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Abstract. Let k be a fixed integer. We study the asymptotic formula of R(H, r, k),
which is the number of positive integer solutions 1 6 x, y, z 6 H such that the polynomial
x2 + y2 + z2 + k is r-free. We obtained the asymptotic formula of R(H, r, k) for all r > 2.

Our result is new even in the case r = 2. We proved that R(H, 2, k) = ckH
3 +O(H9/4+ε),

where ck > 0 is a constant depending on k. This improves upon the error term O(H7/3+ε)
obtained by G.-L. Zhou, Y.Ding (2022).
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1. Introduction

There exists an outstanding conjecture that the polynomial x2 + 1 contains in-

finitely many primes. Iwaniec in [10] proved there are infinitely many n such that

n2 +1 has at most two prime factors. So far, various authors considered the square-

free values of some specific polynomials with integer coefficients. In 1931, Estermann

in [6] showed that
∑

16x6H

µ2(x2 + 1) = c0H +O(H2/3+ε),

where c0 is an absolute constant. This error term was improved to O(H7/12+ε) by

Heath-Brown, see [9]. Carlitz in [2] studied the polynomial x2+x and established that

∑

16x6H

µ2(x2 + x) =
∏

p

(

1−
2

p2

)

H +O(H2/3+ε).

This work was supported by NSFC grant 11922113.

c© Institute of Mathematics, Czech Academy of Sciences 2023.

DOI: 10.21136/CMJ.2023.0394-22 955

http://dx.doi.org/10.21136/CMJ.2023.0394-22


Later, Heath-Brown in [8] improved the error term O(H2/3+ε) to O(H7/11 log7 H)

which was further improved by Reuss (see [16]) to O(H0.578+ε). Mirsky in [14]

studied the square-free values of the polynomial (x+ a1)(x+ a2).

In 2012 Tolev in [17] considered the square-free values of a polynomial in two

variables. Let S2(H) stand for the number of square-free values of x2 + y2 + 1 with

1 6 x, y 6 H . Using Weil’s estimate for the Kloosterman sum, Tolev proved that

S2(H) =
∏

p

(

1−
λ2(p

2)

p4

)

H2 +O(H4/3+ε),

where λ2(q) is the number of integer solutions to the congruence equation

x2 + y2 + 1 ≡ 0 (mod q), 1 6 x, y 6 q.

In 2022 Zhou and Ding in [18] studied square-free values of the polynomial x2+y2+

z2 + k, where k is a fixed (nonzero) integer. Let

(1.1) S3(H, k) =
∑

16x,y,z6H

µ2(x2 + y2 + z2 + k).

It was proved in [18] that

(1.2) S3(H, k) =
∏

p

(

1−
λ(p2; k)

p6

)

H3 +O(H7/3+ε),

where λ(q; k) is defined as

(1.3) λ(q; k) =
∑

16x,y,z6q
x2+y2+z2+k≡0 (mod q)

1.

Moreover, with the help of the method developed by Tolev (see [17]), many other

interesting results were proved. For example, Dimitrov in [4], [5] found asymptotic

formulas for consecutive square-free numbers of the form x2+ y2+1, x2+ y2+2 and

the form x2+1, x2+2, respectively. Subsequently Chen in [3] generalized the results

of Dimitrov and gave an asymptotic formula for consecutive square-free numbers of

the form x2
1 + . . . + x2

k + 1, x2
1 + . . . + x2

k + 2 for k > 3. Further, Jing and Liu

in [12] made a slight improvement to the error term in [4] and studied consecutive

square-free numbers of the form xy + 1, xy + 2.

In addition, some articles are devoted to r-free values of polynomials in one vari-

able. Note that for r > 2, an integer n is r-free if pr ∤ n for all primes p. Let S(H, r) be

the number of integers x 6 H such that x2+x is r-free. In 1932, Carlitz in [2] obtained

S(H, r) =
∏

p

(

1−
2

pr

)

H +O(H2/(r+1)+ε).
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The above error term was improved to O(H14/(7r+8)+ε) by Brandes (see [1]) general-

izing Heath-Brown’s method in [8]. Brandes’ result was further improved by Reuss,

see [16]. Furthermore, Reuss in [16] established a more general result

Sr,h(H) = cr,hH +O(Hυ(r)+ε),

where Sr,h(H) stands for the number of integers x 6 H such that x and x + h

are r-free, cr,h is a constant depending on r and h, and υ(2) = 0.578 while

υ(r) = 169/(144r) for r > 3. Also, r-free values of the polynomial (x + a1)(x + a2)

were considered by Mirsky (see [13]) who gave the error term O(H2/(r+1)+ε).

Inspired by the above works, we study the r-free values of x2+y2+z2+k. We put

(1.4) R(H, r, k) =
∑

16x,y,z6H
x2+y2+z2+k is r-free

1.

The main result of this paper is the asymptotic formula of R(H, r, k).

Theorem 1.1. Let r > 2 be a natural number. Let k be a fixed integer. Let

ε > 0 be an arbitrarily small positive number. Then

(i) For k 6= 0,

(1.5) R(H, r, k) =
∏

p

(

1−
λ(pr; k)

p3r

)

H3 +O(H2 +H3/2+3/2r+ε).

(ii) We have

(1.6) R(H, r, 0) =
∏

p

(

1−
λ(pr ; 0)

p3r

)

H3 +O(H2+ε +H9r/(5r−2)+ε).

Note that R(H, 2, k) is exactly S3(H, k) defined in (1.1). In fact, Theorem 1.1 is

also new in the case r = 2. We have the following theorem.

Theorem 1.2. Let k be a fixed integer. Let ε > 0 be an arbitrarily small positive

number. We have

S3(H, k) =
∏

p

(

1−
λ(p2; k)

p6

)

H3 +O(H9/4+ε).

Theorem 1.2 improves upon (1.2) obtained by Zhou and Ding, see [18].
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2. Notations and some lemmas

Let H be a sufficiently large positive number. The letters k, m, n, l, a, b, c stand

for integers and d, r, h, q, x, y, z, α, ̺ stand for positive integers. The letters η, ξ

denote real numbers and the letter p is reserved for primes. By ε we denote an

arbitrarily small positive number. Throughout this paper, k and r > 2 are fixed

integers, and the implied constants may depend on k, r and ε.

As usual, the functions µ(n) and τ(n) represent the Möbius function and the

number of positive divisors of n, respectively. We write (n1, . . . , nu) for the greatest

common divisor of n1, . . . , nu. Let ‖ξ‖ be the distance from ξ to its nearest integer.

Further let e(t) = exp(2πit) and eq(t) = e(t/q). For any q and x such that (q, x) = 1

we denote by xq the inverse of x modulo q. If the modulus q is clear from the context

then we write x for simplicity. For any odd q we denote by
(

·
q

)

the Jacobi symbol.

We introduce the Gauss sum

(2.1) G(q;n,m) =
∑

16x6q

eq(nx
2 +mx), G(q;n) =

∑

16x6q

eq(nx
2).

First, we introduce some basic properties of the Gauss sum.

Lemma 2.1. For the Gauss sum we have:

(i) See [7], Lemma 7. If (q, n) = d then

G(q;n,m) =







dG
( q

d
;
n

d
,
m

d

)

if d | m,

0 if d ∤ m.

(ii) See [7], Lemma 3. If (q, 2n) = 1 then

G(q;n,m) = eq(−(4n)m2)
(n

q

)

G(q; 1).

(iii) See [11], Lemma 4.8. If (q, 2) = 1 then

G2(q; 1) = (−1)(q−1)/2q.

We introduce the Salié sum

(2.2) S(c; a, b) =
∑

16x6c
(x,c)=1

(x

c

)

ec(ax+ bx).

It is easy to see that

(2.3) S(c; a, b) = S(c; b, a).

The following result comes from Corollary 4.10 in [11].
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Lemma 2.2. Let p be an odd prime. Let α be a positive integer. If p ∤ a (or p ∤ b),

then

(2.4) |S(pα; a, b)| 6 τ(pα)pα/2.

We put

(2.5) T (c; a, ̺) =
∑

16x6c
(x,c)=1

(x

c

)̺

ec(ax), 2 ∤ c.

Lemma 2.3. Let p be an odd prime. Let α and ̺ be positive integers. Suppose

that p ∤ a. One has

T (pα; a, ̺) = 0 for α > 2 and |T (p; a, ̺)| 6 p1/2.

P r o o f. We first consider the case α = 1. Note that T (p; a; ̺) is either the

Gauss sum or the Ramanujan sum, and we have |T (p; a, ̺)| 6 p1/2.

Now we consider the case α > 2. We write x = yp+ z to deduce that

T (pα; a, ̺) =
∑

06y6pα−1−1

∑

06z6p−1

( z

pα

)̺

epα(apy + az)

=
∑

06z6p−1

( z

pα

)̺

epα(az)
∑

06y6pα−1−1

epα−1(ay) = 0.

This completes the proof. �

Lemma 2.4. Let p be an odd prime and let α be a positive integer. One has

(2.6) |S(pα; a, 0)| 6 pα/2(pα, a)1/2.

P r o o f. Note that (2.6) holds trivially when pα | a. We only need to consider

pα ∤ a. We assume that pβ‖a and 0 6 β 6 α− 1. Then we write a = pβa′ with p ∤ a′.

We have

S(pα; a, 0) =
∑

16x6pα

(x,p)=1

(x

p

)α

epα−β (a′x).

We write x = ypα−β + z to deduce that

S(pα; a, 0) =
∑

06y6pβ−1

∑

06z6pα−β−1
(z,p)=1

(z

p

)α

epα−β (a′z) = pβ
∑

06z6pα−β−1
(z,p)=1

(z

p

)α

epα−β (a′z)

= pβT (pα−β; a′, α).
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Since p ∤ a′, we conclude from Lemma 2.3 that

|S(pα; a, 0)| 6 pβ+(α−β)/2 = pα/2+β/2 = pα/2(pα, a)1/2.

This completes the proof. �

Let

(2.7) λ(q;n,m, l, k) =
∑

16x,y,z6q
x2+y2+z2+k≡0 (mod q)

eq(nx+my + lz).

Lemma 2.5 ([18], Lemma 2.2). Suppose that (q1, q2) = 1. One has

λ(q1q2;n,m, l, k) = λ(q1; q2q1n, q2q1m, q2q1 l, k)λ(q2; q1q2n, q1q2m, q1q2 l, k).

In particular, we have

λ(q1q2; k) = λ(q1; k)λ(q2; k).

Now we apply Lemmas 2.2, 2.4 and 2.5 to obtain an upper bound of λ(q;n,m, l, k).

Lemma 2.6. Suppose that pr‖q for all primes p | q.

(i) If k 6= 0, then we have

(2.8) λ(q;n,m, l, k) ≪ q1+ε(q, n,m, l).

(ii) One has (for k = 0)

(2.9) λ(q;n,m, l, 0) ≪ q1+ε(q, n,m, l)(q, n2 +m2 + l2)1/2.

P r o o f. We write q = pr1p
r
2 . . . p

r
s, where pi (1 6 i 6 s) are distinct primes. By

Lemma 2.5, we have

(2.10) λ(q;n,m, l, k) =

s
∏

i=1

λ(pri ;nqi,mqi, lqi, k),

where qi = q/pri and qi stands for the inverse of qi modulo p
r
i .

Let ni = nqi, mi = mqi and li = lqi. Note that (pri , qi) = 1, so we have

(pri , ni,mi, li) = (pri , n,m, l) and (pri , n
2
i + m2

i + l2i ) = (pri , n
2 + m2 + l2). There-

fore, we only need to prove

(2.11) λ(pr;u, v, w, k) ≪ pr+ε(pr, u, v, w) for k 6= 0

and

(2.12) λ(pr;u, v, w, 0) ≪ pr+ε(pr, u, v, w)(pr, u2 + v2 + w2)1/2.
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One has the trivial bound |λ(pr;u, v, w, k)| 6 p3r. Since the implied constants were

allowed to depend on r and k, we assume that p is odd and we further assume that

p ∤ k if k 6= 0. We have

λ(pr ;u, v, w, k) = p−r
∑

16x,y,z6pr

epr (ux+ vy + wz)
∑

16h6pr

epr(h(x2 + y2 + z2 + k))

= p−r
∑

16h6pr

epr(hk)G(pr ;h, u)G(pr;h, v)G(pr ;h,w)

= p−r
∑

06β6r

∑

16h6pr

(h,pr)=pβ

epr(hk)G(pr ;h, u)G(pr;h, v)G(pr ;h,w).

We write h = h′pβ with 1 6 h′ 6 pr−β and (h′, pr−β) = 1. Then we have

(2.13)

λ(pr;u, v, w, k)

= p−r
∑

06β6r

∑

16h′6pr−β

(h′,pr−β)=1

epr−β (h′k)G(pr;h′pβ , u)G(pr;h′pβ, v)G(pr ;h′pβ, w).

By Lemma 2.1 (i), we have

(2.14) G(pr;h, u)G(pr;h, v)G(pr;h,w)

= p3βG(pr−β ;h′, up−β)G(pr−β ;h′, vp−β)G(pr−β ;h′, wp−β)

if pβ | (u, v, w), and G(pr;h, u)G(pr;h, v)G(pr;h,w) = 0 if pβ ∤ (u, v, w). When p is

odd and pβ | (u, v, w), by Lemma 2.1 (ii), we have

(2.15) G(pr−β ;h′, up−β)G(pr−β ;h′, vp−β)G(pr−β ;h′, wp−β)

=
( h′

pr−β

)3

G(pr−β, 1)3epr−β (−(4h′)pr−β (u
2 + v2 + w2)p−2β).

From (2.13)–(2.15), we obtain

(2.16) λ(pr;u, v, w, k) = p−r
∑

06β6r

pβ |(u,v,w)

p3βG(pr−β ; 1)3S
(

pr−β; k,−4
u2 + v2 + w2

p2β

)

.

We first deal with the case k 6= 0. As mentioned above, p is odd and p ∤ k, then

by Lemmas 2.1 (iii) and 2.2, we have

λ(pr ;u, v, w, k) ≪ p−r
∑

06β6r

pβ |(pr,u,v,w)

p3βp3/2(r−β)τ(pr−β)p1/2(r−β) ≪ pr+ε(pr, u, v, w).
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This establishes (2.11). Now we consider the case k = 0. By Lemmas 2.1 (iii) and 2.4,

we deduce from (2.16) that

λ(pr ;u, v, w, 0) ≪ p−r
∑

06β6r

pβ |(pr ,u,v,w)

p3βp3/2(r−β)p1/2(r−β)
(

pr−β,
u2 + v2 + w2

p2β

)1/2

≪ pr+ε(pr, u, v, w)(pr , u2 + v2 + w2)1/2.

This establishes (2.12). The proof of the lemma is complete. �

Lemma 2.7 ([18], Lemma 2.5). Let Q > 2. Let q = dr with d odd and square-free.

We put

U1(Q, q) =
∑

16n6Q

|λ(q;n, 0, 0, k)|

n
, U2(Q, q) =

∑

16n,m6Q

|λ(q;n,m, 0, k)|

nm
,

U3(Q, q) =
∑

16n,m,l6Q

|λ(q;n,m, l, k)|

nml
.

Suppose that k 6= 0. For 1 6 i 6 3, we have

Ui(Q, q) ≪ q1+εQε.

Lemma 2.8 ([15], Lemma 4.7). For any real number ξ and all integers N1, N2

with N1 < N2,
N2
∑

n=N1+1

e(ξn) ≪ min{N2 −N1, ‖ξ‖
−1}.

Now we introduce

N1(H, q, k) =
1

q

∑

16t6q−1

λ(q;−t, 0, 0, k)
∑

16h6H

eq(ht),(2.17)

N2(H, q, k) =
1

q2

∑

16t1,t26q−1

λ(q;−t1,−t2, 0, k)
2
∏

i=1

(

∑

16hi6H

eq(hiti)

)

,(2.18)

N3(H, q, k) =
1

q3

∑

16t1,t2,t36q−1

λ(q;−t1,−t2,−t3, k)
3
∏

i=1

(

∑

16hi6H

eq(hiti)

)

.(2.19)

Lemma 2.9. Let H > 2. Let d be odd and square-free. Suppose that dr ≪ H2.

If k 6= 0, then for 1 6 i 6 3 we have

Ni(H, dr , k) ≪ dr+ε.
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P r o o f. By Lemma 2.8, for any 1 6 t 6 q − 1, we have

∑

16h6H

edr(ht) ≪
∥

∥

∥

t

dr

∥

∥

∥

−1

.

Then we obtain

Ni(H, dr, k) ≪ Ui

(dr − 1

2
, dr

)

.

The desired estimate follows from Lemma 2.7 directly. �

3. Proof of Theorem 1.1

Let

D(H, q, k) =
∑

16x,y,z6H
x2+y2+z2+k≡0 (mod q)

1.

Lemma 3.1. Suppose that q ≪ H2. Then we have

(3.1) D(H, q, k) ≪ q−1H3+ε.

In particular, one has

(3.2) λ(q; k) ≪ q2+ε.

P r o o f. The proof is standard and we include the details for completeness. We

have

D(H, q, k) =
∑

|t|6(3H2+|k|)/q

∑

16z6H

∑

16x,y6H
x2+y2=qt−z2−k

1 ≪
∑

|t|6(3H2+|k|)/q

∑

16z6H

Hε

≪ q−1H3+ε.

This establishes (3.1). Note that λ(q; k) = D(q, q, k). The estimate (3.2) follows

immediately from (3.1). This completes the proof. �

Now we represent R(H, r, k) in terms of D(H, q, k).

Lemma 3.2. Suppose that 1 6 η 6 (3H2 + |k|)1/r. Then we have

R(H, r, k) =
∑

d6η

µ(d)D(H, dr , k) +O(H3+εη1−r).
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P r o o f. The starting point is to apply the identity

∑

dr|n

µ(d) =

{

1 if n is r-free,

0 if n 6= 0 is not r-free.

Then we deduce that

R(H, r, k) =
∑

16x,y,z6H
x2+y2+z2+k 6=0

∑

dr|x2+y2+z2+k

µ(d)

=
∑

16d6(3H2+|k|)1/r

µ(d)
∑

16x,y,z6H
x2+y2+z2+k≡0 (mod dr)

x2+y2+z2+k 6=0

1.

Note that
∑

16x,y,z6H
x2+y2+z2+k≡0 (mod q)

x2+y2+z2+k 6=0

1 = D(H, q, k) +O(1).

Now we conclude from the above that

R(H, r, k) =
∑

16d6(3H2+|k|)1/r

µ(d)D(H, dr , k) +
∑

16d6(3H2+|k|)1/r

O(1)

=
∑

16d6(3H2+|k|)1/r

µ(d)D(H, dr , k) +O(H2/r).

Splitting the above summation into two parts, we obtain

R(H, r, k) =
∑

16d6η

µ(d)D(H, dr , k) +
∑

η<d6(3H2+|k|)1/r

µ(d)D(H, dr , k) +O(H2/r).

On applying Lemma 3.1, we further obtain

R(H, r, k) =
∑

16d6η

µ(d)D(H, dr , k) +O(H3+εη1−r).

This completes the proof. �

Now we deal with D(H, q, k) for q 6 ηr.

Lemma 3.3. Let λ(q; k) be defined in (1.3) and let Ni(H, q, k) be defined

in (2.17)–(2.19). We have

(3.3) D(H, q, k) =
H3

q3
λ(q; k) + 3

H2

q2
N1(H, q, k) + 3

H

q
N2(H, q, k) +N3(H, q, k).
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P r o o f. Note that

D(H, q, k) =
∑

16x,y,z6q
x2+y2+z2+k≡0 (mod q)

∑

16m,n,l6H
m≡x (mod q)
n≡y (mod q)
l≡z (mod q)

1.

By orthogonality, we have

∑

16m6H
m≡x (mod q)

1 = q−1
∑

16h6H

∑

16t6q

eq((h− x)t) = q−1
∑

16t6q

eq(−xt)
∑

16h6H

eq(ht)

= Hq−1 + q−1
∑

16t6q−1

eq(−xt)
∑

16h6H

eq(ht).

Now we conclude from above that

(3.4) D(H, q, k) =
∑

16x,y,z6q
x2+y2+z2+k≡0 (mod q)

(H3

q3
+3

H2

q2
L1(x)+3

H

q
L2(x, y)+L3(x, y, z)

)

,

where

L1(x) := L1(x; q,H) =
1

q

∑

16t6q−1

eq(−xt)
∑

16h6H

eq(ht),

L2(x, y) := L2(x, y; q,H) =
1

q2

∑

16t1,t26q−1

eq(−xt1 − yt2)

2
∏

i=1

(

∑

16hi6H

eq(hiti)

)

,

and

L3(x, y, z) := L3(x, y, z; q,H)

=
1

q3

∑

16t1,t2,t36q−1

eq(−xt1 − yt2 − zt3)
3
∏

i=1

(

∑

16hi6H

eq(hiti)

)

.

For convenience, we write L1(x, y, z; q,H) = L1(x; q,H) and L2(x, y, z; q,H) =

L2(x, y; q,H). By exchanging the order of summations and recalling the definitions

of λ(q;n,m, l, k) and Ni(H, q, k), we obtain

(3.5)
∑

16x,y,z6q
x2+y2+z2+k≡0 (mod q)

Li(x, y, z; q,H) = Ni(H, q, k).

Now (3.3) follows from (3.4) and (3.5). �
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P r o o f of Theorem 1.1. We first deal with the case k 6= 0. By Lemmas 2.9

and 3.3, we can get

D(H, dr, k) = H3λ(d
r ; k)

d3r
+O(H2dε−r +Hdε + dr+ε).

By Lemma 3.2, we find that

R(H, r, k) = H3
∑

16d6η

µ(d)λ(dr ; k)

d3r
+O(H2 +Hη1+ε + ηr+1+ε +H3+εη1−r)

and then by (3.2), we have

R(H, r, k) = H3
∞
∑

d=1

µ(d)λ(dr ; k)

d3r
+O(H2 +Hη1+ε + ηr+1+ε +H3+εη1−r).

Now we choose η = H3/2r to conclude that

R(H, r, k) = H3
∞
∑

d=1

µ(d)λ(dr ; k)

d3r
+O(H2 +H3/2+3/2r+ε).

Since λ(q; k) is multiplicative as a function of q, we obtain for k 6= 0 that

R(H, r, k) =
∏

p

(

1−
λ(pr; k)

p3r

)

H3 +O(H2 +H3/2+3/2r+ε)

and this completes the proof of (1.5).

From now on, we consider the case k = 0. We introduce

T1(H, η) =
∑

16d6η

µ(d)

d2r
N1(H, dr , 0), T2(H, η) =

∑

16d6η

µ(d)

dr
N2(H, dr, 0),

T3(H, η) =
∑

16d6η

µ(d)N3(H, dr , 0).

By Lemma 3.2 and (3.3), we have

(3.6) R(H, r, 0) = H3
∑

16d6η

µ(d)λ(dr ; 0)

d3r
+ 3H2T1(H, η) + 3HT2(H, η)

+ T3(H, η) +O(H3+εη1−r).

Recalling the definition ofN1(H, dr , 0) in (2.17), we deduce from (2.9) and Lemma 2.8

that

T1(H, η) ≪
∑

16d6η

d−2r
∑

16|t|6(dr−1)/2

|λ(dr ; t, 0, 0, 0)|

|t|

≪
∑

16d6η

d−r+ε
∑

16|t|6(dr−1)/2

(dr , t)(dr, t2)1/2

|t|
.
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Since (dr, t2)1/2 6 dr/2, we have

T1(H, η) ≪
∑

16d6η

d−r/2+ε
∑

16|t|6(dr−1)/2

(dr, t)

t
.

From the elementary estimate

∑

16t6(dr−1)/2

(dr, t)

t
≪ dε,

we conclude for r > 2 that

(3.7) T1(H, η) ≪
∑

16d6η

d−r/2+ε ≪ ηε.

Recalling (2.18), we deduce from (2.9) and Lemma 2.8 that

T2(H, η) ≪
∑

16d6η

d−r
∑

16|t1|,|t2|6(dr−1)/2

|λ(dr ; t1, t2, 0, 0)|

|t1t2|

≪ ηε
∑

16d6η

∑

16|t1|,|t2|6(dr−1)/2

(dr, t21 + t22)
1/2(dr, t1, t2)

|t1t2|
.

Since (dr, t21 + t22)
1/2 6 d(r−2)/2(d, t21 + t22) 6 η(r−2)/2(d, t21 + t22) and (dr, t1, t2) 6

(t1, t2), we conclude that

T2(H, η) ≪ η(r−2)/2+ε
∑

16d6η

∑

16|t1|,|t2|6(dr−1)/2

(d, t21 + t22)
(t1, t2)

t1t2
.

By exchanging the order of summations, we have

(3.8) T2(H, η) ≪ η(r−2)/2+ε
∑

16t1,t26ηt

(t1, t2)

t1t2

∑

16d6η

(d, t21 + t22).

Now we easily obtain

(3.9) T2(H, η) ≪ ηr/2+ε.

We estimate the sum T3(H, η) in same way, that is

T3(H, η) ≪
∑

16d6η

dr+ε
∑

16|t1|,|t2|,|t3|6(dr−1)/2

(dr, t21 + t22 + t23)
1/2(dr , t1, t2, t3)

|t1t2t3|
,

and by (dr, t21 + t22 + t23)
1/2 6 d(r−2)/2(d, t21 + t22 + t23) 6 η(r−2)/2(d, t21 + t22 + t23) and

(dr, t1, t2, t3) 6 (t1, t2, t3), we have

T3(H, η) ≪ η(3r−2)/2+ε
∑

16d6η

∑

16|t1|,|t2|,|t3|6(dr−1)/2

(d, t21 + t22 + t23)
(t1, t2, t3)

t1t2t3
.
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By a similar argument as in (3.8), we finally obtain

(3.10) T3(H, η) ≪ η3r/2+ε.

Now we combine (3.6)–(3.10) to conclude that

R(H, r, 0) = H3
∑

16d6η

µ(d)λ(dr ; 0)

d3r
+O(H2+ε +Hηr/2+ε + η3r/2+ε +H3+εη1−r).

Then by (3.2), we get

R(H, r, 0) = H3
∞
∑

d=1

µ(d)λ(dr ; 0)

d3r
+O(H2+ε +Hηr/2+ε + η3r/2+ε +H3+εη1−r).

Since λ(q; 0) is multiplicative, we obtain by choosing η = H6/(5r−2) that

R(H, r, 0) =
∏

p

(

1−
λ(pr ; 0)

p3r

)

H3 +O(H2+ε +H9r/(5r−2)+ε).

This establishes (1.6). The proof of Theorem 1.1 is complete. �

References

[1] J.Brandes: Twins of the s-Free Numbers: Diploma Thesis. University of Stuttgart,
Stuttgart, 2009.

[2] L.Carlitz: On a problem in additive arithmetic. II. Q. J. Math., Oxf. Ser. 3 (1932),
273–290. zbl doi

[3] B.Chen: On the consecutive square-free values of the polynomials x21 + . . . + x2k + 1,

x21 + . . .+ x2k + 2. To appear in Indian J. Pure Appl. Math. doi

[4] S.Dimitrov: On the number of pairs of positive integers x, y 6 H such that x2+ y2+1,
x2 + y2 + 2 are square-free. Acta Arith. 194 (2020), 281–294. zbl MR doi

[5] S.Dimitrov: Pairs of square-free values of the type n2 + 1, n2 + 2. Czech. Math. J. 71
(2021), 991–1009. zbl MR doi

[6] T.Estermann: Einige Sätze über quadratfreie Zahlen. Math. Ann. 105 (1931), 653–662.
(In German.) zbl MR doi

[7] T.Estermann: A new application of the Hardy-Littlewood-Kloosterman method. Proc.
Lond. Math. Soc., III. Ser. 12 (1962), 425–444. zbl MR doi

[8] D.R.Heath-Brown: The square sieve and consecutive square-free numbers. Math. Ann.
266 (1984), 251–259. zbl MR doi

[9] D.R.Heath-Brown: Square-free values of n2 + 1. Acta Arith. 155 (2012), 1–13. zbl MR doi
[10] H. Iwaniec: Almost-primes represented by quadratic polynomials. Invent. Math. 47

(1978), 171–188. zbl MR doi
[11] H. Iwaniec: Topics in Classical Automorphic Forms. Graduate Studies in Mathematics

17. AMS, Providence, 1997. zbl MR doi
[12] M.Jing, H. Liu: Consecutive square-free numbers and square-free primitive roots. Int.

J. Number Theory 18 (2022), 205–226. zbl MR doi

968

https://zbmath.org/?q=an:0006.10401
http://dx.doi.org/10.1093/qmath/os-3.1.273
http://dx.doi.org/10.1007/s13226-022-00292-z
https://zbmath.org/?q=an:1469.11263
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4096105
http://dx.doi.org/10.4064/aa190118-25-7
https://zbmath.org/?q=an:07442468
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4339105
http://dx.doi.org/10.21136/CMJ.2021.0165-20
https://zbmath.org/?q=an:0003.15001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1512732
http://dx.doi.org/10.1007/BF01455836
https://zbmath.org/?q=an:0105.03606
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0137677
http://dx.doi.org/10.1112/plms/s3-12.1.425
https://zbmath.org/?q=an:0514.10038
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0730168
http://dx.doi.org/10.1007/BF01475576
https://zbmath.org/?q=an:1312.11077
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2982423
http://dx.doi.org/10.4064/aa155-1-1
https://zbmath.org/?q=an:0389.10031
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0485740
http://dx.doi.org/10.1007/bf01578070
https://zbmath.org/?q=an:0905.11023
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1474964
http://dx.doi.org/10.1090/gsm/017
https://zbmath.org/?q=an:1489.11005
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4369801
http://dx.doi.org/10.1142/S1793042122500154


[13] L.Mirsky: Note on an asymptotic formula connected with r-free integers. Q. J. Math.,
Oxf. Ser. 18 (1947), 178–182. zbl MR doi

[14] L.Mirsky: On the frequency of pairs of square-free numbers with a given difference.
Bull. Am. Math. Soc. 55 (1949), 936–939. zbl MR doi

[15] M.B.Nathanson: Addictive Number Theory: The Classical Bases. Graduate Texts in
Mathematics 164. Springer, New York, 1996. zbl MR doi

[16] T.Reuss: The Determinant Method and Applications: Ph.D. Thesis. University of Ox-
ford, Oxford, 2015.

[17] D. I.Tolev: On the number of pairs of positive integers x, y 6 H such that x2 + y2 + 1
is square-free. Monatsh. Math. 165 (2012), 557–567. zbl MR doi

[18] G.-L. Zhou, Y.Ding: On the square-free values of the polynomial x2 + y2 + z2 + k.
J. Number Theory 236 (2022), 308–322. zbl MR doi

Authors’ address: G o n g r u i C h e n, We n x i a o Wan g (corresponding author),
Shandong University, 27 Shanda Nanlu, 250100 Jinan, P. R. China, e-mail: cgr4258@
gmail.com, wxwang@mail.sdu.edu.cn.

969

https://zbmath.org/?q=an:0029.10905
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0021566
http://dx.doi.org/10.1093/qmath/os-18.1.178
https://zbmath.org/?q=an:0035.31301
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0031507
http://dx.doi.org/10.1090/S0002-9904-1949-09313-8
https://zbmath.org/?q=an:0859.11002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1395371
http://dx.doi.org/10.1007/978-1-4757-3845-2
https://zbmath.org/?q=an:1297.11118
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2891268
http://dx.doi.org/10.1007/s00605-010-0246-4
https://zbmath.org/?q=an:1490.11096
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR4395352
http://dx.doi.org/10.1016/j.jnt.2021.07.022
mailto:cgr4258@gmail.com
mailto:cgr4258@gmail.com

