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Abstract. In the past years, we observed an increased interest in rate-dependent hysteresis
models to characterize complex time-dependent nonlinearities in smart actuators. A natural
way to include rate-dependence to the Prandtl-Ishlinskii model is to consider it as a linear
combination of play operators whose thresholds are functions of time. In this work, we
propose the extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case
of a whole continuum of play operators with time-dependent thresholds. We prove the
existence of an analytical inversion formula, and illustrate its applicability in the study of
error bounds for inverse compensation.

Keywords: hysteresis; Prandtl-Ishlinskii operator; inverse rate-dependent Prandtl-
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1. INTRODUCTION

The presence of hysteresis nonlinearities in smart systems, such as piezoelectric
and magnetostrictive actuators, has been widely associated with various performance
limitations, see for instance [4], [15], [17]. Notably, micro/nano-positioning applica-
tions are very sensitive to such hysteretic effects, therefore, the characterization and
modeling of the hysteresis properties is crucial for designing efficient compensation
algorithms. Among the hysteresis models whose inverse have been employed as feed-
forward compensator, those based on the Preisach operator and the Prandtl-Ishlinskii
operator are of particular interest. However, while the usage of the Preisach operator
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relies on numerical methods for obtaining approximate inversions of the model [5],
[14], [16], the application of the Prandtl-Ishlinskii operator is more advantageous due
to the fact that such operator is analytically invertible [7], [10].

Rate-dependent processes also appear to be an effective alternative in modeling
hysteresis in smart materials. The notion of a parameter-dependent Preisach op-
erator introduced in [12], for example, provides a good framework for the study of
thermal effects in piezoelectric models [13]. Besides, there is a number of papers
featuring the so-called rate-dependent Prandtl-Ishlinskii operator in different appli-
cations for hysteresis compensation [2], [3]. These applications benefit from the fact
that an explicit representation of the inverse is still available for rate-dependent
Prandtl-Ishlinskii model in the discrete case, that is, for the case when the Prandtl-
Ishlinskii operator is defined as a finite linear combination of play operators with
time-dependent thresholds, see [1], [9].

In practice, the number of active thresholds in the Prandtl-Ishlinskii operator can
be very large, and in this case the explicit inversion formula requires a non-negligible
computational effort. The question if all the thresholds are really necessary for a
sufficiently accurate inversion is therefore legitimate, because a possible reduction
of the number of thresholds decreases the computational complexity. We follow
the classical concept of continuum mechanics: In order to show that the inversion
algorithm is stable with respect to memory discretization, we address the inver-
sion problem for the Prandtl-Ishlinskii model in a broader sense by considering the
rate-dependent Prandtl-Ishlinskii operator to be the continuous counterpart to the
discrete notion investigated in [1]; for such operators we then establish an inversion
formula whose definition, like in the classical case, somehow relies on the inverse
of its initial loading curve. The main tool in this investigation is the inversion for-
mula available for discrete rate-dependent Prandtl-Ishlinskii operators, see [1], [9].
The approach consists in considering a discretization of the Prandtl-Ishlinskii model
and, making use of the explicit inversion formula, to approximate and validate the
proposed inverse. As the next step, we derive error bounds of inverse compensa-
tion when a discretized inverse Prandtl-Ishlinskii operator is applied as a feedfor-
ward controller.

This paper is organized as follows: In Section 2 we introduce the rate-dependent
Prandtl-Ishlinskii operator based on a shape function; a function which accounts for
the initial loading curve. Section 3 represents the core of the paper and presents the
inverse of the rate-dependent Prandtl-Ishlinskii operator (Theorem 3.1). In Section 4
we investigate the approximate inversion error relying on the inverse of a discretized
rate-dependent Prandtl-Ishlinskii operator and accounting for measurement errors of
the initial loading curve. An example applying the inverse rate-dependent Prandtl-
Ishlinskii as feedforward compensator is given in Section 5.
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2. RATE-DEPENDENT PRANDTL-ISHLINSKII OPERATOR

In what follows, for T' > 0 we denote by C(0,T') the space of continuous functions

defined in [0, 7] endowed with the norm |z|jo, 1) := H[lél}%] |z(t)], and by W1(0,T)
’ te(o,

the space of absolutely continuous functions. The spaces BVi,.(0,00) of real func-
tions which have bounded variation on every bounded interval, and W°(0, 00) of
Lipschitz continuous functions are important in our investigation.

Herein, the time-dependent play operator has a central role in the development of
our study; thus, we recall its definition in the sequel.

Given a function ¢ € C(0,T') such that o(t) > 0 for all ¢ € [0, T, for each function
v € WH(0,T) and x9 € [—0(0),0(0)], let £ € W(0,T) be the solution of the
variational inequality

| < o(t) vt e [0,1],
(2.1) v(0) — £(0) = =
) (v(t) —€@1) —o(t)C) =0 ae te[0,T] VI <1

The mapping p,(.) which with each initial value zo and each input function v asso-

ciates the solution £ = p,(.)[wo, v] of (2.1) is called the time-dependent play operator.

The definition of such an operator can be extended to the case of regulated functions

by means of an integral formulation of the variational inequality, see details in [8].
We now introduce the main object of our study:

Definition 2.1. Let z € C'(0,T') be a function such that z(t) > 0 for all ¢ € [0, T7,
and fix an arbitrary R > 0. Given a constant ag > 0, let ¢ € W1>(0,00) be
a function such that ¢’ € BV} (0,00), ¢(0) = ¢’'(0) = ¢'(0+) = 0, and sup |¢’(r)| =:

>0

@ < ag. Denote by I the identity function in R, i.e. I(s) = s for s € R. For each
input function v € W*(0,T) such that |v|jp 7} < R and each initial value function
x € W1°(0,00) such that

(2.2) |z(0)] < 2(0), |2'(r)| < 1 a.e., z(r) =v(0) forr >R,

we define the rate-dependent Prandtl-Ishlinskii operator P, with shape function
aol + ¢ by the integral

(2:3) Polos () = aoo(t) = [ @005 prraco o). o]0

where for a parameter value r > 0, p,.1.(.) is the solution of the variational inequal-
ity (2.1) with the choice o(t) = r + z(t).
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Note that by choosing ag = z(t) = 0 we retrieve the classical Prandtl-Ishlinskii
operator. Furthermore, the generalized Brokate identity ([1], Lemma 1.2) yields

(2.4) Prizlz(r), v](t) = prlz(r) — 2(0), &) (1),
50 (t) = pz(t) [.13(0)7 U] (t)a

so that the formula (2.3) is meaningful by virtue of [11]; while the assumptions on
both the initial value function and the input function ensure that we integrate over
a bounded interval. Unlike in [11], though, the integral in (2.3) can be interpreted
as the Lebesgue integral thanks to the regularity of ¢ and the fact that the left
derivative of p,. coincides with its distributional derivative almost everywhere.

It is of practical interest to consider a piecewise linear approximation of the shape
function associated with a division 0 = 79 < 71 < ... < rppy = R < rppq1 = 00,
namely,

m—+1

(2.5) om(r) = / HCLEEEACED DI

with
@(ri) — p(ri-1)

fori=1,...,m, Om =@ (Tm+).
Ty —Ti-1

PYi—1 =

The symbol y4 denotes the characteristic function of a set A C [0,00), that is,
xa(r)=1ifr € A and xa(r) =01if r ¢ A. Noting that our hypotheses on z and v
imply that

(2.6) Prizlz(r),v](t) =0 for r > R,
an explicit calculation of the integral in (2.3) shows that the Prandtl-Ishlinskii oper-

ator P, with shape function aol + ¢, can be written in a particularly simple form

m

(2.7) Py, [, 0)(t) = aov(t) + Poba [2(0), 0)(1) + D (Bi = Gim1)Pritao (i), 0] (2).
i=1

The operator described in (2.7) can be understood as a discretization of the rate-
dependent Prandtl-Ishlinskii operator (2.3). This approximation satisfies the follow-
ing inequality:

Proposition 2.1. Let ¢ and @, be as above. Then for every z, v, and x satisfying
our hypotheses we have

|P¢[x,v] - Py, [z, U]|[0,T] < iznlnax [ri — H—1|Var[o,oo)sé"-

ey
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Proof. By (2.4) we have [(0/0r)p,1.[z(r),v](t)] < 1 a.e. Using (2.6), we
obtain the estimate

R
| Pol, 0] (t) = P, [, 0](8)] < /O ' (r) = @i (r)| dr

- i / o)

and the assertion follows. O

el =l

Ty —Ti—1

3. INVERSION FORMULA

In this section we present the main result of the paper, Theorem 3.1, whose aim
is to establish the inverse of the rate-dependent Prandtl-Ishlinskii operator relying
on the inversion of the shape function and on a particular counterpart of the initial
value function.

Note that the operator P, given by (2.7) is a superposition of time-dependent
play operators like the Prandtl-Ishlinskii operator investigated in [9], and we can
rewrite it as

m—+1
(31) P<Pm [{E,’U]( = aov + Z aiPF(t) :L'“ ( )

with a;41 = @i — @i—1, Tig1(t) = + 2(¢), and Tj41 = x(r;) for i = 0,1, ..., m, with
the convention ¢_; = 0. By [9], Theorem 1.2, for every input w the inverse operator
to P, is given by the explicit formula

m+1
(3.2) P [z, w(t) = bow(t) + Z bipz, (1) [Ti, w] (1),
where bg = 1/ag, and for i = 1,...,m + 1 we have
1 1
(3.3) b; = —— — —,
ap +Yi—1 a0+ Pi-2
(3.4) 5i(t) = si—1 +apz(t)
with s9 = 0, g1 = apz(0), and for i =1,...,m
(3.5) si — si—1 = (aop + @i—1)(ri — ri-1),
(3.6) Yit1 — Yi = (a0 + Pi—1)(Tiv1 — Ti).
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It is known that the inversion of a Prandtl-Ishlinskii operator can be performed
analytically by inverting its initial loading curve. Similarly, to establish an inversion
formula for the rate-dependent Prandtl-Ishlinskii operator P, as defined in (2.3), we
consider the function v given by

(3.7) w@y:md+¢r%g—§;ﬁns>o

Note that ¢'(s) € [1/(ao + @) — 1/ao,1/ap — @ — 1/ap], and additionally,
1 1
W (s) = - L

aop + SOI(T)|7"=((IOI+4P)71(S) a0

In particular, for any sequence 0 = gg < 01 < ... < gn, taking o; = ape; + ¢(0:),
1=0,...,N, we have

N

N
SO (o) = (o)l = 3| LW )

i=1

1
ao + ¢'(0i-1)

N
1
< — E "(0.) — o (0;
S (GO — @)2 pat |50 (Qz) 2 (Qz 1)|,
hence, the variation of 1)’ satisfies

(3.8) Var(g o)t < 5 Var|g o)¢’ < 00

1
(a0 —P)

With the function ¢ defined in (3.7) and with initial value function x as in (2.2) we
associate the inverse initial value function y given by the formula

ao/s+(s)
(3.9) y(s) = aoa(0) + / 2 (F)(ao + ¢ () dr.

Note that we have y'(s) = 2'(7)];=q, /s+uv(s) for a.e. s > 0, hence |3/(s)| <1 a.e. For
the sequence {s;} as in (3.5) we define the piecewise linear approximation ), of v
by the formula

m—+1

B10) )= [ U)dn ) = Y B o)

with

Y(si) —p(si—1)

fori=1,...,m, ¥y, = (s;m+) and sp,41 = 00.
Si — Si—1

Vi1 =
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We now define the Prandtl-Ishlinskii operator with shape function bgI + v by a for-
mula analogous to (2.3), namely,

B Pl = qow®) — [ V5 b () wl() ds

and we consider its discrete approximation as a counterpart to (2.7),

(3.12) Py, ly, w|(t) = aiow(t) ) (Wi = Yie1)Psians(o [y (si), W] (1),
=0

with the convention 1Z,1 = 0. By (3.5) we have s; — s;-1 = ag(r; — ri—1) + @(1i) —
@(ri—1). Since ro = s9 = 0, we conclude that

1
si = aori +o(ri), 1= a_osi + 9 (si)

for all i = 1,...,m. Noting that 1/(0) = 0, the identities above also imply that

o~

(3.13) 1 +vY; =

ag ao + @i

for all 4 = 0,1,...,m, so that comparing (3.12) with (3.3)—(3.4) we see that the
operator Py, can be rewritten as

m—+1
(3.14) Py, [y, wl(t) = bow(t) + Z bips, 1) [y(si-1), w] (?).

We see that it differs from P 1 only in the initial condition y(s;). By (3.6) for

i=1,...,m we have
Yitr1 — Yi = (a0 + Pi—1)(@(ri) — x(ri-1)) = / '(r)(ao + ¢'(0i)) dr
Ti—1
for some p; € [r;—1,7;], and
vs) ~ylsin) = [ a0)a0+ ()
Ti—1
hence, using (2.2), we get

(3.15) y(s:) — Firr — ylsion) + 51l < / " () - )] dr.

-
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Thus, it follows that

Ti—1

7 ri
ly(s:) = Tiga] < Z/ ¢'(r) = @' (@) dr + [y(so) = Gn|, i=1,...,m.
j=17mi

Since y(0) = apx(0) = y1, summing up the inequality above over ¢ we thus obtain

(3.16) max ly(si—1) — sl < max |r; — 1| Varg o)’

i=1,...,m+ i=1,....m

Recall that the dependence of each individual play on the initial condition is Lipschitz
with constant 1, in particular, fori=1,...,m+ 1,

05,y (si-1), wl(t) = ps, ) [Bi, w](B)] < [y(si-1) — vl
for every input w and every ¢ € [0,T]. Hence,

m—+1
(317) [Py, [y, w](t) = P, M, w](D)] < _max y(si-1) — 5l Y [b)]
j=1

i=1,....m+1

/ /
< max |75 — ri—1|Varjy ooy’ Varg )¢,
=1,....,m

where the last inequality is a consequence of (3.13) and (3.3).
We now easily prove the following inversion theorem.

Theorem 3.1. Let ag > 0 be given and let z,x, be functions satisfying the
assumptions of Definition 2.1. Assume that ¢ and y are the functions given by (3.7)
and (3.9), respectively. Then the operators P, and Py defined by (2.3) and (3.11)

are mutually inverse.

Proof. Given an input function v € WhH(0,T) with |vlprp < R, denote
w = Pyx,v]. For m € N, consider an arbitrary division 0 =rg <7 < ... <rp =R
and let w,, = P, [z,v] be the corresponding discretized Prandtl-Ishlinskii operator

n

as in (3.1). Clearly v = P! [z, w,,], thus for each t € [0, T] we can write

(3.18) [Pyly, wl(t) = o(t)] < [Pyly, w](t) = Py, [y, w](?)]
+ [Py, Ly, wl(t) = Py [z, w](t)]
+ Py, wl(t) = Py e, win] (1)].

Recalling that the play operator is Lipschitz with respect to the input function, it
follows from the definition of P, 1 and Proposition 2.2 that

m—+1
(3.19) P, w w](t) = Py e, wn] (8)] < [w(t) — wn(8)] Y [bil
=0

< i_nlaaxm |ri — 7“1;1|Var[0,oo)80lvar[070<>)wl'
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Moreover, by reasoning like in Proposition 2.2 we can see that

(Pyly, wl(t) — Py, [y w Z/ ] ds

< max [s; — $i— 1|Var000)1p,
i=1,....m

which together with (3.5) yields

[Py ly, w(t) = Py, [y, w](t)] < (a0 +9) , nax |7i — ri—1|Varg )t'.

m

Using (3.17) and the inequalities above, we conclude that

|Pyly, w](t) —o(t)] < max |r; —7ri1|(ao + P + 2Var|g,o)@’) Var|g ooy ¥'.

i=1,....m

Since the inequality above holds for any division of the interval [0, R], by taking a
division fine enough, the assertion follows. O

4. APPROXIMATE INVERSION ERROR AND ERROR BOUNDS

In this section we study the inversion error using the inverse rate-dependent
Prandtl-Ishlinskii operator in hysteresis compensation while considering approximate
measured shape function.

In practice, we cannot measure the whole initial loading curve ¢. Instead, for
a given division 0 = rg < r; < ... < ry, = R we determine the approximate value
of ¢(r;) with a measurement error €. In other words, the approximate measured
value, ¢, satisfies

(4.1) lp(ri) — @il <e fori=0,1,.

Consider the function ¢*: [0, R] — R defined by

m

(4.2) o) = / Y (9)ds, (o = i)

with @ = (pf —¢r 1)/(ri —ri—1) for i = 1,...,m. The corresponding Prandtl-
Ishlinskii operator can be written as

m+1
(43) Ptp*[xav]( - Cl()’U + Z a; pr (t) x’ta ( )
with
1=0r —¢r 4, and Ty =2x(r;) fori=0,1,...,m,

with the convention @*; = 0.
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We have the following approximation statement.

Proposition 4.1. Let ¢* be the function in (4.2) and ¢, be the piecewise linear
approximation of ¢ as in (2.5). Then for every v, z, and x satisfying our hypotheses

we have
2¢eR

min |r; — 71|
i=1,....m

| Po [, 0] = Py, [z, v]]j0,77 <

Proof. Similiarly as in the proof of Proposition 2.2 and using (4.1), we can

estimate

R
| P [, 0](8) = Py, [2,0](1)] < /0 (@) (r) = @l (r)| dr

m i * *
= Z/r pi — i elr) —e(riaa) dr < 2me
=1 Jrica! Ti T i1 Ty —Ti-1
The result is then a consequence of the fact that R > m rlnin |ri — i) ([
i=1,...,m

We know that Py« admits an explicit inverse of the form (3.2), and for functions v

and w,
m—41
(4.4) 1P [, 0](t) — Potfa,w]| < Jo(t) — w(t)] D[],
i=0
where
1 1 1
(4.5) bp=—, b= — - . i=1,...,m+1L
ao ag +@;_1 Ao +P;_o

Having this in mind, we can define the approximate compensation error as

(4.6) E =sup|u— P;*l [z, Py, ul]l0,17,

where the supremum is taken over u € W'(0,T) with |uljg ) < R.
Observing that u(t) = P;*l [, Py« [z, u]](t) and using (4.4) together with Proposi-
tion 4.1, we obtain

A7) fult) = Py [z, Pyla, ul](t)]
m—+1
< [Py [, ul(8) = Polz, u)(8)] D 10
=0

2eR s
< P, [z, — P,[x, %
(‘_I}lm e Pen () ~ Bl u]<t>|);|b|
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Finally, from Proposition 2.2 it follows that

2eR plass *
(4.8) Eg( — + max |7"i_ri71|var[0,oo)50/)2|bi|'

pin |ri —ric1|  i=1,..m g

This leads to the following result:

Theorem 4.1. The approximate inversion error, when the operator with con-
tinuous thresholds is replaced with an operator with discrete thresholds, is given
by formula (4.8). Moreover, if the division points are sufficiently equidistant, the
optimal theoretical error is of order \/e.

In the particular case of a discrete rate-dependent model (i.e. when the Prandtl-
Ishlinskii operator corresponds to a linear combination of play operators with time-
dependent thresholds), the above theorem provides a hint on how to approximate in-
verse Prandtl-Ishlinskii operators with a large number of thresholds by using Prandtl-
Ishlinskii operators with a smaller number of thresholds while keeping the inversion
error under control.

5. APPLICATIONS IN MEMORY-DISCRETE COMPENSATION

To illustrate the applicability of the obtained results in the analysis of compensa-

tion error, we consider an operator of the form

100

(5.1) Py, [u](t) = aou(t) + Z a;ipg, o ul(t),

where 9;(t) = 0.015 + 3 x 10744(t)], a; = 0.5e7%1, j =1,...,100, and ap = 1.5.
For such an operator we study how a reduction in the number of active play opera-
tors may impact the compensation error bounds. To this end, we consider approxi-
mate rate-dependent Prandtl-Ishlinskii operators P, [u](t) as defined in (3.1), with

weights ag, a1, . . ., ame1 and threshold functions 7; (t) = r;+2(¢), j = 1,...,m, where
z(t) = Blu(t)], B > 0 and the number of thresholds m € {10,19,30}. The parameters
of the operator P, [u](t), represented by a vector X = {3, r1, r2, ..., Fmy1, o, a1,
as,...,am+1}, are identified via the Real Coded Genetic Algorithm—for more details

on such parameter identification technique, see [6]. The parameters of the inverse
rate-dependent Prandtl-Ishlinskii operator are obtained using (3.3) and (3.4). The es-
timated thresholds r; and weights a; at different values of m are depicted in Figure 1.
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Figure 1. (a) The estimated thresholds r;, and (b) the estimated weights a; with thresholds

number of m = 10, 19, and 30.

— m=10 — m=19 —— m=30
0.15 T T 0.3 T T
0.10 0.2
% 0.05 3: 0.1
& &
T8 O T O
A A
| —0.05 | —0.1
S S
—0.10 —0.2
—0.15 L ! —0.3 L L
0 0.02 0.04 0.06 0 0.01 0.02 0.03

time ¢ (second)

Figure 2. The time history of the compensation error (
of u(t) = 8.9sin(2rnft) under frequencies f = 50 and f = 100 Hz.

u— P51

time ¢ (second)

o | Pion [u]]) for a desired input

The evolution in time of the compensation error (u — P, '[P, [u]]) is illustrated

m

in Figure 2 for particular input u(¢) = 8.9sin(2nft) in the case of frequencies f = 50
and f = 100 Hz.

Figure 3 shows the maximum compensation error in (4.6) and the error bound
calculated based on (4.8) for the approximate rate-dependent Prandtl-Ishlinskii op-
erator P;Ti when different excitation frequencies are considered, namely, 10, 50, 100,
and 150 Hz. The results show that increasing the number of thresholds does not yield
better performance in hysteresis compensation; on the other hand, by selecting suf-
ficient division points, even a small number of thresholds can keep the compensation

error E under control as stated in Theorem 4.2.
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Figure 3. (a) The maximum compensation error in (4.6) under excitation frequencies of
10, 50, 100, and 150 Hz, (b) the error bound calculated based on (4.8) for the
approximate rate-dependent Prandtl-Ishlinskii operator P@i.
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