,DXxFEp,D X En,D x Ey,D x Ey,
Do X E,Do X EP,D() X EN,D() X EM,DO X Eo}

The set [R, Frac(R)] of overrings is ordered by inclusion as in Figure 3.

Overrings of D x E

Figure 3.

Corollary 11. Let R; C S; be ring extensions for i = 1,...,m, R = Ry X
Rox...x R, and S =51 x Sy X ...x S,,. If the ring extension R C S has exactly
t t

r = [[ p; intermediate rings, where [ p;* is the prime power decomposition of r,
i=1 i=1 i=t

then the number of nontrivial ring extensions R; C S; (i.e., R; # S;) is at most Y . u;.
i=1

Proof. Theresult about the extension R C S follows from the fact that |[R, S]| =

[[Ri, Si]| and that |[R;, S;]| > 1 if and only if R; # S;.

—3
O

i=1

The next result indicates that the number of factors in the decomposition of R as
a direct product of FO normal domains is at most equal to the number of factors in
the prime decomposition of the number of overrings of R.

Corollary 12. If R is an FO normal ring with exactly m minimal primes and
t
r = [[ p;" overrings, then there are d integral domains D1, Do, ..., Dy that are not

=1
fields, and m — d fields F1,..., F,,_q4 such that

d m—d i=t
R:HDix H F; Wheredémin(m, ui>.
i=1 j=1 i=1
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The case, where the number of overrings is a prime or a product of two primes, is
particularly interesting as we can see from the next two examples.

Example 13. Let R be an FO normal ring with exactly m minimal primes.
Then the number of overrings of R is a prime number p if and only if R is the direct
product of a Priifer (or valuation) domain D with exactly p overrings and the direct
product of m—1 fields, that is, R = Dx Fy X Fy X...X Fyp,_1, where |[D, Frac(D)]| = p
and each F; is a field.

Remark 14. Notice that if p = 2, or 3 in the previous example, then D is neces-
sarily a valuation domain as there is no Priifer non valuation domain with exactly 2
or 3 overrings. Indeed, an FO Priifer non valuation domain has at least 4 overrings,
for if D has two different maximal ideals M and N, then it has at least the following
different overrings: Dy, Dy, Dy N Dy, and Dy = Frac(D).

Example 15. If R is an FO normal ring having exactly r = pips overrings,
where p; and ps are prime numbers. Then the equations

m

R, Frac(R))| = [T I1Dss rae(D)]| = [T aspeecon (0.) = pra

i=1

indicate that there are at most 2 non-field factors in the decomposition of R as
a direct product of FO Priifer domains.
(1) If the number of non-field factors is 1, then R = D X Fy X Fy X ... X Fp_q,
where D is a Priifer or valuation domain with exactly r = p1ps overrings.
(2) If the number of non-field factors is 2, then R = D1 X Dy X F1 X Fo X ... X Fyy,_o,
where D; is a Priifer or valuation domain with exactly p; overrings for ¢ = 1, 2.

4. LENGTH OF THE SET OF OVERRINGS OF A NORMAL RING

The previous results showed that counting the cardinality of the set of overrings
of a normal ring R involves the minimal prime ideals of R. The next few results
show that the length function depends also on the minimal primes of R, however in
a different way as shown in the results of this section. We first recall the following
definition.

Definition 16 ([21]). A ring extension R C S is said to be of finite length if
there is a nonnegative integer m such that every chain R= Ry C Ry C...C Ry =S
of intermediate rings is of length & < m. The supremum of lengths of such chains is
called the length of the set [R, S] and is denoted I[R, S].
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We recall that a ring extension R C S is called minimal extension if |[R, S]| = 2,
that is R # S and there is no intermediate ring 7" such that R C T C S. It is easy
to prove the following useful result.

Lemma 17. Let R; C S; be ring extensions for i = 1,2. Then Ry X Ry C S1 X S
is a minimal ring extension if and only if either Ry = S, and Ry C So is minimal
or Ry = Sy and Ry C Sy is minimal.

If ¢, = {Uy Cc Uy C ... C U,} is a chain of intermediate rings in the ex-
tension R; C S; and V is an intermediate ring in the extension Ry, C S,
we will denote by C; x V the chain {Uy x V Cc U3y xV C ... C U, x V}
of the extension Ry X Ry C S7 X S3. Similarly, U x Cy will denote the chain
{UxVy CcUxVy C...CUxV,} of the extension R; x S; C R x Sy, where
{Vob Vi C ... C V,} is a chain of intermediate rings in the extension Rz C Sy
and U is an intermediate ring in the extension R; C 5.

Lemma 18. Let R; C S; be ring extensions, where i = 1, 2.

(1) If C; is a maximal chain of intermediate rings in R; C S; for i = 1,2, then
(C1 x Rg) U (S1 x C3) is a maximal chain of intermediate rings of length
I(Cy)+1(Cs) in Ry x R2 C 51 x Ss.

(2) Each maximal chain of [R, S] is of length m < I[Ry, S1] + l[R2, Sa].

Proof. (1) Assume C; = {R1 = Uy C U3y C ... C Uy, = 51} and Cy =
{Re=Vo C V1 C...C Vyp, =52}

Each inclusion in the chain (C; x R2) U (51 x Ca): {R1 X Ry = Uy X Ry C
UiXRy C ... CUpy xRy =S1xRy =51 xVp CS1xVp C...C8S1xVpy, =51%x52}
satisfies the conditions of Lemma 17. Indeed in the left half between R, x R and
S1 X Rg, the second component is always Ry and the first component is coming
from a maximal chain meaning that this part consists of successive minimal ex-
tensions. Similarly for the right half. Therefore, this chain is maximal of length
mi + mo = l(Cl) + Z(CQ)

(2) Now consider a maximal chain in [Ry X Rg,S1 X So]: {R1 x Re = Uy x Vj C
Ui xVi C...CUp XV, =81 X Sa}.

Then {Up C U; C ... C Uy} is a chain of non necessarily distinct elements.
The “C” in this chain is an “C” at most {[R1, S1] times. If the “C” is an “=", this
indicates that V; C V;41. This can happen only at most I[Rg, S2] times. This means
that m < I[Ry, S1] + I[R2, Sa]. O
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Proposition 19. Let R; C S; be ring extensions for i = 1,...,m, R = R; X
Ry X ...X Ry, and S =51 x Sg x ... xS,,.
(1) R C S is an FCP extension if and only if each R; C \S; is also an FCP extension.
(2) If R C S is an FCP extension, then all maximal chains of the extension R C S
are of the same length I[R, S], if and only if all maximal chains are also of the
same length l[R;, S;] for each extension R; C S;.

Proof. It is enough to show the required results for m = 2.

(1) = Each chain {U; C Uy C ... C Uy, } of distinct elements in the extension
Ry C S; gives rise to a chain {U; X Rp C Uy X Ry C ... C Uy, X Ra} of distinct
elements in R C S, which is finite by assumption. Therefore, the original chain is
also finite and R; C 7 is an FCP extension. Similarly for Ry C Ss.

< Each chain {Up x Vp € Uy x Vi C ... C Uy x Vp,} of distinct elements in
Ry X Ry C S1 x So gives rise to the chain {Uy C Uy C ... C Uy}, whose elements
are not necessarily distinct. However, “C” in this chain is an “C” for just a finite
number of occurrences. Moreover, if “C” is an “=", this indicates that V; C V;;1.
This can also happen only for a finite number of occurrences. This indicates that
the original chain is finite as required.

(2) = Assume that C; and Cy are maximal chains of Ry C 57 and D is a maximal
chain of Ry C S. They give, by Lemma 18, rise to two maximal chains (C; x Ro) U
(S1 x D) and (C2 x R2) U (S1 x D) of Ry x Ry C Sy x Sa. The fact that these two
new chains are of the same length implies that C; and Cs are also of the same length.
The same applies for maximal chains of Ry C Ss.

< Each maximal chain {R1 X Ro = UgxVy C U1 x Vi C ... C Uy XV, = 51 X 52}
of Ry x Ry C 57 x S5 gives rise to two chains of non necessarily distinct elements:
{Uh CU1 C...CUp}of R CSp,and {Vp CV; C ... CV;,} of Re C Ss.

Using Lemma 17, we can see that the link “C” at the position k in one chain is

w__”

a “C” if and only if the corresponding link is an at the other chain and vice
versa. Again by the same lemma, we can reduce the chain Uy C U; C ... C U, to
a maximal chain of length [[R;, S7]| by eliminating repetitions. Similarly, the second
chain is reduced to a maximal chain of length I[Rs2, S2]. Since such chains are always
of the same length, this indicates that every maximal chain of Ry x Ry C 57 X S5 is

of length I[Ry, S1] + [[R2, S2] = [[R, S]. This finishes the proof of this result. O

Proposition 20. Let R; C S; be extensions of integral domains fori=1,...,m,
R=Ri XRyx..XRpandS=51 xS %x...x8,. If RCS is an FCP extension,
(R, S) is a normal pair, and R is of finite spectrum, then S is also of finite spectrum
and

I[R, S) = [Spec(R)| — [Spec(S)|-
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Proof. Since l[R;, S;] = |Spec(R )| — |Spec(S;)| for each i =1,...,m, according
to [ 2], Corollary 3.4, |Spec(R)| = Z |Spec(R;)| by Proposition 6, and I[R,S] =

E I[R;, Si] by [32], we obtain:

=1

UR,S]= ) I[Ri,Si] = ) _(|Spec(F:)| — |Spec(Si)])

= 2 |Spec(Zi)| - Z |Spec(Si)| = [Spec(R)| — [Spec(5)].

O

The following result provides a generalization of [22], Corollary 3.4 from FC normal
domains to FC normal rings.

Proposition 21. Let R be an FC normal ring and R = Dy X Dy X ... X Dy, the
presentation of R as a direct product of normal domains. Then the length of each
maximal chain of overrings R = Ry C R; C ... C Ry, = Frac(R) is given by:

I[[R,Frac(R)] = |Spec(R)| — |MinSpec(R)].
Proof. Since R = Dy x Dy X ... x Dy, Frac(R) = Frac(D;) x Frac(D3) x ... x

Frac(D,,) and [[D;,Frac(D;)] = |Spec( ;)| — 1 according to [22], Corollary 3.4, we
obtain:

0
3
)
- /3

[[R,Frac(R)] = Z[Dl,Frac Z |Spec(D;)| — 1)
1 i=1

(3

= —m+ Z |Spec(D;)| = |Spec(R)| — |[MinSpec(R)|.

i=1
O

Example 22. Consider the integral domains D, E, and the normal ring R =
D x E from Example 10. The length of [R, Frac(R)] is given by

I[[R,Frac(R)] = |Spec(R)| — |[MinSpec(R)| =6 — 2 = 4.

The chain {R=D X ECDxXx Ep CDxEy CDxEyC Dyx Ey=Frac(R)} is
an example of a maximal chain of [R, Frac(R)] of length 4, see Figure 3.
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5. NUMERICAL CHARACTERIZATIONS

We obtain in this section characterizations of normal rings, where the set of over-
rings is of a certain cardinality or length.

Corollary 23. Let R be an FO normal ring with exactly m minimal primes.
Then the following statements are equivalent.
(1) R has a unique overring, which is R itself.
(2) I[R,Frac(R)] = 0.
(3) R is the direct product of m fields, that is, R = Fy x Fy x ... x Fy,, where
each F; is a field.

Proof. Before stating the proof, notice that R = D1 X Dy X ... X D,, is the
direct product of m Priifer domains.
(1) = (2): This is trivial by the definition of the length.

(2) = (3): The equation [[R,Frac(R)] = E I[D;,Frac(D;)] = 0 yields that
[[D;, Frac(D;)] = 0 for each i. This means that each D; is a field and that R is

the direct product of m fields.
(3) = (1): We have

Frac(R) = Frac(Fy X Fa X ... X Fy,) = Frac(F1) x Frac(Fy) x ... x Frac(F,,)
=F xFyx...xF, =R.

Therefore, R has a unique overring. Il

Corollary 24. Let R be an FO normal ring with exactly m minimal primes.
Then the following statements are equivalent.
(1) R has exactly 2 overrings.
(2) I[R,Frac(R)] = 1.
(3) R is the direct product of a valuation domain D of dimension 1 and the direct
product of m — 1 fields, that is, R = D x F} X Fy x ... X F,,_1, where D is
a valuation domain of dimension 1 and each F; is a field.

Proof. (1) = (2): |[R, Frac(R)]| = 2 implies that there is ig € {1,2,...,m} such
that |[D;,, Frac(D;,)]| = 2, and |[D;, Frac(D;)]| = 1 for every @ # ip. This implies
that I[D;,,Frac(D;,)] = 1, and {[D;,Frac(D;)] = 0 for every ¢ # ig. Therefore,

i=m
I[R, Frac(R)] = > I[D;, Frac(D;)] = 1.

~.
—
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(2) = (3): The equation ![R,Frac(R)] = i [[D;,Frac(D;)] = 1 implies that
i=1
[[D;,,Frac(D;,)] = 1, and I[D;, Frac(D;)] = 0 for every i # ig. Therefore, D;, = D
is a valuation domain of dimension 1, and D; is a field for every i # ig. Therefore,
R=Dx Fy xFyx...xF,_1.
(3) = (1): We have

(R, Frac(R))| = [[11D:, Frac(Dy)]| = [[D, Frac(D)]| [] I[Fs, Frac(Fy)]| = (2)(1) = 2.
=1 i=1

O
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