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Abstract. The paper is devoted to the electromagnetic inverse scattering problem for a
dielectric anisotropic and magnetically isotropic media. The properties of an anisotropic
medium with respect to electromagnetic waves are defined by the tensors, which give the re-
lation between the inductions and the fields. The tensor Fourier diffraction theorem derived
in the paper can be considered a useful tool for studying tensor fields in inverse problems
of electromagnetic scattering. The method is based on the first Born approximation.
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1. INTRODUCTION

The electromagnetic inverse scattering problem is defined as the problem of de-
termining the size, shape and electromagnetic properties of a scatterer for the given
incident and scattered electromagnetic fields [5]. An inverse scattering has many im-
portant applications in such diverse fields as radar imaging processing [2], bio-medical
diagnostics [17], [8], nondestructive testing [26], geophysical exploration [6]. The re-
views on tomographic diffractive microscopy and inverse problems in the scattering
theory are given in [24], [3], [25].

The mathematics of wave propagation and scattering essentially differs for vari-
ous types of waves. Acoustic waves are considered strictly scalar and are used for
studying scalar fields, whereas electromagnetic waves are used for investigation of
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vector and tensor fields and, as a consequence, various inversion techniques are used.
A quite successful approach based on the linearization of the inverse scattering prob-
lem within the first Born or Rytov approximations leads to diffraction tomography
[21], [16], [12]. The total field within the Born approach or, equivalently, the complex
phase within the Rytov approach are measured over one or several plane surfaces
outside the support volume of the object (scatterer, scattering potential) [12], [7].

The relationship between the Fourier transform of the scattered field and the
Fourier transform of the scatterer is known as the Fourier Diffraction Theorem
(FDT) [12], page 218, [22], or the generalized projection-slice theorem [7], page 372.
In the scalar case, the method based on the FDT in the 3D space is essentially re-
duced to the decomposition of the scattered field into plane waves (Fourier spectral
decomposition), and then selection of those wave vectors, which lie on the Ewald
sphere, and the interpolation onto a regular sampling grid in Cartesian coordinates.
However, many physical quantities such as stress, permittivity, permeability are often
presented by the second rank tensor fields, and for determination of these properties
more complicated techniques are needed. The possibility of symmetric strain tensor
field recovering from integral data in three dimensions is considered in [18], [13] and
the nonsymmetric one in [10]. The nonsymmetric tensor fields in dimension more
then three are given in [18], [1].

In this paper, the electromagnetic inverse scattering problem is considered for
determination of dielectric permittivity €(r) of an inhomogeneous anisotropic object
(target, scatterer), which is a second rank tensor, the magnetic permeability [ is
assumed to be 1 = pI. The object is immersed in a homogeneous and infinite
medium (free-space scattering) characterized by constant ey and puyg.

The source of the scattered field is an incident electromagnetic field (E;, H;),
which interacts with the object in bounded region D of R® with parameters g(r) and
7i(r). The incident field (E;, H;) in the source-free region is expected to satisfy the
homogeneous Helmholtz equations:

VQEi(T) + kJ2EfL'(T‘) =0, V2Hi(’l“) + kJ2Hi(T‘) =0, k=wyeouo-

The scattering field (Es, H) is supposed to be measured in region D; = R3\ D.
Assume for simplicity that region D; is nonmagnetic (i = o) and isotropic with
spatially homogeneous permittivity €g. The problem is to determine the unknown
electrical properties of the object (scatterer) in region Dy by using different directions
of incident field E;.

The total field anywhere in D; is the sum of the incident and scattered fields
according to [7], Chapt. 11.9,

(1.1) E(r)=E;(r)+ Es(r), H(r)= H;(r)+ H(r).
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The general equations for the electromagnetic field in an anisotropic inhomogeneous
media writes by the Maxwell equations [4], page 17,

(1.2) V x E(r) =iwuep(r)H(r), V x H(r)=—iwee(r)E(r),

where pp and €y are a permeability and permittivity in vacuum, respectively.

Throughout the paper the following notations are used: bold letter means the
vector-values variable, the overlined bold letter means tensor-values variable, ordi-
nary letter means scalar or scalar function. The notation type AB means tensor
product of vectors A and B, i.e., it is an equivalent to A ® B. A short introduction
to tensor notations is given in appendix (A.1).

The organization of this paper is as follows: In Section 2, the integral equation for
the scattered field is written. In Sections 3, 4, the spectral representation of the scalar
and tensor Green’s functions in the mixed space R? = (R?,R!) with coordinates
(gL, z) are derived. The Fourier representations of the tensor Green’s functions in
these coordinates are presented, as well. The inversion procedure with the first Born
approximation in the coordinate-free form is considered in Section 5. The appendix
includes the tensor (dyadic) product definition, inverse formulas for some special
dyadics, the mixed form of the Fourier transform, which is used for representation of
the tensor Green’s function. The appendix contains also the procedure of evaluation
of contour integral in the complex plane.

2. THE INTEGRAL EQUATION FOR SCATTERING POTENTIAL

As mentioned earlier, only dielectric scatterer will be considered with the tensor
permittivity £(r) and permeability @ = I, where p is constant.

Equations (1.2) rewrites then as
(2.1) V x E(r) = iwpopl - H(r),
(2.2) V x H(r) = —iweg(r) - E(r).
For a dielectric anisotropic medium (scalar p), it is possible to obtain an equation
where only E appears. Taking the curl of above Maxwell’s (2.1) and replacing V x H
with (2.2), the following equation for the electric field E in region D; is derived:
(2.3) VxVxE(Qr)-k%Er)-E(r)=0, rcDy,

where k = w,/Eouopt = 21/ is the medium propagation constant associated with
wavelength .
Equation (2.3) can be rewritten in the form [14]

(24) VxVxE(r)—kE(r)=V(r) E(r), V(r)=k[e(r)—1], reD,
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where V' (r) can be considered as the scattering potential or the object which has to
be reconstructed, I is the unit dyad. In Cartesian coordinates I = &2 + i) + 22.

The solution of equation (2.4) is given by the vector Lippmann-Schwinger equa-
tion [7],

(2.5) E(r):Ei(r)—i—/D@(r,r’)-V(r’)-E(r’)dr’, r' e D,

E;(r) = Eoeik'r is the incident field,

where tensor function G(r, ) is the dyadic Green’s function and its representation
is given in the next section, Eo is a unit polarization vector.

The vector k = k;& + k,y + k.Z gives the standard coordinates on R3 in the
Fourier space (reciprocal space).

When studying the interaction of an electromagnetic field with various structures,
one often deals with flat registration surfaces and interfaces, and it is convenient to
represent R? as R? = R2*! interchangeably, then r» = r; + r|Z in a real space and

g = q1 + g2 in the reciprocal space, that is, r1,q, € R? and T, q) € R!.

3. SPECTRAL DECOMPOSITION OF THE SCALAR GREEN’S FUNCTIONS

It is well known that the Fourier representation of the scalar Green’s function for
Helmholtz equation is

(VZ4+E)G(r, ') = —d(r —7'), G(q) = s

¢ =laf, ¢ =lql’, =4 +dq,
where “~” means 1D, 2D or 3D Fourier transforms depending on the context.
The spectral decomposition of the scalar Green’s function in (q, ,z) coordinates

can be obtained as one-dimensional inverse Fourier transform of G (q) over g in the
form (see in the appendix (A.10)—(A.12))

~ 1 > eUFdg 1 eI dg
(31)  Glgi,2) = / - / |
e 2 ) @+ @K )2 i - (R =)

The theory of evaluation of such kind of integrals is well known, see for example [7],
page 11, [20]. The integration performs in the complex plane, and it is briefly de-
scribed in the appendix (A.15), since further a similar procedure can be used to
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evaluate the spectral representation of the tensor Green’s function:

(3.2) Gl(qu,2) = — ) Zlewlzl

I i i(k2—g2)1/2 2 2 p
\/;We( wEL R

(2 — k)2, K2 <3,
Sl R =)V K2

T 1 2 2\1/2
S - o (gi-k) | k-2 < 2
. \/;(qi — R | o \/Ei
2

The two-dimensional inverse Fourier transform of (3.2) leads to the well-known Weyl
representation [11]

i ) 0 eiplzleiqL'TL , ,
(3.3) G(TJ_,Z)_W/OO/OO?CIQJJ rL=(x—zy—y).

4. SPECTRAL DECOMPOSITION OF THE TENSOR GREEN’S FUNCTIONS

The electric tensor Green’s function G(r,r’) is a solution of the wave equation
(4.1) VxVxG(r,r)—EGr,r)=T5r—r")
and is given as [19], [23], [4], [9],

(4.2) Glr,r') = (T + Vk_f)a@«, v, G(rr') =

exp(ik|r — r'|)
dnfr — /|
Using the vector identity V x Vx = VV — V2, equation (4.1) writes in the dyadic

form as
(43) [VV = (V2 +#)T]-G(r,r') =To(r — ).

Equation (4.3) in the Fourier space writes

By use of relations (A.7) in the appendix, the Fourier transform of tensor Green’s

function writes as

= - - _ Ik’ —q-q
4. G = [I(k*—|q|? g Y (-T) = ——=_.
(4.5) (q) = [I( lq|®) +q-q]" (-I) (q — )

By making a transformation to (q.,¢q) coordinates and taking into account (A.11)
in appendix, equation (4.5) rewrites as

= 1 > Ik®-q-q ;.
Glawz) = (2m)1/2 /_OO k2(|q|? — kz)eq” daj-
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The integral above can possibly be evaluated using contour integration in the com-
plex plane g but it is easier to use the explicit expression for the scalar Green’s
function (3.2). Firstly, we rewrite the operators V and VV in the form

0
V= VJ_"‘Za ,
0 0] 0? . 0]
va (VJ_—FZa—) (VJ_-FZ%) VJ_VJ_ +ZZW+(V +ZVJ_)£

In the mixed (g, , z) coordinates in the Fourier space, the operator VV is written as
(see (A.13), (A.14) in Appendix)

02 . 0
(4.6) -q1q. + zz(‘) 5 +i(qLz + qu_)av

which yields the following representation for G(q , 2):

~ TieiPlzl _ R . o
40 Glan) =[S IR - qia - (ot auspse) - 207

where p is the same variable as in (3.2).

If on the plane g, perpendicular to Z a unit vector is chosen, for instance q( )

4(2)

another unit vector is defined as ¢, = 2 x q(l ), then the unit dyad I in equation (4.7)

has the form

T=22+¢"¢" +2x¢"g" x

5. INVERSION WITH THE FIRST BORN APPROXIMATION

In the case when the contrast of the scatterer is weak, so that the second term
on the right of equation (2.5) is small compared to the first term, the approxi-
mation E(r) ~ E;(r) can be applied. This is known as the first order Born ap-
proximation [15]. Then the scattered field in Born approximation with taking into
account (2.5) writes as

(5.1) E..(r)= Eo/ Gr—r)- V(') & dr', v eD.
D

Applying the convolution theorem, the Fourier transform of scattered field writes as

(5.2) Euo(q) = (2r)*2Ey  G(q) - V(g — k).

Formula (5.2) expresses the 3D Fourier representation of the scattered field in terms
of 3D Fourier spatial transform of scattering potential V(). However, it is well
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known [21] that the Fourier components of the scalar scattering potential may be
determined from the knowledge of two-dimensional Fourier transform data of the
scattered field in the two planes z =zt > zp and z = 2~ < 0.

Theorem 5.1 (Tensor Fourier Diffraction Theorem). Let the scattered field
E.(ri,r) € (L*(R*™))® and the tensor potential V (ry,ry) € (L?(R*T1))3x3,
Then the two-dimensional Fourier transform of the scattered field on the plane

perpendicular to z axis at the distance z = zy relates to the Fourier transform of
V(ry,r)) as

(5.3) Eoo(qu,20) = Q—;G‘ZOPWEO B V(g —ki,p- ky),
where EO is the polarization unit vector of the incident field
i(g1 k)2, K <4l
o o
2

B =Tk —q.q. — (2q. +q1 2)psgn(z) — 22p°.

Proof. Werewrite equation (5.1) in r = v, +7 2 and ¢ = g1 +¢) 2 coordinates
and take the two-dimensional Fourier transform over variable ) on both sides. Using
the convolution theorem, one can get
(5.4)

Esc(qb )

@20 / / / Glro — ',y =V (', r)e® T e T dry dr, dr

= 2TEEQ G(ql, T — TH)V( -k, ’rﬂ )eik”T\,I drh.

Let now suppose that the measurements are performed on the plane z = r| = 2o and
z9 > r . Then the scattered field writes as
(5.5)

o0 oo~ ~ . ,
Esc(QJ_a Zo) = 21Ky /_OO /_OO G(qJ_, T — Tﬁ)V(qJ_ — kJ_, 7’|/‘)5(7’H - Zo)elkw” d?“” d?“il,
~ o~ = .
= 2nE, G(qy,20 — rh)V(qL -k, rﬂ)elk”r\l drﬂ.
— 00

The Fourier transform of the tensor Green’s function is (4.7)

N>
N>

= mie?lFl _ . .
(5.6) Gl(qi,2)= \/;pTB’ B =1k —q1q. — (2q1 + qL2)psgn(z) — 22p°
(g3 — k)2, K2 <qd,
=) k2> gt
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Finally, after substitution of (5.6) with z = zo — r| into (5.5) and integration, the
tensor Fourier diffraction theorem writes as

. i ~ — =
(5.7) Es(qi,20) = 2n2e‘ZOPWE0 “B-V(qL—ki,p—Fk)).

The tensor potential is defined by the following procedure:

L I : 2 Y5 &
(5.8) V(gL —ki,p—Fkj) = ﬁe P(—)pk?B  (Ey - Es(qL,20)),

Tk —p?) + (2q. +q 2)p+2200% — %) — (2 x qL)(2 x q1)].

(5.9) B =]

The evaluation of relation (5.9) is given in appendix (A.8)—(A.9). O

6. CONCLUSION

This paper has represented a coordinate-independent dyadic formulation of the
Fourier Diffraction Theorem (FDT) for the tensor-valued functions (5.7), (5.8). The
tensor (dyadic) Green’s function has been used as an important instrument for rep-
resentation of FDT. The mixed representation for the dyadic Green’s functions is
obtained in the reciprocal space. In the process of representation of the tensor FDT,
the auxiliary integrals have been evaluated. By direct matrix calculation some useful
matrix identities have been obtained in the appendix (A.5), (A.7), (A.9).

APPENDIX A

1. Dyadic product. A tensor (dyadic) product of the two vectors A and B in
Cartesian coordinates is denoted as adjacent to each other without dot or cross in
terms, that is,

3 3
(A.l) AB = (A161 + Ases + Ageg)(Blel + Boes + Bgeg) = Z Z AiBjeiej.
i=1 j=1
2. Inversion of the special dyadic. Let vector q be represented as q =

(¢z, 4y, q), and matrix A have the form

k? — Q% —41q2 —q143
(A2) A=Tk*-q-q=| —@a k¥ —¢ —qq |, Tisa unit matrix.

-3 —@3q2 k*—¢3
Then the determinant of the matrix writes

(A.3) det A = E*(k* — |q]?).
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The adjoint matrix adj A for the matrix A is defined as
B AgpAsg — AggAsy Az Ais — AgsA1n A1oAzz — A13Ag
(A4) adjA = | Az1dz — Ax1Aszs A11Ass — A13Az1 AizAa — A1 Ass
A1 Agy — Ag1Aan A1pAs1 — A11Asy A11Ags — A1oAy

k? —q —q2 Gz y 2=
=K Qyla k2 —q?—q? qyq-
4=Qx 4=y k2 —q2—q}

=K [I(k* — |a|*) + q - q].
An inverse matrix A from equations (A.3), (A.4) has the form

1 adjAd T —lgd)+4q-q
A5 A = il
(A.5) dot A K2(k2 — q]%)

Let dyadic A have the form

L B+ai  qa q143
(A.6) A=IB+q-q=| @a B+dé @
a3q e B+¢

Then the determinant and the adjoint matrix are calculated directly and are equal:

(A.7) det A =p52(B+q*), la*=di+a +a5,
adj A = B[(B+1q)*)T — q - q],

T -l l_2diA_I(B+lgP)—q-q
(I3+q-q) o 36+ a7

Let dyadic B have the form

(A.8) B=[Ik—qiq1 — (2q. +q12)p — 22p”]

k2 —q2  —Gu@y  —qup
= @& ¥-¢ -ap |,
—@p  —qp kP
B k2 —p*—q2 Gy P
adj B = k> ya k2 —p? — 2 qyp
@zp QP k* —q? —q;

=K I(K = p*) + (21 + @1 2)p + 22(0* — ¢7) — (2 x q1)(2 x q1),
det B = k*(k* — p* — @2 — q),

(A9) B '-2B
det B

T2 —p?) + (2qL + qui)p+ 2200 — ) — (3 x qu)(2 x q1)
kQ(kQ_pQ_quP) :
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3. Mixed form of the Fourier transform representation. For a vector func-
tion f(7) in a Cartesian coordinates r = (z,y, z) the Fourier transform with respect
only to the two variables x and y can be introduced as

(A10) f(qui,2)= 2_n/ / fr)e " dry, g1 = (¢, qy,0), 71 = (2,9,0).

Alternatively, it can be written

(A'll) .]?(qlaz) = W /_O:O f(q)eiq”qu”, q= (qL,q”).

The inverse transformation to (A.10) is

(A12) =5 [ Favaenr g

That is, the relations for the functions in real and reciprocal spaces can be written as

fr) < flau,2) and flgi,2) <= flai.q)),

where F> and F; mean two- and one-dimensional Fourier transforms.
The operators V and VV have, respectively, the following representations:

(A.13) \AREEN mug,
Fa . AV L0
(A.14) VV & (1qL+z&) (1qL+z&)
2
=—quqLtiigs +i(gLz + ZAJQL)&-

4. Contour integration. The spectral decomposition of the scalar Green’s func-
tion in coordinates (g, , z) can be obtained as one-dimensional inverse Fourier trans-
form of G(q) over ¢ in the form

1 % dg 1 > eU%dg
R Sy
( ) Glaw,2) = (2m)V/2 J_ % + qﬁ -k (2n)/? J_o Qﬁ — (k? —q7)

1 o elz dq||
BCEEE H0/00 qf —p? —ie’

where p is introduced as

i(2 —kHY2, k< g,
Al E =)V k2>
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In the case qf_ < k2, there are two first-order poles
q = +(p? +1ie)Y/? = £p(1 +ie/p?) = £p L ie,

where ¢ is redefined with p > 0, so that it is still small and has the same sign. The
pole gy = —p — ic does not matter since it lies outside the contour of integration
closing in the upper half plane. However, the pole ¢ = p + ic is inside.

If ¢3 > k? in the upper half plane p = i(¢3 — k?)!/2, then the pole lies on the
imaginary axis. Using the residue theorem with the closing integration contour in
the upper half plane, one finally gets

(A.16) G(q.,2) = = /==l

T i i(k2—g2)1/2 2 2 b
\@We( R >

i1 —K)Y2, K <di,
SRR =2)V2, k> R

s 1 2 2\1/2
R S ¢ it 0 e E k2 < o2
. \/g(qi —F) ’ " \/Ei
2

Taking the two-dimensional inverse Fourier transform of (A.16), the well-known
Weyl identity is deduced [11]:

i e <] e o] eip‘z‘eiqL“l‘L , ,
(Al?) G(TL,Z):W/_OO/_OOquLy le(m_xvy_y)'
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