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Abstract. We establish several finiteness characterizations and equations for the car-
dinality and the length of the set of overrings of rings with nontrivial zero divisors and
integrally closed in their total ring of fractions. Similar properties are also obtained for re-
lated extensions of commutative rings that are not necessarily integral domains. Numerical
characterizations are obtained for rings with some finiteness conditions afterwards.
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1. Introduction

Several equations for the number and the length of chains of intermediate rings

in extensions of integral domains have been recently established. Such results are

still in need when we consider extensions of more general rings. We study in this

work similar problems for the set of intermediate rings in some ring extensions with

nontrivial zero divisors, and the set of overrings of normal rings, see Definition 1.

We generalize results about the cardinality and the length of the set of overrings of

integrally closed domains to normal rings, when appropriate finiteness conditions are

satisfied.

Let R be a commutative ring with unity. A ring T containing R and contained in

the total ring of fractions of R is called an overring of R. We recall that a ring R
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with a finite set of overrings is called an FO ring. The ring R is called FC ring if

each chain of distinct overrings is finite, see [18]. Ring extensions R ⊆ S with only

finitely many intermediate rings have been named FIP extensions; and extensions

with finite chains of intermediate rings have been named FCP extensions, see [1].

These extensions have been recently studied by several authors, see [3], [5], [10],

[11], [13], [14], [24]. Approximations for the cardinality and the length of the set

of intermediate rings have been already obtained in [2] for normal pairs and more

recently in [29]. Normal pairs are extensions of integral domains introduced in [12],

where each intermediate ring in the ring extension R ⊆ S is integrally closed in S.

Normal pairs with zero-divisors are investigated in [9] and [15].

The number of intermediate rings has been calculated for integrally closed domains

and normal pairs; and quite recently for more general extensions of integral domains,

see [6] and [8]. An algorithm to compute such number has been established in [23]

for integrally closed domains. Also the list of such intermediate rings has been

obtained in [25]. More results about the number of intermediate rings have been also

established for many other classes of integral domains, see [16], [20], [26], [27], [28]

and [30]. This remains an open problem for many other classes of rings.

This work starts in the next second section with the investigation of the structure

of normal rings with only finitely many overrings showing that such rings are finite

direct products of normal domains satisfying several finiteness conditions such as FO

and FC , see Theorem 3. Then, in the third section, several equations concerning the

cardinality of the set of intermediate rings are established extending several recently

obtained results for integral domains to the more general setting of commutative

rings with nontrivial zerodivizors, see Theorem 8 and Corollary 9. These results

show that the number of overrings of a normal ring R depends on the ordering of

the prime ideals and on the minimal prime ideals of R. The last results of this

section deal with the number and nature of components in the decomposition of R

as a product of normal domains, see Corollaries 11 and 12. Several examples are

provided to present the extent of the obtained results, see Examples 10, 13 and 15.

Section 4 deals with the length of the set of overrings, see Propositions 20 and 21.

It is shown in particular that the length depends on the number of all primes and

minimal primes as in Propositions 20 and 21. Section 5 is reserved for numerical

characterizations involving the number of overrings and the length of some normal

domains, see Corollaries 23 and 24.

All rings considered in this work are assumed to be commutative and to contain

an identity element. Let R be a ring and D the subset of elements which are not

zero divisors in R, then the total ring of fractions D−1R is usually denoted Frac(R)

or T (R). This is equal to the field of fractions when R is an integral domain. If T

is a subring of S, we always assume that it has the same identity element of S. The
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set of intermediate rings T , R ⊆ T ⊆ S, is usually denoted [R,S]. Spec(R) denotes

as usual the set of prime ideals of R, and Max(R) the set of maximal ideals of R.

The ideal consisting of the zero element of a ring R will be denoted by 0. We recall

that an ideal I of R1 ×R2, the direct product of the commutative rings R1 and R2

with identity, is prime if and only if it has the form I1 ×R2 or R1 × I2, where Ii is

prime in Ri. Any other notation is standard as in [17].

2. Finiteness conditions for normal rings

An integral domain D is called normal (or integrally closed) if D is integrally

closed in its quotient field. According to Grothendick in [19] and Matsumura in [31],

page 64, this is extended to more general rings as follows.

Definition 1. A ring R is called normal if for every prime P ⊂ R, the localiza-

tion RP is a normal domain.

We start with an example of normal rings.

Example 2. LetD = Z2Z, and define E with the following pullback construction

of commutative rings:

E //

��

Z3Z ∩ Z5Z

��

Q[x](x) // Q[x](x)/xQ[x](x) ≃ Q.

The integral domain D is a valuation domain of dimension 1 with Spec(D) =

{0, L = 2Z2Z}. The domain Z3Z ∩ Z5Z is Prüfer as it is an overring of Z. Then

E = Z3Z ∩ Z5Z + xQ[x](x) is also a Prüfer domain with a Y -graph as spectrum by

Theorem 2.1 of [4]. We also have Spec(E) = {0,M, P,N} such that 0 ⊂ M =

xQ[x](x) ⊂ P = xQ[x](x)+3(Z3Z ∩Z5Z), and 0 ⊂ M ⊂ N = xQ[x](x) +5(Z3Z ∩Z5Z).

The spectrum of R = D × E is given by Spec(D × E) = {0 × E,L × E,D × 0,

D ×M,D × P,D ×N} and is ordered as in Figure 1.

0

L

0

M

P N

Spec(E)Spec(D)

0× E

L× E

D × 0

D ×M

D × P D ×N

Spec(D × E)

Figure 1.
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The localizations RD×I2 = (D×E)D×I2 = EI2 and RI1×E = (D×E)I1×E = DI1

confirm that R is a normal ring. The minimal prime ideals of R = D × E are

0 × E and D × 0. The localizations RD×0 = (D × E)D×0 = E0 and R0×E =

(D × E)0×E = D0 show that the total ring of fractions is Frac(R)=Frac(D × E)=

(D × E)0×E × (D × E)D×0 =D0 × Ė0 =Frac(D)× Frac(E).

Example 2 provides an FO normal ring that is the direct product of FO Prüfer

domains. In fact, this is one of several characterizations of such rings as it is shown

in the next result.

Theorem 3. Let R be a ring. Then the following statements are equivalent.

(1) R is an FO normal ring.

(2) R is a finite direct product of FO normal domains.

(3) R is a finite direct product of FC normal domains.

(4) R is an FC normal ring.

(5) R is a finite direct product of Prüfer domains of finite spectrum.

(6) R is a finite direct product of Prüfer domains of finite dimension and finite

maximal spectrum.

P r o o f. (1) ⇒ (2): Note that the map R →
∏

m∈Max(R)

Rm is injective by

Lemma 10.23.1 of [33]. Then the normal ring R is a reduced ring, as it is a subring of

the product of its localizations at all maximal ideals, which is reduced since each lo-

calization is a domain. The ring R has necessarily a finite number of minimal primes.

Then R =
∏

Di, where each Di is an FO normal domain, by Lemma 10.37.16 of [34].

(2) ⇒ (3): Each FO domain is an FC domain.

(3) ⇒ (2) ⇒ (1) ⇒ (4) ⇒ (1): Trivial.

(1) ⇒ (5): R =
∏

Di and Spec(R) is isomorphic to the finite union of the finite

spectra of Di.

(5) ⇒ (6): Trivial.

(6) ⇒ (1): Spec(Di) is finite for each Di in the decomposition of R as a direct

product of normal domain. Therefore, each Di is an FO normal domain implying

that R is an FO ring. �
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3. The number of overrings of normal rings

In what follows we are going to compute the number and the length of the set of

overrings. We need first to recall and state some results and definitions.

Lemma 4 ([2], Lemma 3.1). Let (R,S) be a normal pair of integral domains R

and S, and let Max(R) = {Mi : i ∈ I}. Then for each Mi ∈ Max(R), there ex-

ists a prime R-ideal Qi such that: SR\Mi
= RQi

and S =
⋂

Mi

∈ Max(R)SR\Mi
=

⋂

Mi∈Max(R)

RQi
=

⋂

i∈I

RQi
.

The primes Qi defined by Lemma 4 are playing a prime role in determining the

cardinality and the length of the set of overrings. Indeed, if (R,S) is a normal

pair, then according to [21], Spec(R,S) is defined to be the set {P ∈ Spec(R) :

P 6⊂ Qi, for allMi ∈ Max(R)}.We denote the set of minimal elements of Spec(R,S)

by MinSpec(R,S).

Definition 5. Let R =
n
∏

i=1

Ri be a direct product of commutative rings, and

i0 ∈ {1, 2, . . . , n}. For every prime ideal P of Ri0 and every set A of prime ideals

of Ri0 , let

(1) P e :=
n
∏

i=1

Ui, where Ui0 = P and Ui = Ri for each i 6= i0, and

(2) Ae := {P e : P ∈ A}.

Using the fact that each prime ideal of the direct product is a direct product of the

form
n
∏

i=1

Ui, where Ui0 = P for some i0 ∈ {1, 2, . . . , n}, and Ui = Ri for each i 6= i0,

we obtain the following results.

Proposition 6. Let R =
n
∏

i=1

Ri be a direct product of commuative rings. Then

the following statements hold true.

(1) Spec
( n
∏

i=1

Ri

)

=
n
⋃

i=1

(Spec(Ri))
e.

(2) Max
( n
∏

i=1

Ri

)

=
n
⋃

i=1

(Max(Ri))
e.

(3) MinSpec
( n
∏

i=1

Ri

)

=
n
⋃

i=1

(MinSpec(Ri))
e.

To state results about the cardinality of the set of intermediate rings, we first need

to recall some related definitions and results.

Assume that R is a commutative ring and A a finite set of prime ideals of R. Let P

and P ′ be elements of A. If there is no element Q of A with P ⊂ Q ⊂ P ′, we say

that the prime P ′ covers P in A.
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We recall from [23], Theorem 2.3 the function α defined on Spec(R) by

α(P ) :=

{

1 if P is a maximal ideal of R,
∏

P ′covers P

(1 + α(P ′)) if P is not a maximal ideal of R.

We usually use αA instead of α if α is defined on a subset A of Spec(R). This

function is highly involved when we want to compute the number of overrings as it is

going to be shown from the next results. Regarding the effect of the function alpha

on related spectra we have the following result.

Lemma 7. Let (R,S) be a normal pair such that R =
m
∏

i=1

Ri and S =
m
∏

i=1

Si are

direct products of integral domains Ri ⊆ Si for all i ∈ {1, 2, . . . ,m}. Then for each

prime ideal P in Spec(Ri, Si) we have

αSpec(Ri,Si)(P ) = αSpec(R,S)(P
e).

Theorem 8. Let Ri ⊆ Si be extensions of integral domains for i = 1, . . . ,m,

R = R1 ×R2 × . . .×Rm and S = S1 × S2 × . . .× Sm. If R ⊆ S is a FIP extension,

and (R,S) is a normal pair, then the cardinality of the set [R,S] of intermediate

rings is given by:

|[R,S]| =
∏

P∈MinSpec(R,S)

α(P ).

P r o o f. Since |[Ri, Si)]| =
∏

P∈MinSpec(Ri,Si)

α(P ) by [7], and
∣

∣

∣

[ m
∏

i=1

Ri,
m
∏

i=1

Si

]
∣

∣

∣
=

m
∏

i=1

|[Ri, Si]| by [14], we have

|[R,S]| =

m
∏

i=1

|[Ri, Si]| =

m
∏

i=1

(

∏

P∈MinSpec(Ri,Si)

αSpec(Ri,Si)(P )

)

=

m
∏

i=1

(

∏

P∈MinSpec(Ri,Si)

αSpec(R,S)(P )

)

=
∏

P∈MinSpec(R,S)

α(P ).

This gives the required result and finishes the proof. �

Using the fact that Spec(R,Frac(R)) = Spec(R), we obtain the following result

that provides a generalization of [23], Corollary 2.4 from FO normal domains to FO

normal rings.
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Corollary 9. Let R be an FO normal ring. Then the number of overrings is

given by:

|[R,Frac(R)]| =
∏

P∈MinSpec(R)

α(P ).

Let R be an FO normal ring, where R =
m
∏

i=1

Ri is the decomposition of R as the

product of normal domains. If R =
k
∏

i=1

Di×
m
∏

i=k+1

Fi, where the Di are the non-field

components in this direct product, then
m
∏

i=k+1

αSpec(Fi)(0Fi
) = 1 and the number of

overrings is given by |[R,Frac(R)]| =
k
∏

i=1

αSpec(Di)({0}).

Let us now have an example of computing the number of overrings of a normal ring.

Example 10. Let D be a valuation domain of dimension 1 with Spec(D) =

{0, L}, and E a Prüfer domain with a Y -graph as spectrum and Spec(E) =

{0,M, P,N} such that 0 ⊂ M ⊂ P,N . As a concrete example, we can take D

and E of Example 2. The spectrum of the normal ring R = D × E is shown in

Figure 1. We have

α(0 × E) = 1 + α(L × E) = 1 + 1 = 2,

and

α(D × 0) = 1 + α(D ×M) = 1 + (1 + α(D × P ))(1 + α(D ×N)) = 5.

Therefore, the number of overrings of R is given by

|[R,Frac(R)]| =
∏

P∈Min(Spec(R))

α(P ) = α(0 × E)α(D × 0) = (2)(5) = 10.

The sets of overrings are [D,Frac(D)] = {D,D0 = Frac(D)}, and [E,Frac(E)] =

{E = EP∩EN , EP , EN , EM , E0 = Frac(E)}. They are ordered by the usual inclusion

as in Figure 2.

E

EP EN

EM

E0

Overrings of E

D

D0

Overrings of D

Figure 2.
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We have

[R,Frac(R)] = [D,Frac(D)]× [E,Frac(E)]

= {D × E,D × EP , D × EN , D × EM , D × E0,

D0 × E,D0 × EP , D0 × EN , D0 × EM , D0 × E0}.

The set [R,Frac(R)] of overrings is ordered by inclusion as in Figure 3.

D × E

D × EP
D × EN

D × EM

D × E0

D0 × E

D0 × EP
D0 × EN

D0 × EM

D0 × E0

Overrings of D × E

Figure 3.

Corollary 11. Let Ri ⊆ Si be ring extensions for i = 1, . . . ,m, R = R1 ×

R2 × . . .×Rm and S = S1 × S2 × . . .× Sm. If the ring extension R ⊆ S has exactly

r =
t
∏

i=1

pui

i intermediate rings, where
t
∏

i=1

pui

i is the prime power decomposition of r,

then the number of nontrivial ring extensions Ri ⊂ Si (i.e., Ri 6= Si) is at most
i=t
∑

i=1

ui.

P r o o f. The result about the extensionR ⊆ S follows from the fact that |[R,S]| =
m
∏

i=1

|[Ri, Si]| and that |[Ri, Si]| > 1 if and only if Ri 6= Si. �

The next result indicates that the number of factors in the decomposition of R as

a direct product of FO normal domains is at most equal to the number of factors in

the prime decomposition of the number of overrings of R.

Corollary 12. If R is an FO normal ring with exactly m minimal primes and

r =
t
∏

i=1

pui

i overrings, then there are d integral domains D1, D2, . . . , Dd that are not

fields, and m− d fields F1, . . . , Fm−d such that

R =

d
∏

i=1

Di ×

m−d
∏

j=1

Fj , where d 6 min

(

m,

i=t
∑

i=1

ui

)

.
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The case, where the number of overrings is a prime or a product of two primes, is

particularly interesting as we can see from the next two examples.

Example 13. Let R be an FO normal ring with exactly m minimal primes.

Then the number of overrings of R is a prime number p if and only if R is the direct

product of a Prüfer (or valuation) domain D with exactly p overrings and the direct

product ofm−1 fields, that is, R = D×F1×F2×. . .×Fm−1, where |[D,Frac(D)]| = p

and each Fi is a field.

Remark 14. Notice that if p = 2, or 3 in the previous example, then D is neces-

sarily a valuation domain as there is no Prüfer non valuation domain with exactly 2

or 3 overrings. Indeed, an FO Prüfer non valuation domain has at least 4 overrings,

for if D has two different maximal ideals M and N , then it has at least the following

different overrings: DM , DN , DM ∩DN , and D0 = Frac(D).

Example 15. If R is an FO normal ring having exactly r = p1p2 overrings,

where p1 and p2 are prime numbers. Then the equations

|[R,Frac(R)]| =

m
∏

i=1

|[Di,Frac(Di)]| =

m
∏

i=1

αSpec(Di)(0Di
) = p1p2

indicate that there are at most 2 non-field factors in the decomposition of R as

a direct product of FO Prüfer domains.

(1) If the number of non-field factors is 1, then R = D × F1 × F2 × . . . × Fm−1,

where D is a Prüfer or valuation domain with exactly r = p1p2 overrings.

(2) If the number of non-field factors is 2, then R = D1×D2×F1×F2× . . .×Fm−2,

where Di is a Prüfer or valuation domain with exactly pi overrings for i = 1, 2.

4. Length of the set of overrings of a normal ring

The previous results showed that counting the cardinality of the set of overrings

of a normal ring R involves the minimal prime ideals of R. The next few results

show that the length function depends also on the minimal primes of R, however in

a different way as shown in the results of this section. We first recall the following

definition.

Definition 16 ([21]). A ring extension R ⊆ S is said to be of finite length if

there is a nonnegative integer m such that every chain R = R0 ⊂ R1 ⊂ . . . ⊂ Rk = S

of intermediate rings is of length k 6 m. The supremum of lengths of such chains is

called the length of the set [R,S] and is denoted l[R,S].
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We recall that a ring extension R ⊂ S is called minimal extension if |[R,S]| = 2,

that is R 6= S and there is no intermediate ring T such that R ⊂ T ⊂ S. It is easy

to prove the following useful result.

Lemma 17. Let Ri ⊆ Si be ring extensions for i = 1, 2. Then R1×R2 ⊂ S1×S2

is a minimal ring extension if and only if either R1 = S1 and R2 ⊂ S2 is minimal

or R2 = S2 and R1 ⊂ S1 is minimal.

If C1 = {U0 ⊂ U1 ⊂ . . . ⊂ Un} is a chain of intermediate rings in the ex-

tension R1 ⊆ S1 and V is an intermediate ring in the extension R2 ⊆ S2,

we will denote by C1 × V the chain {U0 × V ⊂ U1 × V ⊂ . . . ⊂ Un × V }

of the extension R1 × R2 ⊆ S1 × S2. Similarly, U × C2 will denote the chain

{U × V0 ⊂ U × V1 ⊂ . . . ⊂ U × Vn} of the extension R1 × S1 ⊆ R2 × S2, where

{V0 ⊂ V1 ⊂ . . . ⊂ Vn} is a chain of intermediate rings in the extension R2 ⊆ S2

and U is an intermediate ring in the extension R1 ⊆ S1.

Lemma 18. Let Ri ⊆ Si be ring extensions, where i = 1, 2.

(1) If Ci is a maximal chain of intermediate rings in Ri ⊆ Si for i = 1, 2, then

(C1 × R2) ∪ (S1 × C2) is a maximal chain of intermediate rings of length

l(C1) + l(C2) in R1 ×R2 ⊆ S1 × S2.

(2) Each maximal chain of [R,S] is of length m 6 l[R1, S1] + l[R2, S2].

P r o o f. (1) Assume C1 = {R1 = U0 ⊂ U1 ⊂ . . . ⊂ Um1
= S1} and C2 =

{R2 = V0 ⊂ V1 ⊂ . . . ⊂ Vm2
= S2}.

Each inclusion in the chain (C1 × R2) ∪ (S1 × C2) : {R1 × R2 = U0 × R2 ⊂

U1×R2 ⊂ . . . ⊂ Um1
×R2 = S1×R2 = S1×V0 ⊂ S1×V1 ⊂ . . . ⊂ S1×Vm2

= S1×S2}

satisfies the conditions of Lemma 17. Indeed in the left half between R1 × R2 and

S1 × R2, the second component is always R2 and the first component is coming

from a maximal chain meaning that this part consists of successive minimal ex-

tensions. Similarly for the right half. Therefore, this chain is maximal of length

m1 +m2 = l(C1) + l(C2).

(2) Now consider a maximal chain in [R1 × R2, S1 × S2] : {R1 × R2 = U0 × V0 ⊂

U1 × V1 ⊂ . . . ⊂ Um × Vm = S1 × S2}.

Then {U0 ⊆ U1 ⊆ . . . ⊆ Um} is a chain of non necessarily distinct elements.

The “⊆” in this chain is an “⊂” at most l[R1, S1] times. If the “⊆” is an “=”, this

indicates that Vi ⊂ Vi+1. This can happen only at most l[R2, S2] times. This means

that m 6 l[R1, S1] + l[R2, S2]. �
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Proposition 19. Let Ri ⊆ Si be ring extensions for i = 1, . . . ,m, R = R1 ×

R2 × . . .×Rm and S = S1 × S2 × . . .× Sm.

(1) R ⊆ S is an FCP extension if and only if each Ri ⊆ Si is also an FCP extension.

(2) If R ⊆ S is an FCP extension, then all maximal chains of the extension R ⊆ S

are of the same length l[R,S], if and only if all maximal chains are also of the

same length l[Ri, Si] for each extension Ri ⊆ Si.

P r o o f. It is enough to show the required results for m = 2.

(1) ⇒ Each chain {U1 ⊂ U2 ⊂ . . . ⊂ Uk1
} of distinct elements in the extension

R1 ⊆ S1 gives rise to a chain {U1 × R2 ⊂ U2 × R2 ⊂ . . . ⊂ Uk1
× R2} of distinct

elements in R ⊆ S, which is finite by assumption. Therefore, the original chain is

also finite and R1 ⊆ S1 is an FCP extension. Similarly for R2 ⊆ S2.

⇐ Each chain {U0 × V0 ⊂ U1 × V1 ⊂ . . . ⊂ Um × Vm} of distinct elements in

R1 × R2 ⊂ S1 × S2 gives rise to the chain {U0 ⊆ U1 ⊆ . . . ⊆ Um}, whose elements

are not necessarily distinct. However, “⊆” in this chain is an “⊂” for just a finite

number of occurrences. Moreover, if “⊆” is an “=”, this indicates that Vi ⊂ Vi+1.

This can also happen only for a finite number of occurrences. This indicates that

the original chain is finite as required.

(2) ⇒ Assume that C1 and C2 are maximal chains of R1 ⊆ S1 and D is a maximal

chain of R2 ⊆ S2. They give, by Lemma 18, rise to two maximal chains (C1 ×R2) ∪

(S1 × D) and (C2 × R2) ∪ (S1 × D) of R1 × R2 ⊆ S1 × S2. The fact that these two

new chains are of the same length implies that C1 and C2 are also of the same length.

The same applies for maximal chains of R2 ⊆ S2.

⇐ Each maximal chain {R1×R2 = U0×V0 ⊂ U1×V1 ⊂ . . . ⊂ Um×Vm = S1×S2}

of R1 × R2 ⊆ S1 × S2 gives rise to two chains of non necessarily distinct elements:

{U0 ⊆ U1 ⊆ . . . ⊆ Um} of R1 ⊆ S1, and {V0 ⊆ V1 ⊆ . . . ⊆ Vm} of R2 ⊆ S2.

Using Lemma 17, we can see that the link “⊆” at the position k in one chain is

a “⊂” if and only if the corresponding link is an “=” at the other chain and vice

versa. Again by the same lemma, we can reduce the chain U0 ⊆ U1 ⊆ . . . ⊆ Um to

a maximal chain of length l[R1, S1] by eliminating repetitions. Similarly, the second

chain is reduced to a maximal chain of length l[R2, S2]. Since such chains are always

of the same length, this indicates that every maximal chain of R1 ×R2 ⊆ S1 × S2 is

of length l[R1, S1] + l[R2, S2] = l[R,S]. This finishes the proof of this result. �

Proposition 20. Let Ri ⊆ Si be extensions of integral domains for i = 1, . . . ,m,

R = R1 ×R2 × . . .×Rm and S = S1 ×S2 × . . .×Sm. If R ⊆ S is an FCP extension,

(R,S) is a normal pair, and R is of finite spectrum, then S is also of finite spectrum

and

l[R,S] = |Spec(R)| − |Spec(S)|.
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P r o o f. Since l[Ri, Si] = |Spec(Ri)| − |Spec(Si)| for each i = 1, . . . ,m, according

to [22], Corollary 3.4, |Spec(R)| =
i=m
∑

i=1

|Spec(Ri)| by Proposition 6, and l[R,S] =
i=m
∑

i=1

l[Ri, Si] by [32], we obtain:

l[R,S] =

i=m
∑

i=1

l[Ri, Si] =

i=m
∑

i=1

(|Spec(Ri)| − |Spec(Si)|)

=

i=m
∑

i=1

|Spec(Ri)| −

i=m
∑

i=1

|Spec(Si)| = |Spec(R)| − |Spec(S)|.

�

The following result provides a generalization of [22], Corollary 3.4 from FC normal

domains to FC normal rings.

Proposition 21. Let R be an FC normal ring and R = D1 ×D2 × . . .×Dm the

presentation of R as a direct product of normal domains. Then the length of each

maximal chain of overrings R = R0 ⊆ R1 ⊆ . . . ⊆ Rk = Frac(R) is given by:

l[R,Frac(R)] = |Spec(R)| − |MinSpec(R)|.

P r o o f. Since R = D1 ×D2 × . . .×Dm, Frac(R) = Frac(D1)× Frac(D2)× . . .×

Frac(Dm) and l[Di,Frac(Di)] = |Spec(Di)| − 1 according to [22], Corollary 3.4, we

obtain:

l[R,Frac(R)] =
i=m
∑

i=1

l[Di,Frac(Di)] =
i=m
∑

i=1

(|Spec(Di)| − 1)

= −m+
i=m
∑

i=1

|Spec(Di)| = |Spec(R)| − |MinSpec(R)|.

�

Example 22. Consider the integral domains D, E, and the normal ring R =

D × E from Example 10. The length of [R,Frac(R)] is given by

l[R,Frac(R)] = |Spec(R)| − |MinSpec(R)| = 6− 2 = 4.

The chain {R = D×E ⊂ D×EP ⊂ D×EM ⊂ D×E0 ⊂ D0 ×E0 = Frac(R)} is

an example of a maximal chain of [R,Frac(R)] of length 4, see Figure 3.
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5. Numerical characterizations

We obtain in this section characterizations of normal rings, where the set of over-

rings is of a certain cardinality or length.

Corollary 23. Let R be an FO normal ring with exactly m minimal primes.

Then the following statements are equivalent.

(1) R has a unique overring, which is R itself.

(2) l[R,Frac(R)] = 0.

(3) R is the direct product of m fields, that is, R = F1 × F2 × . . . × Fm, where

each Fi is a field.

P r o o f. Before stating the proof, notice that R = D1 × D2 × . . . × Dm is the

direct product of m Prüfer domains.

(1) ⇒ (2): This is trivial by the definition of the length.

(2) ⇒ (3): The equation l[R,Frac(R)] =
i=m
∑

i=1

l[Di,Frac(Di)] = 0 yields that

l[Di,Frac(Di)] = 0 for each i. This means that each Di is a field and that R is

the direct product of m fields.

(3) ⇒ (1): We have

Frac(R) = Frac(F1 × F2 × . . .× Fm) = Frac(F1)× Frac(F2)× . . .× Frac(Fm)

= F1 × F2 × . . .× Fm = R.

Therefore, R has a unique overring. �

Corollary 24. Let R be an FO normal ring with exactly m minimal primes.

Then the following statements are equivalent.

(1) R has exactly 2 overrings.

(2) l[R,Frac(R)] = 1.

(3) R is the direct product of a valuation domain D of dimension 1 and the direct

product of m − 1 fields, that is, R = D × F1 × F2 × . . . × Fm−1, where D is

a valuation domain of dimension 1 and each Fi is a field.

P r o o f. (1)⇒ (2): |[R,Frac(R)]| = 2 implies that there is i0 ∈ {1, 2, . . . ,m} such

that |[Di0 ,Frac(Di0)]| = 2, and |[Di,Frac(Di)]| = 1 for every i 6= i0. This implies

that l[Di0 ,Frac(Di0 )] = 1, and l[Di,Frac(Di)] = 0 for every i 6= i0. Therefore,

l[R,Frac(R)] =
i=m
∑

i=1

l[Di,Frac(Di)] = 1.
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(2) ⇒ (3): The equation l[R,Frac(R)] =
i=m
∑

i=1

l[Di,Frac(Di)] = 1 implies that

l[Di0 ,Frac(Di0)] = 1, and l[Di,Frac(Di)] = 0 for every i 6= i0. Therefore, Di0 = D

is a valuation domain of dimension 1, and Di is a field for every i 6= i0. Therefore,

R = D × F1 × F2 × . . .× Fm−1.

(3) ⇒ (1): We have

|[R,Frac(R)]| =

m
∏

i=1

|[Di,Frac(Di)]| = |[D,Frac(D)]|

m−1
∏

i=1

|[Fi,Frac(Fi)]| = (2)(1) = 2.

�
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