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Abstract. A graph is 1-planar if it can be drawn in the Euclidean plane so that each edge
is crossed by at most one other edge. A 1-planar graph on n vertices is optimal if it has
4n — 8 edges. We prove that 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable
(in the sense that each of the four color classes induces a subgraph of maximum degree
one). Inspired by the decomposition of 1-planar graphs, we conjecture that every 1-planar
graph is (2,2,2,0,0)-colorable.
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1. INTRODUCTION

The graphs considered in this paper are finite, simple and undirected. Let
dy,...,d; be k nonnegative integers. A graph G is (di,...,dg)-colorable if the
vertex set of G can be partitioned into k subsets V7, ..., Vi, such that the maximum
degree of the subgraph induced by V; is at most d; (1 < i < k). It is a proper coloring
of G when d; = ... = di = 0; we also say that G is k-colorable. Particularly, when
di =...=dy =d > 1, it is said that G has a d-improper coloring or d-defective
coloring.

The coloring of planar graphs has been extensively investigated. In 1976-1977,
the well-known Four Color Problem was proved by Appel and Haken using computer
(see [1], 2], [3]), i-e., every plane graph is 4-colorable. Cowen et al. in [10] presented
the classical result that every planar graph is (2,2,2)-colorable for improper coloring
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of plane graphs. Steinberg in 1976 in [17] asserts that every planar graph with no
cycles of length four or five is 3-colorable. This problem has been attracting a sub-
stantial amount of attention among graph theorists. The conjecture was disproved
in 2017 by Cohen-Addad et al. by constructing a counterexample, see [9]. Many other
relaxations of the conjecture have been established, see [7], [10], [12], [19]. It has been
proved that planar graphs without cycles of length 4 or 5 are (3,0,0)-colorable and
planar graphs without cycles of length 4 and 6 or cycles of length 4, 5 and 9 are
(1,0,0)-colorable. A 1-planar graph is a generalization of plane graph which was
first considered by Ringel (see [14]) in connection with the simultaneous vertex-face
coloring of plane graphs. A graph is l-planar if it can be drawn in the Euclidean
plane so that each edge is crossed by at most one other edge. It has been proved
that 1-planar graphs can be colored with at most seven colors. Later, the precise
number of colors needed to color 1-planar graphs was shown to be six, see [5]. That
is to say, every 1-planar graph is 6-colorable. Fabrici and Madaras in [11] studied the
existence of subgraphs of bounded degrees in 1-planar graphs. Zhang considered the
edge coloring of 1-planar graphs in [21], [22] and [23]. Sun in [18] studied the total
coloring of 1-planar graphs and showed that every 1-planar graph G with maximum
degree A(G) > 12 and girth at least five is totally (A(G)+1)-colorable. For vertex
coloring of 1-planar graphs, it is proved that every 1-planar graph without 4-cycles
or adjacent 5-vertices is 5-colorable (see [15]), 1-planar graphs without 4-cycles or
5-cycles are 5-colorable, see [16]. Moreover, 1-planar graph with girth at least 7
is (1,1,1,0)-colorable, see [8]. It is conjectured that every 1-planar graph without
3-cycles is 5-colorable, see [6].

Inspired by the results above, we focus on the improper coloring of 1-planar
graphs in this paper and prove that every l-planar graph with girth at least 6 is
(1,1,1,1)-colorable. We conjecture that all 1-planar graphs are (2,2,2,0,0)-colorable.

Now we introduce some basic definitions about graphs. A cycle in a graph is
a nonempty trail in which only the first and last vertices are equal. A cycle con-
taining k vertices and k edges is called a k-cycle, which is also referred to as a cycle
of length k. The girth of a graph is the length of the shortest cycle contained in
the graph. For an element z € V(G) U F(G), we use d(x), 6(G), and A(G) to
represent the degree of x, the minimum and maximum vertex degree of GG, respec-
tively. If uy,us,...,u, are vertices on the boundary of f in cyclic order, then we use
[urus . . . uy) to denote face f. A k-vertex, kT-vertexr, and k™ -vertex is a vertex of
degree k, at least k, and at most k, respectively. A similar notation can be applied
to faces. For more details about graph theory, the reader is referred to classical
textbooks, see [4], [20].

994



2. PRELIMINARIES

Let G be a 1-planar graph. Assume that G has been drawn on a plane such that
every edge is crossed at most once and the number of crossings is as small as possible.
If z is a crossing formed by the intersection of two edges x1y; and xoy2, the four
vertices x1, Y1, T2, and yo are distinct. The associated plane graph G* of G is a plane
graph obtained by turning all crossings of G into new 4-vertices. The 4-vertices in G*
are called cross vertices if they are the crossings of G. If the vertices are both vertices
of G and G*, then they are called true vertices. One should note that cross vertices
are not real vertices of G. In the same vein as the definition of cross vertices, the
faces in G* are called cross faces if there are some cross vertices on them. Otherwise,
they are called normal faces. Particularly, the 4-faces with two non-adjacent cross
vertices in G* are called bad 4-faces. For the figures within this paper, the white and
black dots will be used to represent the crossings and vertices of G' (unless otherwise
specified). We also use the following additional notation (here, v is a vertex and f
is a face in G*):

nta(v): the number of true 4-vertices adjacent to v in Gj

(f): the number of true 4-vertices on f;

(f): the number of 6-vertices on f;

(f): the number of cross vertices on f;

(v): the number of cross 3-faces incident to v;

my4(v): the number of 4-faces incident to v;
(v)
(v)
(v)
(v)

myc(v): the number of cross 4-faces with one cross vertex incident to v;
myp(v): the number of bad 4-faces incident to v;

Ng(v): the neighbors of v in G}

Ng=+(v): the neighbors of v in G*.

3. 1-PLANAR GRAPHS WITH GIRTH AT LEAST 6 ARE (1,1,1,1)-COLORABLE

Theorem 3.1. 1-planar graphs with girth at least 6 are (1,1,1, 1)-colorable.

3.1. Structural properties. Let G be a 1-planar graph, C = {1, 2, 3,4} be a color
set with four colors and ¢ be a coloring of G, where the color of vertex v is ¢(v) € C.
Theorem 3.1 is proved by contradiction. Assume that G is a counterexample with the
minimum number of vertices and crossings satisfying that the girth of G is at least 6.
Then G is not (1,1,1,1)-colorable. By the minimality of G, it is apparent that G is
connected, and every subgraph of G with fewer vertices is (1,1,1,1)-colorable. Let G*
be the associated plane graph of G. The following properties hold.
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Property 3.1. The minimum degree of G satisfies 6(G) > 4.

Proof. By contradiction. Let G contain a 3~ -vertex v, and let G be obtained
from G by deleting v. Then, by minimality of G, G is (1,1,1,1)-colorable with at
most three colors used at neighbours of v. Hence, by assigning v the color which is not
used in its neighbors, we can extend the (1,1,1,1)-coloring of G toa (1,1,1,1)-coloring
of GG, a contradiction. O

Property 3.2. No two 4-vertices are adjacent in G.

Proof. Let v be a 4-vertex of G and vy, ..., v4 be its neighbors. Assume that v;
is a 4-vertex. Consider the subgraph G of G by deleting vertices v and vy, i.e.,
G' = G — {v,v1}. By the minimality of G, we can obtain that G has a (1,1,1,1)-
coloring ¢. Now we will show that the coloring ¢ of G’ can be extended to
a (1,1,1,1)-coloring of G. First, we assign a color in C to the vertex v, properly
as vy is a 4-vertex adjacent to v, and there is at least one color available. Sec-
ondly, if {¢(v1),...,¢(vs)} # C, then the color to be assigned to v is p(v) =
C\{e(v1),...,¢(va)}; otherwise, {¢(v1),...,p(va)} = C and the vertex v can be
colored with the same color as v;. Then we obtain a (1,1,1,1)-coloring of G, which
is in contradiction to the choice of G. O

Property 3.3. Every 5-vertex is adjacent to at most two 4-vertices in G.

Proof. Let v be a 5-vertex and vy,...,v5 be the neighbors of v. Assume
that v is adjacent to at least three 4-vertices in G. Without loss of generality,
assume that d(v1) = d(ve) = ... = d(v;) = 4 (3 < ¢ < 5). Consider the sub-
graph G = G — {v,v1,v9,...,v;}(3 < i < 5). By the minimality of G, G has
(1,1,1,1)-coloring ¢. Since there are four colors in C and the degree of each vertex
of v1,va,...,v; is four; moreover, all of them are adjacent to vertex v. Hence, the
vertices vy, v9,...,v; can be colored properly. To color the vertex v, there are two
cases. More precisely, if {¢(v1), p(v2),...,(vs)} # C, assign a color to vertex v as
follows: p(v) = C\ {p(v1),...,9(vs)}; otherwise, if {p(v1),p(va),...,p(vs)} = C,
then there is exactly one color used twice, we call it color k, we assign one of the
following colors to vertex v in this case: p(v) = {p(v1),..., (v} \{k} (3 <i <5).
It is not difficult to verify that it is a (1,1,1,1)-coloring of G. Therefore, a 5-vertex
cannot be adjacent to more than two 4-vertices in G. O

Property 3.4 ([21], Lemma 3). Let G* be the associated plane graph of 1-planar
graph G. Then for any two cross vertices u and v,uv ¢ E(G*).
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Property 3.5. Let v be a k-vertex in G*. Then the number of cross 3-faces
adjacent to v satisfies ms.(v) < L, where

{gJ x2+4+1, k=2 (mod 3),
l

k
gJ X 2, otherwise.

Property 3.6. Let v be a true 4-vertex incident to two cross 3-faces and one bad
4-face of G*, see Figure 1. Then the following properties hold:
(a) The remaining face that v is incident to is a 6™ -face.
(b) Ifwv is incident to a 6-face [xvivvayuz], then [xvivvsyuz] has three cross vertices.
(c) Ifv is incident to a 7*-face, then this face has at least two cross vertices.

v2

(%] V3

Figure 1. d(v) =4, mzc(v) = 2, myy(v) = 1.

Proof. Suppose that v is a true 4-vertex incident to two cross 3-faces [vvivs],
[vvavs], and one bad 4-face [vvszvy], see Figure 1.

(a) Note that the girth of G is at least 6. Hence, z, y are two different vertices
and xy ¢ E(G), otherwise, [zrvazz] is a 3-cycle, or [zuazyx] is a 4-cycle in G, see
Figure 1 (2). Hence, the face [zvivvsyuz] is a 6T-face in this case.

(b) If [zv1vvayux] is a 6-face (see Figure 1(2)), then u must be a cross vertex of G,
otherwise, [uzvszyu] is a 5-cycle of G*, a contradiction.

(c) If [xvivvayuz] is a 7T-face, where vy and vy are the cross vertices on it, then
the 7*-face has at least two cross vertices. 0

It appears that analogous results hold also for a true 4-vertex incident to two cross

3-faces and one cross 4-face with exactly one cross vertex.

Property 3.7. Let v be a true 4-vertex incident to two cross 3-faces and one
cross 4-face with exactly one cross vertex of G*, see Figure 2. Then the remaining
face that v is incident to is a 6T-face with at least two cross vertices.
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Figure 2. d(v) =4, m3c(v) = 2, mgc(v) = 1.

Proof. Suppose that v is a true 4-vertex incident to two cross 3-faces [vviva],
[vusvy] and one cross 4-face with exactly one cross vertex [wvivvy], see Figure 2.
Then z and y cannot be the same vertex, otherwise, [zv1vv4y] is a 4-cycle of G. More-
over, xy ¢ E(G), otherwise [zvsvvsyx] is a 5-cycle of G. Therefore, [zvavvsy ... x] is
a 6T-face with at least two cross vertices vs and vs on it. O

Property 3.8. Let v be a 5-vertex. Suppose that v is adjacent to three cross
3-faces [vv1va], [vvavs], and [vvavs], see Figure 3. By the conditions on girth of G,
y and z are different vertices, yz ¢ E(G), xvy ¢ E(G). Moreover, the following
properties hold:

(a) The face [vivvsy. .. zv1] is a cross 67 -face with at least two cross vertices.
(b) If [zuzvvguz] is a b-face, then it is a 5-face with two cross vertices.
(c) If [zvgvvy ... x] is a 6 -face, then it is a cross 6T -face with at least one cross

vertex.

Figure 3. d(v) =5, m3.(v) = 3.

The proof is similar to the proof of Properties 3.6 and 3.7.

3.2. The discharging procedure. We prove Theorem 3.1 by contradiction. As-
sume that G is a 1-planar graph with girth at least 6, which is not (1,1,1,1)-colorable.
Further G* is the corresponding planar graph of G which is obtained by turning all
crossings into cross vertices. Then G* satisfies Euler’s formula |V (G*)| — |E(G*)| +
|F'(G*)| = 2. Moreover, the following relationship holds:

Yo dw)= ) d(f)=2[EG).

veV (G*) feEF(G*)
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Taking now into account the associated plane graph G* of the minimal counter-
example G, we define a charge function w on the vertex and face set of G* as follows:

(3.1) w(x)=d(z)—4 YVzeV(G")UF(G").

From Euler’s formula, one can conclude that the total sum of charges of vertices and
faces is equal to

(3.2) o) -4+ > (df)—4) =-8.

veV(G*) feEF(G*)

Then appropriate discharging rules are defined to redistribute these charges in the
way that the total sum of charges keeps fixed during the discharging process. These
rules transform w to a new charge function w*, for which it is shown that w*(z) > 0
for every x € V(G*) U F(G*). This, however, leads to a contradiction, as

(3.3) -8 = Z w(z) = Z w*(z) = 0.

2EV(G*)UF(G*) TEV(G*)UF(G*)

Let 7(z — y) denote the charge that sends z to y for any x,y € V(G*) U F(G*).

The discharge rules are defined as follows:

(R1) Let f be a cross 3-face, f = [uvw], where w is a cross vertex, u and v are true
vertices. Then 7(u — f)=1, 7(v = f) = 1

(R2) Let u,v € V(G), wv € E(G). If d(v) = 4, then 7(u — v) = 3.

(R3) Let f be a face in G* and v be a true 4-vertex on f:

(R3.1) If f is a 5-face with two cross vertices, then 7(f — v) = 1.

(R3.2) If f is a 6-face with one cross vertex, then 7(f — v) = 1.

(R3.3) If f is a 6-face with at least two cross vertices, then 7(f — v) = 3.
(R3.4) If f is a cross 7' -face, then 7(f — v) = 3.

(R4) Let f be a face in G*, v be a 5-vertex on f
(R4.1) If f is a 5-face with two cross vertices, then 7(f — v) =
(R4.2) If f is a 61-face with one cross vertex, then 7(f — v) =
(R4.3) If f is a 61-face with at least two cross vertices, then 7(f — v) =
(R5) Let f be a face in G*, v be a 6-vertex on f:
(R5.1) If f is a 5-face with two cross vertices, then 7(f — v) =
(R5.2) If f is a 61-face with one cross vertex, then 7(f — v) =
(R5.3) If f is a 67 -face with at least two cross vertices, then T(f — ) = %
In the followmg, we prove that w*(z) > 0 for any = € V(G*) U F(G*).
V1,02, ..., Vq(y) be the neighbors of v in G* in cyclic order. Note that §(G*) 2 4
as 0(G) > 4.

R Lt L
N[=

;Jle»bl)ﬂ
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Final charge of vertex in G*. Now consider the charge function of the vertices
in G*. Let v be a vertex of G*. We consider the following cases:

(1) d(v) = 4.

Case 1: If v is a cross vertex in G*, then, according to the discharge rules, v is
not involved in discharging rules, so w*(v) =w(v) =4 -4 =0.

Case 2: If v is a true 4-vertex in G*, v is incident to at most two 3-faces, see
Figure 1(1). By Property 3.2, the vertices in Ng(v) are 57-vertices. According to
discharge rule (R2), v can receive % from each of its adjacent 5T-vertices. We have
three subcases according to the number of cross 3-faces that v is incident to.

Subcase 2.1: d(v) =4, mz.(v) = 2.

Subcase 2.1.1: If d(v) = 4, m3c(v) = 2, my(v) = 1, Properties 3.6 and 3.7 give the
details of bad 4-face or cross 4-face with exact one cross vertex that v is incident.
We can conclude that whatever the 4-face is, v can always get % from the remaining
incident to 6*-face by using discharge rules (R3.3) or (R3.4). By combining with
discharge rules (R1) and (R2), the new charge function satisfies:

1 1 1 1 1 1
w*(v) ZW(U)+§d(U)—§m36(U)+§ =4—4—|—§ x4 — 5 ><2—|—§ =0.
U1
x
(%) Y
V4 Vo
Vg
v (%5}
Y
U3
U3
(1) 2) 3)

Figure 4. d(v) = 4, m3.(v) = 2, ma(v) = 0.

Subcase 2.1.2: If d(v) = 4, ms.(v) = 2, my(v) = 0, see Figure 4. Suppose
that the case shown in Figure 4 (1) happens. Then z, y should be different ver-
tices, xy ¢ E(G*), and the face [zvivvey. .. 2] is a 67-face with at least two cross
vertices. So by discharge rule (R3.3) or (R3.4), v can receive % from its incident
61-face [zvivvey...z]. If the cases shown in Figures 4 (2) and 4 (3) happen, then
the other two faces v incident to are 5*-faces. More precisely, if the face that v is
incident to is a 5-face, it has two cross vertices (see Figure 4 (2)); then by discharging
rule (R3.1), each 5-face with two cross vertices sends 1 to v. Otherwise, the face is
a cross 61-face with at least one cross vertex (see Figure 4 (3)), and by discharging

rules (R3.2), (R3.3), or (R3.4), it will send at least 1 to v. Therefore, the new charge
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function satisfies

W (v) >w(v)+éd(v)—%mgc(v)+%=4—4+% 4 % ><2+%:0.

Subcase 2.2: d(v) = 4, ms.(v) < 1. By discharging rules (R1) and (R2), v sends 3
to at most one cross 3-face and receives % from each of its adjacent vertices. So in
this case, it is not necessary to consider received charge from its incident faces, hence

w*(v) =2 w(v) + ld(v) — 1mg,c(fu) >4—-44 E x4 — 1 0.
8 2 8 2

(2) d(v) =5. If v is a vertex of degree 5 in G*, we can conclude that v is incident
to at most three cross 3-faces (by Property 3.5) and v is adjacent to at most two
true 4-vertices (by Property 3.3), i.e., ni(v) < 2. According to the number of cross
3-faces that v is incident to, there are three subcases.

Case 1: d(v) = 5, ms.(v) = 3. Suppose that v is a 5-vertex incident to three
cross 3-faces, see Figure 3. According to discharge rules (R1) and (R2), v sends % to
each incident cross 3-face, % to each adjacent 4-vertex. By discharge rule (R4.3) and
Property 3.8 (a), v can always get 3 from cross 6'-face [v1vvsy . .. zv1]. By discharge
rules (R4.1), (R4.2) and Property 3.8 (b) (c), v can get at least 1 from cross 5 -face
[xvsvvy ... x]. Therefore,

1 1 1 1 1 1 1
w*(v)>w(v)—gnt4(v)—§m30(v)+§+—:5—4—— X 2— = X3+_+Z:O
V2 U U U
(%] V2 w (%]
(% V3 v v v
w V1 U3 V1 U3 V1
Vg
V4
u
Vs o Us w Us V4 Vs
(1) (2) (3) (4)

Figure 5. d(v) = 5, m3s(v) = 2.

Case 2: d(v) = 5, ms.(v) = 2. All the possibilities are shown in Figure 5. If
the face [uvivvs...u] in Figure 5(1), face [uvgvvs...u| in Figure 5(2) and face
[uvgvvs ... u| in Figure 5 (4) are 5-faces, they must be 5-faces with two cross vertices.
Hence, by discharge rule (R4.1), v can get % from each of the cross 5-faces with
two cross vertices. Otherwise, they are cross 67-faces with at least one cross vertex.
Hence, by discharge rules (R4.2) and (R4.3), v can get % from each of them. In
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addition, the face [uvavvs ... wu] in Figure 5(3) is a 6*-face with at least two cross
vertices; then v can get % from this face. Hence, in each of these cases, v can always
get at least % from its incident cross 5T -faces. Therefore,

. 1 1 1 1 1 1
w*(v) >w(v)—§nt4(v)—§mgc(v)+1 :5—4—§ ><2—§ X2+1:O'
Case 8: d(v) = 5, msc(v) < 1. In this case, it is not necessary to consider the
charge received from the incident faces. According to discharge rules (R1) and (R2),
we always have

1 1 1 1
w*(v)2w(v)—§nt4(v)—§m3c(v);5_4__ X 2 — = X]_:Z >0
U2
U3
V4
v
Us
V6
(4)

Figure 6. d(v) = 6.

(3) d(v) = 6. Assume that v is a 6-vertex in G. Then v is adjacent to at most six
true 4-vertices, i.e., ny(v) < 6. Property 3.5 gives that v is incident to at most four
cross 3-faces, see Figure 6 (1).

Case 1: d(v) = 6, mgc(v) = 4. By observation, it is easy to conclude that x, y are
two different vertices and xzy ¢ E(G) in Figure 6(1). Furthermore, the face
[zvsvvay . .. z] that v is incident to is a 6T-face with at least two cross vertices v
and v4. In the same vein, [v1vvg...v1] is a 61-face with at least two cross vertices.
According to discharge rules (R1), (R2) or (R5.3), we have that

w*(v) 2w(v)—ént4(v)—%m35(v)+§ ><2:6—4—% XG—% ><4—|—Z:O.

Case 2: d(v) = 6, m3.(v) = 3. The possible cases are shown in Figure 6 (2) (3) (4).
Suppose that the case in Figure 6(2) happens, the face [zvsvvgy...vs] that v is
incident to is a 6*-face with at least two cross vertices v3 and vs, by discharge
rule (R5.2), v can get £ from it. Suppose that one of the cases in Figure 6 (3) and
Figure 6 (4) happens. Then either [v1vve...v1] is a 5-face with two cross vertices,

1002



or a cross 67 -face with at least one cross vertex. By discharge rules (R5.1), (R5.2)
or (R5.3), we can conclude v can always get at least % from its incident faces. Hence,
1 1

w*(v) =2 w(v) — =nw(v) — —ms.(v) +

1 1
8 2 4

1 1
Case 3: d(v) = 6, ms.(v) < 2. In this case, there is no need to consider receiving
charge from its incident faces for v. According to discharge rules (R1), (R2) and (R5),

1 1 1 1 1
W (V) 2 w(v) = gnea(v) = 5Mae(v) 26 -4 — 2 x 65 x2=7>0.

(4) d(v) =k (k > 7), then nw(v) < k. According to discharge rules (R1) and (R2),

w'(v) = w(v) — % X nea (V) — %mgc(v).

Now if £ = 7, then m3.(v) < 4 and ny(v) < 7, yielding

1

1
* S7_4_ = - _ = )
w' () =7-4 8><7 2><4 >0
If k = 8, then mg.(v) < 5 and nu(v) < 8 with
w*(v)>8—4—1><8—1><5——>0
- 8 277 '

Finally, if k£ > 9, then ms.(v) < L%J X 241, nu(v) < k and

1 1 k
w*(v)}k—él—gxk——x(LgJ><2+1)>

13k —12x9
5 —_— >

0.
24

So far, we have proved that w*(v) > 0 for every vertex in G*. In the following
subsection, we consider the new charge function on the faces in planar graph G*.

Final charge of faces in G*. Note that all the 3-faces, 4-faces and 5-faces that
appear in G* are cross faces since the girth of G is at least 6. We start from cross
3-face and discuss the classification according to the degree of the face in G*.

(1) d(f) = 3, f = [uvw]. If d(f) = 3, then by Property 3.4, there is exactly one
cross vertex on f, say u. According to the discharge rule (R1), f receives % from
each of its true vertices v and w, therefore

w*(f):w(f)+%><2:3—4+1:0.

(2) d(f) = 4. According to the discharge rules, there is no flow in charge in this

situation, so

W) = w(f) =4—4=0.

1003



(3) d(f) = 5. According to Property 3.4, no two cross vertices are adjacent.
Hence, there are at most two cross vertices on f. We have the following two subcases
according to the number of cross vertices on f.

Case 1: nc(f) = 2 . Then nu(f) + ns(f) + ne(f) < 3. According to discharge
rules (R3.1), (R4.1) and (R5.1), f sends 1 to each of the true 4-vertices, 5-vertices
and 6-vertices on it. Hence,

1 1

W () = () = grual )= s (F) = g6(f) =547 naa(F) b (£ bn(f)] > 1 > 0.

Case 2: n.(f) < 2. By discharge rules, there is no transfer of charge involving f.
Hence,
w'(f)=w(f)=5—-4=1>0.

(4) d(f) = 6. Then there are at most three cross vertices on f by Property 3.4.
We discuss the new charge function in the following two subcases:

Case 1: n(f) = 2. Then nu(f) + ns(f) + ne(f) < 4. According to discharge
rules (R3.3), (R4.3) and (R5.3), f sends 3 to each of its true 4-vertices and 5-vertices
and sends % to each of its 6-vertices. Hence,

1 1

W (f) = () = grualf) = 3n5(1) = 2n6(F) > 6~ 4 = Slnea(F) + ns(f) + ()]

1
26—4—§><4=O.

Case 2: n(f) = 1. Then nu(f) + ns(f) + ne(f) < 5. According to discharge
rules (R3.2), (R4.2) and (R5.2), f sends 1 to each of the true 4-vertices, 5-vertices
and 6-vertices on it. Hence,

1 1

W (1) = ()= gra(F) ~ 35— re(F) = 6= () s F) ()] >

1 1 > 0.

=~ w

Case 3: n.(f) = 0. By discharge rules, there is no flow in charge for f. So
w(f)=w(f)=6—4=2>0.

(5) d(f) = k(k =7).

Case 1: n.(f) = 1. Then nu(f) +ns(f) + ne(f) < k—1. Accordlng to discharge
rules (R3.4), (R4.2), (R4.3), (R5.2) and (R5.3), f sends at most % to each of true
4-vertices, b-vertices, 6-vertices on it. Hence,

(1) 2 ()~ gnealh) — gns(f) = 3n6(f) > k=4~ Llna(F) + ns(f) +no(f)
k7
z25-—520
2 2
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Case 2: n.(f) = 0. According to the discharge rules, the new charge function
satisfies the following inequality:

W (f)=w(f)=k—4>0.

By now, we have proved that w*(f) > 0 for every face in G*.
The discussion above proves that

Z w*(z) = 0.

TEV(G*)UF(G*)

This leads to the obvious contradiction

-8 = Z w(z) = w*(z) = 0.

TEV(G*)UF(G*) 2EV(G*)UF(G*)

Hence, the counterexample does not exist and the proof of Theorem 3.1 is finished.
O

In general, we believe that the following holds:

Conjecture 3.9. Every l-planar graph is (2,2,2,0,0)-colorable.

Acknowledgments. We would like to thank the anonymous reviewers for their
valuable comments and helpful suggestions.
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