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COMBINATION OF T-NORMS AND THEIR CONORMS

Karel Zimmermann

Non-negative linear combinations of tmin-norms and their conorms are used to formulate
some decision making problems using systems of max-separable equations and inequalities and
optimization problems under constraints described by such systems. The systems have the left
hand sides equal to the maximum of increasing functions of one variable and on the right hand
sides are constants. Properties of the systems are studied as well as optimization problems with
constraints given by the systems and appropriate solution methods are proposed. Motivation
of this research are decision making investment situations both in deterministic and uncertain
environment. Possibilities of further research are briefly discussed in the concluding remarks of
the paper.

Keywords: combining triangular norms and conorms, nonlinear optimization, decision
making, operations research

Classification: 90C30, 94D05, 90B50, 90C08

1. INTRODUCTION

.
Expressions a ∧ x ≡ min(a, x), a ∨ x ≡ max(a, x), where a, x are real numbers are

known in the fuzzy sets theory as so called triangular norm (tmin−norm) and its conorm,
and are used as membership functions of intersection or union of fuzzy sets to model
various decision making situations in the fuzzy environment. In this paper we will show
how non-negative linear combinations of tmin − norms and their conorms can be used
to formulate a class of constrained optimization problems, which are motivated by some
deterministic or stochastic decisions. The following motivating example describes such
simple decision making model for a single decision maker and two options.

Example 1.1. Decision maker wants to invest certain amount x ∈ [0, x] in two invest-
ment options.

Option 1 is to invest αxmoney units with profit (rate of return) αr(x), where α ∈ [0, 1]
and we assume that r : R+ → R+, R+ = [0,∞) is a strictly increasing and continuous
function of x. The rate of return increases if x increases, but it may be maximally equal
to a given upper bound αa and further remains unchanged if x increases, i. e. guaranteed
rate of return is αa ∧ αr(x) = α(a ∧ r(x)).
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If the decision maker decides to invest βx, β ∈ [0, 1], α+ β ≤ 1 in Option 2, his guar-
anteed rate of return is βb∨βs(x) = β(b∨s(x)), where we assume that s : R+ → R+ is a
strictly increasing continuous function. The total guaranteed rate of return is therefore
equal to α(a ∧ r(x)) + β(b ∨ s(x)). Let x̂ be a recommended (secure) investment level.
The decision maker has to decide which amount x he is going to invest if he has at his
disposal x ∈ [0, x] and wants to minimize the distance |x− x̂| from a given recommended
(secure) level of investment x̂. In other words he has to solve the minimization problem

|x− x̂| → min

subject to
ã ∧ r̃(x) + b̃ ∨ s̃(x) ≤ c,

where c is given upper bound on the total rate of return, ã = αa, b̃ = βb, r̃ = αr, s̃ = βs.

Note that we could consider similar problems with equality or inequality ≥ in the
constraint restriction. Coefficients α, β may be interpreted as an intensity of investment
in Option 1 and 2.

Similar problems arise e. g. if the utility of applied incentives (e. g. vitamins, combi-
nations of medicaments) increases only up to a certain level and then remains unchanged
or increases only if applied on a sufficiently high level being ineffective below this level
and we want to be as close as possible to a recommended level of application.

The next example shows a more complex problem with n decision makers and m
places for decisions.

Example 1.2. Let us have n decision makers j, j ∈ J = {1, . . . , n}. Each decision
maker j ∈ J decides how to invest a part of the amount xj ∈ [0, xj ]. Otherwise the
situation is the same as in the preceding example, i. e. he invests under the same
restrictions at place i ∈ I = {1, . . . ,m} the amounts rij(xj) in Option 1 and sij(xj) in
Option 2, so that the total guaranteed rate of return will be aij ∧ rij(xj) + bij ∨ sij(xj)),
where rij , sij are given continuous strictly increasing functions. Let x̂j be a given level
of recommended (secure) investment. We want to solve the problem

max
j∈J
|xj− x̂j | → min subject to xj ∈ [0, xj ], max

j∈J
(aij ∧rij(xj)+bij ∨sij(xj))∗i ci, i ∈ I,

where ∗i is one of the relations ≤,=,≥.

In the next section, we will propose a solution method for solving problems like in
Example 1.2. The problems are in general non-convex and non-smooth and we will solve
them by methods, which take advantage of the special structure of the problems. Let
us note further that the number of decision options may be greater than two according
to the type of the given decision problem.

The following example shows a case of a stochastic decision making.

Example 1.3. Let us have again the two Options of Example 1.2. and we invest each
time either with probability pij in Option 1 or with probability qij in Option 2 for all
i ∈ I, j ∈ J . The sum pij(aij ∧ rij(xj)) + qij(bij ∨ sij(xj)), pij + qij = 1 is the expected
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value of rate of return in place i ∈ I, which can the decision maker j ∈ J expect. This
maximum of the expected level of rate of return is bounded by ci at each place i ∈ I. The
objective function is maxj∈J fj(xj), where fj : R→ R, j ∈ J are continuous functions.
Functions fj(xj), f ∈ J may express e. g. the risk connected with the investment xj or
a distance |xj − x̂j | from a recommended (secure) level of investment x̂. The objective
function is therefore minimized under the constraints

xj ∈ [0, xj ], max
j∈J

tij(xj) ∗i ci, i ∈ I,

where ∗i stands for one of the relations ≤,=,≥ and tij(xj) = pij(aij ∧ rij(xj) + qij(bij ∨
sij(xj).

Other problems can be formulated in frame of the fuzzy set theory, where expression
α(a ∧ x) + β(b ∨ x), α, β ∈ R+ may be interpreted e. g. as a linear combination of two
membership functions: one belonging to the (fuzzy) intersection of fuzzy sets A and X
having a finite support N = {l, . . . , n} with membership functions a : N → [0, 1], x :
N → [0, 1] and the other one to the (fuzzy) union of fuzzy set B (with membership
function b : N → [0, 1]) and the fuzzy set X.

2. GENERAL FORMULATION OF THE MINIMIZATION PROBLEMS

The following notation will be introduced throughout the paper:
α ∧ β ≡ min(α, β), α ∨ β ≡ max(α, β) for all α, β ∈ R+ = (0,∞). Let r : R+ → R+

be a strictly increasing continuous function. Then r−1 : R+ → R+ will denote the
inverse function to r. Under the combination of norms and/or conorms we will consider
in the sequel their non-negative linear combinations. Since for any α ≥ 0, β ≥ 0, a, b ∈
R+, r : R+ → R+, s : R+ → R+ hold the equalities

α(a ∧ r(x)) + β(b ∨ s(x)) = (αa) ∧ (αr(x)) + (βb) ∨ (βs(x)) = ã ∧ r̃(x) + b̃ ∨ s̃(x),

where ã = αa, r̃(x) = αr(x), b̃ = βb, s̃(x) = βs(x), we can further consider only the
sum of t-norms and their conorms instead of their explicit linear combination.

Let us consider the following systems of inequalities and equations:

max
j∈J

(aij ∧ rij(xj) + bij ∨ sij(xj)) ≤ bi, i ∈ I, (1)

max
j∈J

(aij ∧ rij(xj) + bij ∨ sij(xj)) = bi, i ∈ I, (2)

max
j∈J

(aij ∧ rij(xj) + bij ∨ sij(xj)) ≥ bi, i ∈ I, (3)

where rij : R+ → R+, sij : R+ → R+ are for all i ∈ I, j ∈ J strictly increasing
continuous functions of xj , and aij , bij , bi ∈ R+ are given numbers. The set of all x =
(x1, x2, . . . , xn)T satisfying (1), (2), (3) will be denoted M1(b), M2(b),M3(b) respectively.
Let M ⊂ Rn, M 6= ∅, let x ∈M with the property x ≤ x for all x ∈M . Then x will be
called the maximum element of M .
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In the next section, we will study properties of the sets Mi(b), i = 1, 2, 3 and propose
methods for solving the following three optimization problems successively for i = 1, 2, 3:

f(x) = max
j∈J

(fj(xj)) → min, subject to x ∈Mi(b), x ≥ x, (4)

where fj(xj) are continuous monotone or convex functions and xj are given lower
bounds. The methods generalize some results of [1] – [4], [8]. Equations and inequalities
describing sets Mi, i = 1, 2, 3 can be considered as a generalization of fuzzy relation
equations or fuzzy relational inequalities (see e. g. [6, 7]).

3. SOLUTION METHODS

First we will study properties of sets Mi(b), i = 1, 2, 3, which will serve as sets of
feasible solutions for the considered optimization problems. Our first aim is to find
maximum elements of sets M1(b), M2(b), M3(b) and derive conditions, under which
the sets Mi(b) 6= ∅, i = 1, 2, 3. The knowledge of the maximum elements of sets
Mi, i = 1, 2, 3 is substantial for solving the optimization problems considered later.

Let
Vij ≡ {xj | aij ∧ rij(xj) + bij ∨ sij(xj) ≤ bi}. (5)

Let r−1ij (aij) < s−1ij (bij). Then the following three cases can take place:

(i) If rij(xj) < aij , then xj < r−1ij (aij) < s−1ij (bij) and we have further xj < s−1ij (bij),
which implies sij(xj) < bij so that aij ∧ rij(xj) + bij ∨ sij(xj) = rij(xj) + bij .

(ii) If r−1ij (aij) ≤ xj ≤ s−1ij (bij), then aij ∧ rij(xj) + bij ∨ sij(xj) = aij + bij .

(iii) If xj > s−1ij (bij), then aij ∧ rij(xj) + bij ∨ sij(xj) = aij + sij(xj).

Let xj(bi) denote the maximum element of set Vij(bi). Then we have:

in case (i) xj(bi) = r−1ij (bi − bij),
in case (ii) it is xj(bi) = s−1ij (bi − aij), and

in case (iii) we have xj(bi) = s−1ij (bi − aij).

Let us assume now that r−1ij (aij) ≥ s−1ij (bij). Then the following three cases can occur:

(iv) If xj < s−1ij (bij) ≤ r−1ij (aij), then sij(xj) < bij , rij(xj) < aij and we have aij ∧
rij(xj) + bij ∨ sij(xj) = rij(xj) + bij .

(v) If s−1ij (bij) ≤ xj ≤ r−1ij (aij), we have aij ∧ rij(xj) + bij ∨sij(xj) = rij(xj) +sij(xj).

(vi) If xj > r−1ij (aij), we have aij ∧ rij(xj) + bij ∨ sij(xj) = aij + sij(xj).

Therefore we have:

in case (iv) xj(bi) = r−1ij (bi − bij),
in case (v) it is xj(bi) = (rij + sij)

−1(bi), where (rij + sij)(xj) = rij(xj) + sij(xj),
in case (vi) xj(bi) = s−1ij (bi − aij).
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We derived therefore a procedure, which makes possible to compute in all cases the
maximum element xj(bi) for each i ∈ I, j ∈ J, bi ∈ R+.

The following algorithm summarizes the computation of xj(bi) for a fixed i ∈ I, j ∈ J .

Algorithm 1

1 Input i ∈ I, j ∈ J, aij , bij , bi, rij(xj), sij(xj);
2 If r−1ij (aij) ≥ s−1ij (bij), go to 5 ;

3 If r−1ij (bi − bij) < r−1ij (aij), set xj(bi) = r−1ij (bi − bij);
4 If s−1ij (bi − bij) ≥ s−1ij (bij), set xj(bi) = s−1ij (bi − aij);
5 If r−1ij (bi − bij) < bij , set xj(bi) = r−1ij (bi − bij);
6 If bij ≤ (rij + sij)

−1(bi) ≤ aij , set xj(bi) = (rij + sij)
−1(bi);

7 If r−1ij (aij) < s−1ij (bi − aij), set xj(bi) = s−1ij (bi − aij) STOP.

The following numerical examples illustrate the procedure.

Example 3.1.

(a) Let aij = 5, bij = 7, bi = 9, rij(xj) = xj = sij(xj) so that aij < bij(Steps 1 , 2 ).

Since bi − bij = 9− 7 = 2 ≤ aij = 5, we have xj(bi) = bi − bij = 2 (Step 3 ).

(b) Let bij = 5, aij = 7, bi = 9, rij(xj) = xj = sij(xj) so that aij ≥ bij (Steps

1 , 2 ). Since bi− aij = 9− 7 = 2 < bij = 5, we have xj(bi) = bi− aij = 9− 7 = 2

(Step 5 ).

(c) Let aij = 7, bij = 5, bi = 14, rij(xj) = xj = sij(xj) so that aij ≥ bij(Steps

1 , 2 ). Since bi − bij = 14− 5 = 9 ≥ aij = 7 and bi − aij = 14− 7 = 7 ≥ bij = 5,

we proceed according to Step 7 and obtain: xj(bi) = s−1ij (bi − aij) = 14− 7 = 7.

(d) Let aij = 6, bij = 6, bi = 12, rij(xj) = xj = sij(xj) so that aij ≥ bij (Steps

1 , 2 ).Since bi−bij = 12−5.5 = 6.5 > aij = 6 and bi−aij = 12−6 = 6 > bij = 5.5,

we proceed according to Step 7 and obtain: xj(bi) = bi = 12.

We will summarize the obtained results in the following theorems.

Theorem 3.1. Let M1(b) 6= ∅. Let us set

xj(b) = min
i∈I

xj(bi), j ∈ J, b = (b1, . . . , bm)T .

Then x(b) = (x1(b), . . . , xn(b))T is the maximum element of M1(b), i. e. it holds x(b) ∈
M1(b) and x ≤ x(b) for all x ∈ M1(b). The maximum elements xj(bi) for i ∈ I, j ∈ J
are computed according to formulas (i) – (vi) above.
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P r o o f . If x = (x1, . . . , xn) ∈M1, then it must for each j ∈ J, i ∈ I hold xj ∈ Vij(bi) for
all i ∈ I. Therefore it must be xj ≤ xj(bi) ∀i ∈ I. It follows that xj(b) = mini∈I xj(bi)
for each j ∈ J . �

It follows from the results above that set M1(b) = {x ∈ Rn | x ≤ x(b)}, i. e. M1(b) is
always a closed convex set with the upper bound x(b).

Let us consider now set M2(b). Since M2(b) ⊆ M1(b), then if x ∈ M2(b), then
x ≤ x(b). It follows that if x(b) ∈M2(b), then x(b) is the maximum element of M2(b) .

Theorem 3.2. Let x(b) be the maximum element of M1(b). Then M2(b) 6= ∅ if and
only if x(b) ∈M2(b).

P r o o f . If x(b) ∈M2(b), the assertion of the theorem is evident.
Let us set

gi(x) ≡ max
j∈J

(aij ∧ rij(xj) + bij ∨ sij(xj)).

Let us assume that M2(b) 6= ∅, x̃ ∈ M2(b) and x(b) 6∈ M2(b). Since M2(b) ⊂ M1(b), it
is x ≤ x(b) for all x ∈ M2(b). Since x(b) 6∈ M2(b), there exists an index i ∈ I such that
gi(x(b)) < bi. Then we have for the index i ∈ I:

bi = gi(x̃) ≤ gi(x(b)) < bi,

which is a contradiction. �

Let us now study properties of set M3(b). For this purpose, we will first investigate
set

Wij(bi) ≡ {xj | aij ∧ rij(xj) + bij ∨ sij(xj) ≥ bi}. (6)

We will find the minimum element of the set Wij(bi), i. e. element xj(bi) ∈M3 satisfying
the condition xj(bi) ≤ xj , j ∈ J .

It follows from the construction of the element xj(bi) using (i) - (vi) that it holds
except the case (ii) the equality xj(bi) = xj(bi). In case (ii), we have

xj(bi) = r−1ij (bi − bij) ≤ s−1ij (bi − aij) = xj(bi).

The following theorem characterizes the elements of the set M3(b).

Theorem 3.3. x ∈ M3(b) if and only if for each i ∈ I there exists an index j(i) ∈ J
such that

aij(i) ∧ rij(i)(xj(i)) + bij(i) ∨ sij(i)(xj(i)) ≥ bi i. e.Wij(i)(bi) 6= ∅. (7)

P r o o f . If (7) is fulfilled, then evidently x ∈ M3(b). Assume further that (7) is not
fulfilled and there exists an element x ∈M3(b). Since we assume that (7) is not fulfilled,
there exists an index i0 ∈ I such that

max
j∈J

(ai0j ∧ ri0j(xj) + bi0j ∨ si0j(xj)) < bi0 .
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It follows that x 6∈M3(b). This contradiction proves the theorem. �

We will turn our attention to optimization problems, in which the set of feasible
solutions is one of the sets Mi(b), i = 1, 2, 3. Let us note that set M1(b) is a closed
convex set and as such can be incorporated in any convex optimization problem. We
will concentrate further on optimization problems, in which in general non-convex sets
M2(b), M3(b) take part in generating the set of feasible solutions. Proposed solution
procedures are modifications of methods in [1, 3].

Let us consider the following optimization problem:

f(x) ≡ max
j∈J

fj(xj) → min subject to x ∈M2(b), x ≥ x, (8)

where fj : R+ → R+, j ∈ J are strictly increasing continuous functions. To avoid
discussions of trivial cases, we will assume that x ≤ x(b), 0 ≤ x < x(b) and x(b) ∈M2(b)
so that M2(b) 6= ∅. The following algorithm is a steepest descent algorithm solving
problem (8). We begin with the maximum element x(b) of set M2(b), find the set
of indices F (x(b)) of components xk(b), which determine the value of the objective
function at the point x(b), i. e. set of indices F (x(b)) = { k | fk(x(b)) = f(x(b))}. We
set f̃ = maxj∈J\F (x(b) fj(xj(b)), so that f̃ is the next threshold value, to which the
objective function may be decreased without checking the feasibility. We set further
x̃k = xk(b) ∀k ∈ J \ F (x(b)). If ˜x(b) is not feasible i. e. x̃(b) 6∈ M2(b), then x(b) is
the optimal solution of the problem (8), otherwise we set x̃(b) =: x(b) and repeat the
cycle with this new upper bound. We will summarize the procedure in the following
algorithm.

Algorithm 2

1 Compute x(b), f(x(b)).

2 Find the set of active indices in f(x(b)), i. e. set

F (x(b)) = {k ∈ J | f(x(b)) = fk(xk(b))}.

3 Set

f̃ = max
j∈J\F (x(b))

fj(xj(b))

4 Set

x̃k = f−1k (f̃) ∨ xk ∀k ∈ F (x(b)), x̃k = xk(b) ∀k ∈ (J \ F (x(b)))

5 If x̃ 6∈M2(b), then x(b) is the optimal solution STOP .

6 Set x̃ =: x(b), goto 2 .

Note that the number of cycles of Algorithm 2 is at most equal to n. Each cycle
requires O(mn) operations.
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Remark 3.1. Let us note that the Algorithm 2 can be adjusted also for problems,
in which functions fj(xj) in the objective function are convex. In such a case, it is

necessary replace Step 4 by a step, in which we set x̃k for all k ∈ F (x(b)) equal to
the point, where the minimum of function fk(xk) on interval [xk, xk] is attained. After
such adjustment, the algorithm can be further extended to problems with continuous
functions fj , which can be effectively minimized on a closed interval (e. g. unimodal or
quasiconvex functions).

Let us consider now the following optimization problem:

f(x) ≡ max
j∈J

fj(xj) → min subject to x ∈M3(b), (9)

where fj : R+ → R+, j ∈ J are increasing continuous functions. Note that under our
assumptions the set of feasible solutions of this problem is always nonempty.

Let us set cij(xj) ≡ aij ∧ rij(xj) + bij ∨ sij(xj) to simplify further notation. Then we
have according to (6) and the definition of xj(bi) above:

Wij(bi) = {xj | xj(bi) ≤ xj <∞} = {xj | cij(xj) ≥ bi}, i ∈ I, j ∈ J. (10)

Since functions fj are assumed to be increasing, we have for all i ∈ I, j ∈ J such
that Wij(bi) 6= ∅:

min
xj∈Wij(bi)

fj(xj) = fj(xj(bi)), i ∈ I, j ∈ J. (11)

Let us introduce the following notations:

min
j∈J

fj(xj(bi)) = fj(i)(xj(i)(bi)), i ∈ I. (12)

Let us define further sets Ij , Wj for all j ∈ J as follows:

Ij = {i ∈ I | j(i) = j}, Wj =
⋂
i∈Ij

Wij(bi), (13)

so that Wj = {xj | xj ≥ maxi∈Ij xj(bi)}.

Theorem 3.4. Let notations (10) – (13) be introduced. Let for all j ∈ J

x̂j(b) = max
i∈Ij

xj(bi), if Ij 6= ∅, x̂j(b) = 0 if Ij = ∅.

Then x̂(b) = (x̂1(b), . . . , x̂n(b)) is the optimal solution of problem (9).

P r o o f . Let us assume that x̂(b) is not optimal solution of problem (9). Then there
exists a feasible solution x̃ of problem (9) such that

f(x̃) < f(x̂(b)) = fk(x̂k) = fk(xk(bi0))

for some indexes k ∈ J and i0 ∈ Ik. Since f(x̃) < f(x̂(b)) and fk(x̂k) = fk(xk(bi0)) =
minxk∈Wi0k

fk(xk), it must be x̃k 6∈Wi0k and there exists an index k0 ∈ J, k0 6= k such
that x̃k0

∈Wi0k0
(bi0) and it holds

f(x̃) ≥ fk0(x̃k0) ≥ fk0(xk0
(bi0)) ≥ fk(xk(bi0)) = fk(x̂k(b) = f(x̂(b)).
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This contradiction proves the theorem. �

We can summarize the procedure computing the optimal solution of problem (9) as
follows:

Algorithm 3

1 Find xj(bi) for i ∈ I, j ∈ J ;

2 set minj∈J fj(xj(bi)) = fj(i)(xj(i)(bi)) ∀i ∈ I;

3 Set Ij = {i ∈ I | j = j(i) ∀j ∈ J};
4 x̂j = maxi∈Ij xj(bi) if Ij 6= ∅, x̂j = xj if Ij = ∅.
5 STOP

Remark 3.2. Algorithm 3 has under the given assumptions computational complexity
O(mn). Its methodology may be extended to a wider class of functions. In that case
the computations contain mn-times computing the minimum of a continuous function of
one variable on a closed interval. The final complexity is then dependent on complexity
of these minimizations.

Remark 3.3. The aim of the paper was to show how linear combination of the norm
∧ and its co-norm ∨ can be applied to selected decision making problems both in crisp
and in uncertain environment. Let us note that the methodology presented in the paper
can be applied to a wider class of similar problems. We will mention some of them here.

1. We can develop a “dual” or “symmetric” theory, in which the left hand sides of
the equations and inequalities will have the form

min
j∈J

(aij ∧ rij(xj) + bij ∨ sij(xj)).

2. We can consider combinations of other triangular norms and/or conorms or more
norms resp. conorms than two. For example we can consider the left-hand sides
of the form

max
j∈J

(aij ∧ rij(xj) + bij ∧ sij(xj) + dij ∨ uij(xj)),

where aij , bij , dij ∈ R+ and rij : R+ → R+, sij : R+ → R+, uij : R+ → R+ are
strictly increasing functions.

3. The explicitly visible dependence of maximal and minimal elements on the in-
put data aij , bij , bi makes possible to develop postoptimal, parametric or interval
investigations of the problems.



536 K. ZIMMERMANN

ACKNOWLEDGEMENT

This work was supported by Czech Grant Agency under the project GA ČR P403-22-11117S.
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