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Abstract. Let k be a fixed integer. We study the asymptotic formula of R(H,r, k),
which is the number of positive integer solutions 1 < z,y, 2z < H such that the polynomial
2?2+ y2 + 22 + k is r-free. We obtained the asymptotic formula of R(H,r, k) for all r > 2.
Our result is new even in the case r = 2. We proved that R(H,2,k) = e H? + O(H9/4+5),

where ¢;, > 0 is a constant depending on k. This improves upon the error term O(H 7/ 3"'5)
obtained by G.-L. Zhou, Y. Ding (2022).
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1. INTRODUCTION

There exists an outstanding conjecture that the polynomial 2> + 1 contains in-
finitely many primes. Iwaniec in [10] proved there are infinitely many n such that
n? + 1 has at most two prime factors. So far, various authors considered the square-
free values of some specific polynomials with integer coefficients. In 1931, Estermann
in [6] showed that

> pP(a? + 1) = coH + O(H?3F¢),
1<z<H

where cg is an absolute constant. This error term was improved to O(H7/'2+¢) by
Heath-Brown, see [9]. Carlitz in [2] studied the polynomial 2?+x and established that

> we o =TI (1- %)H+ O(H?/#%%).

1<z<H

This work was supported by NSFC grant 11922113.

DOI: 10.21136/CMJ.2023.0394-22 955

© Institute of Mathematics, Czech Academy of Sciences 2023.


http://dx.doi.org/10.21136/CMJ.2023.0394-22

Later, Heath-Brown in [8] improved the error term O(H?/3+) to O(H7/" log" H)
which was further improved by Reuss (see [16]) to O(H%578t¢). Mirsky in [14]
studied the square-free values of the polynomial (z + a1)(z + a2).

In 2012 Tolev in [17] considered the square-free values of a polynomial in two
variables. Let So(H) stand for the number of square-free values of 22 + y% + 1 with
1 < z,y < H. Using Weil’s estimate for the Kloosterman sum, Tolev proved that

So(H) = H (1 3 AQ;fQ))HQ +O(HY3),

where A2(q) is the number of integer solutions to the congruence equation
22 +192+1=0 (mod q), 1<z y<q.

In 2022 Zhou and Ding in [18] studied square-free values of the polynomial z2 + 2 +
2% + k, where k is a fixed (nonzero) integer. Let

(1.1) Ss(H k)= > 2@ +y°+22+k).

1<a,y,2<H

It was proved in [18] that
APk .
(1.2) SB(H,k):H(l_ (pG )>H3—|—O(H7/3+ ),
P

where A(g; k) is defined as

(1.3) Mg; k) = > 1.

1Sz,y,2<¢
224y +22+k=0 (mod q)

Moreover, with the help of the method developed by Tolev (see [17]), many other
interesting results were proved. For example, Dimitrov in [4], [5] found asymptotic
formulas for consecutive square-free numbers of the form 224 32+ 1, 22 +y? +2 and
the form 22 + 1, 22 + 2, respectively. Subsequently Chen in [3] generalized the results
of Dimitrov and gave an asymptotic formula for consecutive square-free numbers of
the form z% + ... + x% +1, 23 +... + x% + 2 for k£ > 3. Further, Jing and Liu
in [12] made a slight improvement to the error term in [4] and studied consecutive
square-free numbers of the form zy + 1, zy + 2.

In addition, some articles are devoted to r-free values of polynomials in one vari-
able. Note that for r > 2, an integer n is r-free if p” t n for all primes p. Let S(H,r) be
the number of integers x < H such that x2+z is r-free. In 1932, Carlitz in [2] obtained

SH,r) =] (1 — ]%)H +O(H/ (r+D+e),
p
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The above error term was improved to O(H'/("+8)+¢) by Brandes (see [1]) general-
izing Heath-Brown’s method in [8]. Brandes’ result was further improved by Reuss,
see [16]. Furthermore, Reuss in [16] established a more general result

S (H) = o + O(H"),

where S, ,(H) stands for the number of integers < H such that  and = + h
are r-free, ¢, is a constant depending on r and h, and v(2) = 0.578 while
v(r) = 169/(144r) for r > 3. Also, r-free values of the polynomial (z + a1)(x + a2)
were considered by Mirsky (see [13]) who gave the error term O(H?/(r+1)+¢),
Inspired by the above works, we study the r-free values of 22 +y?+ 22+ k. We put

(1.4) R(H,r, k) = > 1.
1<z,y,2<H
22 4y2 422+ kis r-free

The main result of this paper is the asymptotic formula of R(H,r, k).

Theorem 1.1. Let r > 2 be a natural number. Let k be a fixed integer. Let
€ > 0 be an arbitrarily small positive number. Then

(i) For k # 0,
(1.5) R(H,rk)=]] ( ))H3 + O(H? + H3/2+3/2+e),
p
(ii) We have
(1.6) R(H,r,0) =[] ( ))Ha’ L O(H¥e 4 o7/ Gr-2)+e).
v

Note that R(H,2,k) is exactly S3(H, k) defined in (1.1). In fact, Theorem 1.1 is
also new in the case r = 2. We have the following theorem.

Theorem 1.2. Let k be a fixed integer. Let € > 0 be an arbitrarily small positive
number. We have

S3(H, k) = H (1 — %)H‘S + O(H9/4+5),

p

Theorem 1.2 improves upon (1.2) obtained by Zhou and Ding, see [18].
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2. NOTATIONS AND SOME LEMMAS

Let H be a sufficiently large positive number. The letters k, m, n, [, a, b, ¢ stand
for integers and d, r, h, q, x, y, z, a, o stand for positive integers. The letters n, £
denote real numbers and the letter p is reserved for primes. By & we denote an
arbitrarily small positive number. Throughout this paper, k£ and r > 2 are fixed
integers, and the implied constants may depend on k, r and ¢.

As usual, the functions u(n) and 7(n) represent the Mobius function and the
number of positive divisors of n, respectively. We write (nq,...,n,) for the greatest
common divisor of ny,...,n,. Let ||£]| be the distance from £ to its nearest integer.
Further let e(t) = exp(2nit) and e4(t) = e(t/q). For any ¢ and x such that (¢,z) =1
we denote by T, the inverse of z modulo ¢. If the modulus g is clear from the context
then we write T for simplicity. For any odd ¢ we denote by (E) the Jacobi symbol.

We introduce the Gauss sum

(2.1) G(g;n,m) = Z eq(nz® +ma), G(gn) = Z eq(naz?).

1<z<q 1<z<q

First, we introduce some basic properties of the Gauss sum.

Lemma 2.1. For the Gauss sum we have:
(i) See [7], Lemma 7. If (¢,n) = d then

g nm .
dG(=;=,—) ifd]|m,
G(¢;n,m) = <d d d) |
0 if dtm.
(ii) See [7], Lemma 3. If (¢,2n) = 1 then
— n
Glg; m.m) = e(~Tamm®) () Gg; 1)
(iii) See [11], Lemma 4.8. If (¢,2) =1 then
G3(g;1) = (=1)=D/%,

We introduce the Salié sum

(2.2) S(eiab) = Y (%)ec(ax +b7).

1<z<ce
(z,¢)=1
It is easy to see that
(2.3) S(c;a,b) = S(c;b,a).

The following result comes from Corollary 4.10 in [11].
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Lemma 2.2. Let p be an odd prime. Let o be a positive integer. If pta (orp1b),
then

(2.4) |S(p*;a,b)| < T(pa)pa/Q.
We put
r\@
(2.5) T(c;a,0) = Z (E) ec(ax), 2tec.
1<z<ce

(z,c)=1

Lemma 2.3. Let p be an odd prime. Let a and ¢ be positive integers. Suppose
that p { a. One has

T(p®a,0) =0 fora>2 and |T(p;a,o)| <p'/>

Proof. We first consider the case a = 1. Note that T'(p;a; o) is either the
Gauss sum or the Ramanujan sum, and we have |T'(p;a, 0)| < p'/2.
Now we consider the case a > 2. We write z = yp + z to deduce that

T(p*a,0= Y, > (I%)gepcx(aperaZ)

0<y<pr—1 -1 0<2<p—1

= X (e X a0

O0<szsp—1 p o<y<pe—1-1

This completes the proof. O
Lemma 2.4. Let p be an odd prime and let « be a positive integer. One has

(2.6) 1S(p™;a,0)] < p™/2(p™,a)"/2.

Proof. Note that (2.6) holds trivially when p® | a. We only need to consider
p® { a. We assume that p®|la and 0 < 3 < a— 1. Then we write a = p®a’ with p{a’.

We have
T

«
S(p*;a,0) = Z (—) epo—s(a'z).
1<z <p® p
(I,p):l

We write z = yp®~? + 2 to deduce that

S(p*a,0)= > > (g)aepa—ﬁ(a/z)zpﬁ > (g)a@p“—f*(a"z)

0<y<pP -1 02<p® P -1 0<2<p® P -1
(2,p)=1 (2,p)=1

- pﬁT(pa’ﬂ; a, ).

959



Since p 1 a’, we conclude from Lemma 2.3 that

|S(p(’;a,0)| < pﬁ+((y—6)/2 :pa/2+,6‘/2 — pa/Q(pa7a)1/2.

This completes the proof. O
Let
(2.7) Mg;n,m, 1, k) = Z eq(ne +my + 12).
1<z,y,2<q

224+y%+224k=0 (mod q)

Lemma 2.5 ([18], Lemma 2.2). Suppose that (q1,¢2) = 1. One has

A(QIQQ; n,m, lv k) = )\(ql;q_quna @qlmv q_qulv k)A(q% ﬁqzn) q_1q2m7 ﬁqzl) k)
In particular, we have
Mq1q2; k) = Ma1; k)M (ga; k).

Now we apply Lemmas 2.2, 2.4 and 2.5 to obtain an upper bound of A(¢;n, m, [, k).

Lemma 2.6. Suppose that p"||q for all primes p | q.
(i) If k # 0, then we have

(2.8) Mg;n,m, 1 k) < ¢ Te(q,n,m, ).
(ii) One has (for k =0)

(2.9) Ma;n,m,1,0) < ¢* (g, n,m, 1) (g, n* +m? + 12)1/2,

Proof. We write ¢ = p7p}...p%, where p; (1 < ¢ < s) are distinct primes. By
Lemma 2.5, we have

S

(2.10) Mgz, m, k) = [T A@Es nigi, mi. 175, k),
i=1
where ¢; = q/p] and g stands for the inverse of ¢; modulo p[.
Let n; = ng, m; = mg and [; = [g. Note that (pl,q;) = 1, so we have
(pr,ni,miy i) = (pf,n,m,1) and (pf,n? + m? +12) = (pI,n? + m? + [%). There-
fore, we only need to prove

(2.11) A" u,v,w, k) < p"tE(p" u,v,w)  for k #£ 0
and
(2‘12) A(pr;u7v7w70) <<pr+€(pr7u’v’w)(pr7u2+v2+w2)1/2'
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One has the trivial bound |A(p";u,v,w, k)| < p*". Since the implied constants were
allowed to depend on r and k, we assume that p is odd and we further assume that
ptkif k # 0. We have

AP s u,v,w, k) =p " Z epr (ux + vy + wz) Z epr(h(2® + 92 + 22+ k))

1<z,y,2<p” 1<h<pT
= p7T Z ep'(hk)G(pra hv U)G(pr, ha U)G(prv ha w)
1<h<p”

=p Z Z epr (hE)G(p"; h,u)G(p"; h,v)G(p"; h,w).
0<B<r 1<h<p”
(h,p")=p"
We write h = h/p? with 1 <A’ < p"~# and (W/,p"~#) = 1. Then we have
(2.13)
)\(pr, u,v,w, k)

=p" Y > e s (WR)GO WD )G W o) ' w).
0BT 1A/ <p™ P
(' prP)=1

By Lemma 2.1 (i), we have

(2.14) G(p"; h,u)G(p"; h,v)G(p"; hyw)
=p*G(p" P 0 up P )G(p" P W up P)G(p" P 1 wpF)

if p? | (u,v,w), and G(p"; h,u)G(p"; h,v)G(p"; h,w) = 0 if p® { (u,v,w). When p is
odd and p” | (u,v,w), by Lemma 2.1 (ii), we have

(215) GO PR up )G P h  up )G P W wpP)

h' N3 _ — _
= <pr—ﬂ) G(p" P, 1)3epr_;s(—(4h’)pr_ﬁ (u? + 0% 4+ w?)p~ ).

From (2.13)—(2.15), we obtain

2 2 2
(2.16) A(p"3u,0,w k) =p™" Y p?’ﬂG(p“ﬁ;1)35(19"*/3;/6,—1%)-
0<h<r b
P |(w0.w)

We first deal with the case k # 0. As mentioned above, p is odd and p 1 k, then
by Lemmas 2.1 (iii) and 2.2, we have

AT u,v,w k) <p o Y PPt RO p PR < (7 v, w).
0<p<r
PP (p" u,0,w)
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This establishes (2.11). Now we consider the case k = 0. By Lemmas 2.1 (iii) and 2.4,
we deduce from (2.16) that

r —r r— r— e u2+v2+w2 1/2
A" u,v,w,0) < p D e i ﬁ)(p /3,7)

%6
0<B<r p
I [CURTRIRT|

<P v, w)(p" vt + 0% + W)

This establishes (2.12). The proof of the lemma is complete. O

Lemma 2.7 ([18], Lemma 2.5). Let Q) > 2. Let ¢ = d” with d odd and square-free.
We put

U(@a)= > W Q= Y RenmOk]

1<n<Q 1<n,m<Q i
IAMg;n,m, 1K)
Us(Q,9) = Y —
1<n,m,I<Q

Suppose that k # 0. For 1 <1 < 3, we have

Ui(Q,q) < ¢'T°Q".

Lemma 2.8 ([15], Lemma 4.7). For any real number ¢ and all integers Ny, N

with Ny < Na,
N2

Z e(én) < min{N, — Ny, [|€[ 7"}

n=Ni1+1

Now we introduce

(2.17) Ni(H,q, k) = Z Ag; —t,0,0,k) > eqlht),

?1<<q—1 \<h<H
2
1
(2.18) N2(H,q7k):q—2 > Mg —t1,—t2,0, k) H( d e h‘ti)>,
1<t ta<g—1 =1 M<h<H
3
1
(2.19) N3(H,q7k):q—3 > )\(Q;—f1,—t2,—t3ak)H< > eq(hiti)>'
1<ttt <g—1 i=1 M<hi<H

Lemma 2.9. Let H > 2. Let d be odd and square-free. Suppose that d” < H?.
If k # 0, then for 1 < ¢ < 3 we have

Ni(H,d" k) < d"=.
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Proof. By Lemma 2.8, for any 1 <t < ¢ — 1, we have

—1

> ear(ht) < ‘ %

1<h<H

Then we obtain g —1
Ni(H,d" k) < Ui(T, d’“).

The desired estimate follows from Lemma 2.7 directly. O

3. PrROOF OF THEOREM 1.1

Let
D(H, q, k) = > 1.

1<z, y,2<H
x2+y2+22+k50 (mod q)

Lemma 3.1. Suppose that ¢ < H?. Then we have
(3.1) D(H,q.k) < g~ H*.
In particular, one has

(3.2) Mg; k) < ¢*F=.

Proof. The proof is standard and we include the details for completeness. We

have

D(H,q,k) = > > Yool Y. > Hf

[tIS(3H2+k|)/q1<2<H _ 1szy<H [t|<(3H2+|k|)/q 1<2<H
z2+yz:qtfzsz
—1
< g tH3tE.

This establishes (3.1). Note that A(¢; k) = D(q,q,k). The estimate (3.2) follows
immediately from (3.1). This completes the proof. O

Now we represent R(H,r, k) in terms of D(H, g, k).
Lemma 3.2. Suppose that 1 <7 < (3H? + |k|)!/". Then we have
R(H,r.k) =" u(d)D(H,d" k) + O(H* <y'~").

d<sn
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Proof. The starting point is to apply the identity

> ud) =

{ 1 if n is r-free,
drin

0 if n # 0 is not r-free.

Then we deduce that

RH k)= Y. > uld)

1<z,y,2<H  d"|a?+y%+22 4k

x2+y2+z2+k7$0
- Y e Y
1<d<(3H24|k|)L/7 1<e,y,2<H
224+y%+224k=0 (mod d")
x2+y2+22+k750
Note that
) | = D(H,q,k) + O(1).
1<z,y,2<H
x2+y2+22+k50 (mod gq)
224y +22+k#0
Now we conclude from the above that
R(H,r,k) = > p(d)D(H, d" k) + > o0
1<d<(3H2+|k|)1/™ 1<d< (3H2+|k|)1/ ™
= > w(d)D(H,d" k) + O(H?'™).

1A (BH2+[k[)/ T
Splitting the above summation into two parts, we obtain
R(H,rk)= Y p(d)DH.dk)+ > p(d)DH,d" k) +OH").
1<d<n n<d<(3H2+|k|)1/"

On applying Lemma 3.1, we further obtain

R(H,rk)= Y p(d)D(H,d" k) + O(H*n' ).

1<d<n
This completes the proof. O
Now we deal with D(H, q, k) for ¢ < n".

Lemma 3.3. Let A(q;k) be defined in (1.3) and let N;(H,q,k) be defined
in (2.17)—(2.19). We have

H3 H? H
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Proof. Note that

D(H,q,k) = > oL

1sz,y,2<q 1<m,n I<H
z2+y2+z2+k20 (mod q) m=x (mod q)
n=y (mod q)

=z (mod q)

By orthogonality, we have

Z l=q! Z Z eq((h—z)t) =q! Z eq(—xt) Z eq(ht)

1<m<H 1<h<H 1<t<q 1<t<q 1<h<H
m=z (mod q)
—1 —1
=Hq  +g¢q E eq(—at) E eq(ht).
1<t<q—1 1<h<H

Now we conclude from above that

H3
q3

H? H
(3.4) D(H,q.k) = > (L@ La(e )+ La(r,y. 7)),
1sz,y,2<q 9 9
224+y%+224k=0 (mod q)

where

1<t<q—1 1<h<H
2
1
Lo(z,y) = La(z,y;¢, H) = — eq(—xt1 — yt2) H( eq(hiti)>7
T 1<tibza1 =1 N<hi<H

and
Lg(l‘, Y, Z) = L3(x7ya z;4q, H)

1 3
= q—3 Z eq(—xh — yto — Zt?,) H( Z eq(hiti)> .

1<ty,t2,t3<q—1 i=1 M<h<H

For convenience, we write Lq(z,y,2;q,H) = Li(x;q,H) and La(z,y,2;9, H) =
Lo(z,y;q, H). By exchanging the order of summations and recalling the definitions
of Mg;n,m,l, k) and N;(H,q, k), we obtain

(35) Z Li(xayv'z;QaH):Ni(HaQ7k)'
1sz,y,2<q
224+y%+224Ek=0 (mod q)
Now (3.3) follows from (3.4) and (3.5). O
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Proof of Theorem 1.1.  We first deal with the case k& # 0. By Lemmas 2.9
and 3.3, we can get

A(d"; k)

D(Hvdrak):HB dasr

+O(H?d*" + Hd* +d" ).
By Lemma 3.2, we find that

R(H,r k) = H? Z p(d d37" (d)A(d"; k) £ O(H? + Hy'+e 4+ qgrtite 4 fotepl-r)
1<d<n
and then by (3.2), we have
(o)
d)A(d"; k
R(H, r, k) _ HSZ :U( )d?()r ) ) + O(H2 + H771+€ +nr+1+s 4 H3+€771_T).
Now we choose 7 = H3/?" to conclude that

R(H,r k) = H Z pd d% +O(H? + HY/2+3/2+¢),

Since A(g; k) is multiplicative as a function of ¢, we obtain for k # 0 that

A k
R(H,r k) = H (1 (i?’ )>H‘3 + O(H2 4 H3/2+3/2r+5)
p

and this completes the proof of (1.5).
From now on, we consider the case £k = 0. We introduce

Z” V(H,d",0), Z“ S(H,d",0),
1<d<n 1<d<n
Ts(H,n) = Y p(d)N3(H,d",0).
1<d<n

By Lemma 3.2 and (3.3), we have

(3.6) R(H,r,0) = H? Z pld d3r )+3H2T1(H,n)+3HT2(H,77)
1<d<n

+T3(H,n) + O(H* ™).
Recalling the definition of Ny (H,d",0) in (2.17), we deduce from (2.9) and Lemma 2.8

that IA(d";£,0,0,0)|
ng < Y oy DEine00)

1<d<n  1<jtl<(dr—1)/2 g
dr.t dr 2 1/2
< Z d-rte Z ( ) )( )
1<d<n 1<]t<(dm—1)/2 4
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Since (d”,t?)'/? < d'/?, we have

T (H,n) < Z d—r/2e Z (drt’t).

1<d<n 1<)t < (dr—1) /2

From the elementary estimate
dr,t
Z ( ta )<< d57
1<t<(dr—1)/2

we conclude for r» > 2 that

(3.7) Ty(H,p) < Y d 777 <of,

1<d<n

Recalling (2.18), we deduce from (2.9) and Lemma 2.8 that

MNd7;t1,2,0,0
Ty(Hnp) < » d" > Md"3 11,1, 0,0)]

-~ |t1t2]
1<d<n 1<t t2]<(d7—1) /2

dr 2 +2)12(dr by, t
<<77€Z Z (,1+2)(,1,2).

. [t1to
1<d<n 1<t |, [t2]<(d"—1)/2

Since (d7, 13 4 t3)'/2 < d"=2/2(d, 13 + 13) < n"2D/2(d,t? + 3) and (d",t1,t9) <

(t1,t2), we conclude that
Ty(H,n) < nm=2/2 3~ > (d, 17 +t3)
1<d<n 1<t1],|t2|<(dm—1)/2

By exchanging the order of summations, we have

t1.1
(3.8) To(H, ) < 220 3 Gl g g g ey

ot
1<t o<t 12 1<d<n

Now we easily obtain
(3.9) Ty(H,n) < n"/2*e.

We estimate the sum T5(H,7) in same way, that is

dT‘ t2 t2 t2 1/2 dr tr o to.t
T3(H,n) < Zd“rs Z (d", 87 + 15 +15)7/%(d", t1, 12, t3)

1<d<n 1<t [t2]|ts]<(d7—1) /2

[t1tats]

and by (d",t3 +t3 +3)Y/2 <d"D/2(d, 13 + 13 +13) < n(""D/2(d,t? + 13 + 13) and

(d",t1,ta,t3) < (t1,t2,t3), we have

T3(H,n) < nBr=2/2te 3~ > (d,t] + 3 +13)

1<d<n 1<t | [t [ts|<(dm—1)/2
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By a similar argument as in (3.8), we finally obtain
(3.10) Ts(H,n) < n*r/2+e.

Now we combine (3.6)—(3.10) to conclude that
R(H,T 0 — K3 Z /" d3T ) O(H2+e + Hnr/2+e +n3r/2+s + H3+E771—T‘)'
1<d<n

Then by (3.2), we get

R(H,r,0) H3Z pld d3r O(H2+e + Hnr/2+e +n3r/2+6 + H3+6771—7").

Since A(g;0) is multiplicative, we obtain by choosing n = HO6/(7=2) that

R(H,r,0)=]] (1 —~ A(i ’0)>H3 + O(H? e + gOor/Br=2)te),
p

This establishes (1.6). The proof of Theorem 1.1 is complete. O
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