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Oscillation conditions for first-order

nonlinear advanced differential equations

Özkan Öcalan, Nurten Kiliç

Abstract. Our purpose is to analyze a first order nonlinear differential equation
with advanced arguments. Then, some sufficient conditions for the oscillatory
solutions of this equation are presented. Our results essentially improve two
conditions in the paper “Oscillation tests for nonlinear differential equations
with several nonmonotone advanced arguments” by N. Kılıç, Ö. Öcalan and
U.M. Özkan. Also we give an example to illustrate our results.

Keywords: nonlinear advanced equation; nonmonotone argument; oscillatory so-
lution

Classification: 34C10, 34K06, 34K11

1. Introduction

Numerous situations in the real world where the evolution rate depends on

both the present and the future can be modeled using advanced differential equa-

tions. In order to account for the influence of hypothetical future actions, which

are currently possible and helpful in the decision-making process, an advance ar-

gument can be added to the equation. For example, domains like mechanical

control engineering, population dynamics, and economic issues are typical ones

where such phenomena are considered to arise.

We consider a first order nonlinear differential equation with advanced argu-

ments

(1.1) y′(t)−

m
∑

i=1

pi(t)gi
(

y(ϕi(t))
)

= 0, t ≥ t0,

where the functions pi(t) and ϕi(t) are the functions of nonnegative real numbers

for 1 ≤ i ≤ m, ϕi(t) are not necessarily monotone such that

(1.2) ϕi(t) ≥ t for t ≥ t0, lim
t→∞

ϕi(t) = ∞, 1 ≤ i ≤ m,
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254 Ö. Öcalan, N. Kiliç

and

(1.3) gi ∈ C(R,R) and ygi(y) > 0 for y 6= 0, 1 ≤ i ≤ m.

By a solution of (1.1), we mean continuously differentiable function defined on

[ϕi(T0),∞) for some T0 ≥ t0 such that (1.1) holds for t ≥ T0. A solution of (1.1)

is said to be oscillatory if it has arbitrarily large zeroes. Otherwise, it is called

nonoscillatory.

When g(y) = y, we have the following equation which is the linear form of

(1.1)

(1.4) y′(t)−

m
∑

i=1

pi(t)y(ϕi(t)) = 0, t ≥ t0.

The question of obtaining new sufficient criteria for the oscillatory solutions of

(1.4) has been investigated by researchers. See, for example, [1], [2], [3], [5], [6],

[9], [12].

Also, when m = 1, (1.1) reduces to

(1.5) y′(t)− p(t)g
(

y(ϕ(t))
)

= 0, t ≥ t0.

N. Fukagai and T. Kusano in [7] gave the oscillation conditions for the solutions of

(1.5) with nondecreasing argument. Then, Ö. Öcalan et al. in [10] analyzed (1.5)

with nonmonotone argument and they obtained some oscillation criteria. Also,

in 1987 G. S. Ladde et al. in [9] studied (1.1) with strictly increasing arguments.

Now, we define the following functions.

(1.6) δi(t) := inf
s≥t

{ϕi(s)} and δ(t) = min
1≤i≤m

{δi(t)}, t ≥ 0.

Certainly, δi(t) are nondecreasing and δ(t) ≤ δi(t) ≤ ϕi(t) for all t ≥ 0, 1 ≤

i ≤ m.

Also, suppose that gi in (1.1) for 1 ≤ i ≤ m satisfy the below one.

(1.7) lim sup
|y|→∞

y

gi(y)
=

∼

Ni, 0 ≤
∼

Ni < ∞.

Finally, in 2021 N. Kılıç et al. in [8] examined (1.1) with nonmonotone arguments

and presented the following criteria.

Theorem 1.1 ([8], Theorem 1 and Theorem 2). Assume that (1.2), (1.3), (1.6)

and (1.7) hold. If ϕi(t) are not necessarily monotone for 1 ≤ i ≤ m and

(1.8) lim inf
t→∞

∫ ϕ(t)

t

m
∑

i=1

pi(s) ds >

∼

N∗

e
, 0 ≤

∼

N∗ < ∞,
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or

(1.9) lim sup
t→∞

∫ δ(t)

t

m
∑

i=1

pi(s) ds >
∼

N∗, 0 <
∼

N∗ < ∞,

where ϕ(t) = min1≤i≤m{ϕi(t)} and
∼

N∗ = max1≤i≤m

{
∼

N i

}

, then all solutions of

(1.1) are oscillatory.

There exists a broad literature on the oscillation theory of differential equations

with advanced type. Furthermore, there are a lot of papers about linear advanced

differential equations, but there are only a few articles about nonlinear differential

equations with advance arguments. Especially, as far as we know, there are only

two criteria for the oscillatory solutions of (1.1) with nonmonotone arguments

in the literature. In view of this, an interesting question that arises in the case

ϕi(t) are not necessarily monotone for 1 ≤ i ≤ m and (1.8) and (1.9) do not

hold, is whether we can obtain new oscillation criteria for (1.1). In this article,

we will answer to this question in a positive way. So, our purpose is to essentially

improve the conditions given above and to present new sufficient conditions for

the oscillation of all solutions of (1.1) by using Grönwall inequality.

In the paper we establish some new conditions involving lim sup and lim inf for

the all oscillatory solutions of (1.1). We present example to confirm the impor-

tance of the main results.

2. Main results

Some sufficient conditions for the oscillatory behaviour of (1.1) are presented

in this section, when ϕi(t) are not necessarily monotone for 1 ≤ i ≤ m.

The following lemmas help us to prove the main theorems.

Lemma 2.1 (Grönwall inequality). Assume that y(t) is a positive solution of

y′(t)−
∑m

i=1 pi(t)y(t) ≥ 0. Then, we have

(2.1) y(s) ≥ y(t) exp

{
∫ s

t

m
∑

i=1

pi(r) dr

}

, s ≥ t.

By using the same justifications as in the proof of Lemma 2.2 in [11], the

following conclusion can be established.

Lemma 2.2. Assume that (1.6) holds and

(2.2) lim inf
t→∞

∫ ϕ(t)

t

m
∑

i=1

pi(s) ds = L.



256 Ö. Öcalan, N. Kiliç

Then, we get

(2.3) lim inf
t→∞

∫ δ(t)

t

m
∑

i=1

pi(s) ds = L.

Lemma 2.3. Suppose that (1.2), (1.3) and (1.7) hold and y(t) is an eventually

positive solution of (1.1). If

(2.4) lim sup
t→∞

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

ds > 0,

where δ(t) is given by (1.6), then limt→∞ y(t) = ∞.

Also, suppose that y(t) is an eventually negative solution of (1.1). If (2.4)

holds, then limt→∞ y(t) = −∞.

Proof: Suppose that (2.4) holds. Let y(t) be an eventually positive solution

of (1.1). Then, there is t1 > t0 such that y(t), y(ϕi(t)) > 0 for all t ≥ t1 and

1 ≤ i ≤ m. So, from (1.1), we have

y′(t) =

m
∑

i=1

pi(t)gi
(

y(ϕi(t))
)

≥ 0

for all t ≥ t1, which shows that y(t) is nondecreasing and has a limit k > 0 or

k = ∞. Now, we claim that limt→∞ y(t) = ∞. Otherwise, limt→∞ y(t) = k > 0.

Then, integrating (1.1) from t to δ(t), we have

(2.5) y(δ(t))− y(t)−

∫ δ(t)

t

m
∑

i=1

pi(s)gi
(

y(ϕi(s))
)

ds = 0.

From (1.7), we can choose Ni with
∼

N i < Ni for 1 ≤ i ≤ m such that

(2.6) gi
(

y(ϕi(t))
)

≥
1

Ni

y(ϕi(t)).

Using the inequality (2.6) in (2.5), we have

(2.7) y(δ(t))− y(t)−

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

y(ϕi(s)) ds ≥ 0.

Also, by using Lemma 2.1 in (2.7), we obtain

(2.8) y(δ(t)) − y(t)− y(δ(t))

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0.
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Moreover, (2.4) implies that there exists at least one sequence {tn} such that

tn → ∞ as n → ∞ and

(2.9) lim
n→∞

∫ δ(tn)

tn

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(tn)

m
∑

j=1

pj(r)

Nj

dr

}

ds > 0.

By t → tn and taking limit n → ∞ in (2.8), we get

(2.10) −k lim
n→∞

∫ δ(tn)

tn

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(tn)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0,

which contradicts with (2.9).

Using the same procedure, it is simple to obtain that when y(t) is an eventually

negative solution of (1.1) and (2.4) holds, limt→∞ y(t) = −∞. �

Theorem 2.4. Suppose that (1.2), (1.3), (1.6) and (1.7) hold. If

(2.11) lim inf
t→∞

∫ ϕ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds >
1

e
,

where ϕ(t) = min1≤i≤m{ϕi(t)} and Ni are constants with
∼

Ni < Ni for 1 ≤

i ≤ m, then all solutions of (1.1) are oscillatory.

Proof: Assume, for the sake of contradiction, that there is an eventually positive

solution y(t) of (1.1). If y(t) is an eventually negative solution of (1.1), the proof

can be done in similar way. Then, there is t1 > t0 such that y(t), y(ϕi(t)), y(δi(t)),

y(δ(t)) > 0 for all t ≥ t1 and 1 ≤ i ≤ m. So, from (1.1) we get

y′(t) =
m
∑

i=1

pi(t)gi
(

y(ϕi(t))
)

≥ 0

for all t ≥ t1, which implies that y(t) is nondecreasing function. Condition (2.11)

implies (2.4), so from Lemma 2.3, we have limt→∞ y(t) = ∞.

Then, from (1.7), we can choose t2 > t1 and there are Ni with
∼

Ni < Ni for

1 ≤ i ≤ m such that

(2.12) gi
(

y(ϕi(t))
)

≥
1

Ni

y(ϕi(t)) for 1 ≤ i ≤ m,

for t ≥ t2. By using (2.12) in (1.1), we obtain

(2.13) y′(t) −

m
∑

i=1

pi(t)

Ni

y(ϕi(t)) ≥ 0.
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Then, using that y(t) is nondecreasing and t ≤ ϕi(t) for 1 ≤ i ≤ m, we get

(2.14) y′(t)− y(t)
m
∑

i=1

pi(t)

Ni

≥ 0.

Hence, by Lemma 2.1,

(2.15) y(ϕi(s)) ≥ y(δ(s)) exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

.

Also, from (2.11) and Lemma 2.2, there is a constant c > 0 such that

(2.16)

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ c >
1

e
, t ≥ t3 ≥ t2.

Moreover, from (2.16) there is a real number t∗ ∈ (t, δ(t)) for all t ≥ t3 such that

(2.17)

∫ t∗

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds >
1

2e

and

(2.18)

∫ δ(t)

t∗

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds >
1

2e
.

Integrating (2.13) from t to t∗, by using y(t) and δ(t) are nondecreasing and

(2.15), we obtain

y(t∗)− y(t)−

∫ t∗

t

m
∑

i=1

pi(s)

Ni

y(ϕi(s)) ds ≥ 0,

y(t∗)− y(t)−

∫ t∗

t

m
∑

i=1

pi(s)

Ni

y(δ(s)) exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0

or

y(t∗)− y(t)− y(δ(t))

∫ t∗

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0

and by using (2.17) we obtain

(2.19) y(t∗) >
1

2e
y(δ(t)).
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Integrating (2.13) from t∗ to δ(t), by using the same facts, we have

y(δ(t)) − y(t∗)−

∫ δ(t)

t∗

m
∑

i=1

pi(s)

Ni

y(ϕi(s)) ds ≥ 0,

y(δ(t))− y(t∗)−

∫ δ(t)

t∗

m
∑

i=1

pi(s)

Ni

y(δ(s)) exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0

or

y(δ(t))− y(t∗)− y(δ(t∗))

∫ δ(t)

t∗

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0

and by using (2.18)

(2.20) y(δ(t)) >
1

2e
y(δ(t∗)).

Considering (2.19) and (2.20) together, we obtain

(2.21) y(t∗) >
1

2e
y(δ(t)) >

1

(2e)2
y(δ(t∗)).

Let

(2.22) λ := lim inf
t→∞

y(δ(t))

y(t)

and because of 1 ≤ λ ≤ (2e)2, λ is finite.

Dividing (1.1) with y(t) and integrating from t to δ(t), we get

∫ δ(t)

t

y′(s)

y(s)
ds−

∫ δ(t)

t

m
∑

i=1

pi(s)
gi
(

y(ϕi(s))
)

y(s)
ds = 0

or

(2.23) ln
y(δ(t))

y(t)
−

∫ δ(t)

t

m
∑

i=1

pi(s)
gi
(

y(ϕi(s))
)

y(ϕi(s))

y(ϕi(s))

y(s)
ds = 0.

By using (2.12) and (2.15) in (2.23), we have

ln
y(δ(t))

y(t)
−

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

y(δ(s))

y(s)
exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0

and also there is a ζ such that t ≤ ζ ≤ δ(t). Then, we get

(2.24) ln
y(δ(t))

y(t)
≥

y(δ(ζ))

y(ζ)

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds.
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Now, we take limit inferior on both sides of (2.24), we have

(2.25) lim inf
t→∞

ln
(y(δ(t))

y(t)

)

> lim inf
t→∞

y(δ(ζ))

y(ζ)

1

e
,

where we use that lim inf(h(t)k(t)) ≥ lim inf(h(t)) lim inf(k(t)). Therefore, from

(2.22), (2.25) and ln
(

lim inf(y(δ(t))/y(t))
)

≥ lim inf
(

ln(y(δ(t))/y(t))
)

we have

lnλ >
λ

e
,

which is not possible for any positive number λ, so it completes the proof. �

Theorem 2.5. Assume that (1.2), (1.3), (1.6) and (1.7) hold. If

(2.26) lim sup
t→∞

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

ds > 1,

where Ni are constants with
∼

Ni < Ni for 1 ≤ i ≤ m, then all solutions of (1.1)

are oscillatory.

Proof: Assume, for the sake of contradiction, that there is an eventually positive

solution y(t) of (1.1). Since (2.26) implies (2.4), by Lemma 2.3, limt→∞ y(t) = ∞.

As the proof of Theorem 2.1, we have Lemma 2.1. So, from Lemma 2.1, we obtain

(2.27) y(ϕi(s)) ≥ y(δ(t)) exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

.

Integrating (2.13) from t to δ(t), we get

y(δ(t))− y(t)−

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

y(ϕi(s)) ds ≥ 0

and also by (2.27)

y(δ(t)) − y(t)− y(δ(t))

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≥ 0.

Dividing the last inequality by y(δ(t)), we have

1−
y(t)

y(δ(t))
≥

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

ds,
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which implies

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

ds < 1

for sufficiently large t. Therefore,

lim sup
t→∞

∫ δ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(t)

m
∑

j=1

pj(r)

Nj

dr

}

ds ≤ 1,

but this contradicts with (2.26), so this completes the proof. �

Example 2.6. We consider the following first order nonlinear advanced differen-

tial equation

(2.28)
y′(t)− 0.26y(ϕ1(t)) ln

(

e−|y(ϕ1(t))| + 2
)

− 0.25y(ϕ2(t)) ln
(

e−|y(ϕ2(t))| + 3
)

= 0, t ≥ 0,

where

ϕ1(t) =

{

4t− 6a− 2, t ∈ [2a+ 1, 2a+ 2]

−2t+ 6a+ 10, t ∈ [2a+ 2, 2a+ 3]
, a ∈ N0,

ϕ2(t) = ϕ1(t) + 1,

and

δ1(t) := inf
s≥t

{ϕ1(s)} =

{

4t− 6a− 2, t ∈ [2a+ 1, 2a+ 1.5]

2a+ 4, t ∈ [2a+ 1.5, 2a+ 3]
, a ∈ N0,

δ2(t) = δ1(t) + 1,

then,

ϕ(t) = min
1≤i≤m

{ϕi(t)} = ϕ1(t).

Also, we find

∼

N1 = lim sup
|y|→∞

y(ϕ1(t))

y(ϕ1(t)) ln(e−|y(ϕ1(t))| + 2)
=

1

ln 2

∼
= 1.44269

and
∼

N2 = lim sup
|y|→∞

y(ϕ2(t))

y(ϕ2(t)) ln(e−|y(ϕ2(t))| + 3)
=

1

ln 3

∼
= 0.91023,

then,
∼

N∗ = max
1≤i≤m

{
∼

N i

}

=
∼

N1
∼
= 1.44269.
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So, we have

lim inf
t→∞

∫ ϕ(t)

t

m
∑

i=1

pi(s) ds = lim inf
t→∞

∫ 2a+4

2a+3

(0.26 + 0.25) ds = 0.51 ≯

∼

N∗

e

∼
= 0.53073

and

lim sup
t→∞

∫ δ(t)

t

m
∑

i=1

pi(s) ds = lim sup
t→∞

∫ 2k+4

2k+1.5

(0.26 + 0.25) ds

∼
= 1.275 ≯

∼

N∗
∼
= 1.44269

that is, (1.8) and (1.9) are not satisfied.

However, when N1 = 1.45 and N2 = 0.92, we observe that

lim inf
t→∞

∫ ϕ(t)

t

m
∑

i=1

pi(s)

Ni

exp

{
∫ ϕi(s)

δ(s)

m
∑

j=1

pj(r)

Nj

dr

}

ds

= lim inf
t→∞

∫ 2a+4

2a+3

[

0.26

1.45
exp

{
∫ 2a+5

2a+4

(0.26

1.45
+

0.25

0.92

)

dr

}

+
0.25

0.92
exp

{
∫ 2a+5

2a+4

(0.26

1.45
+

0.25

0.92

)

dr

}]

ds

∼
= 0.60592 >

1

e

∼
= 0.36787,

then, all conditions of Theorem 2.4 are satisfied and all solutions of (2.28) are

oscillatory.
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