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Abstract. A graph is 1-planar if it can be drawn in the Euclidean plane so that each edge
is crossed by at most one other edge. A 1-planar graph on n vertices is optimal if it has
4n − 8 edges. We prove that 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable
(in the sense that each of the four color classes induces a subgraph of maximum degree
one). Inspired by the decomposition of 1-planar graphs, we conjecture that every 1-planar
graph is (2,2,2,0,0)-colorable.
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1. Introduction

The graphs considered in this paper are finite, simple and undirected. Let

d1, . . . , dk be k nonnegative integers. A graph G is (d1, . . . , dk)-colorable if the

vertex set of G can be partitioned into k subsets V1, . . . , Vk, such that the maximum

degree of the subgraph induced by Vi is at most di (1 6 i 6 k). It is a proper coloring

of G when d1 = . . . = dk = 0; we also say that G is k-colorable. Particularly, when

d1 = . . . = dk = d > 1, it is said that G has a d-improper coloring or d-defective

coloring.

The coloring of planar graphs has been extensively investigated. In 1976–1977,

the well-known Four Color Problem was proved by Appel and Haken using computer

(see [1], [2], [3]), i.e., every plane graph is 4-colorable. Cowen et al. in [10] presented

the classical result that every planar graph is (2,2,2)-colorable for improper coloring
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of plane graphs. Steinberg in 1976 in [17] asserts that every planar graph with no

cycles of length four or five is 3-colorable. This problem has been attracting a sub-

stantial amount of attention among graph theorists. The conjecture was disproved

in 2017 by Cohen-Addad et al. by constructing a counterexample, see [9]. Many other

relaxations of the conjecture have been established, see [7], [10], [12], [19]. It has been

proved that planar graphs without cycles of length 4 or 5 are (3,0,0)-colorable and

planar graphs without cycles of length 4 and 6 or cycles of length 4, 5 and 9 are

(1,0,0)-colorable. A 1-planar graph is a generalization of plane graph which was

first considered by Ringel (see [14]) in connection with the simultaneous vertex-face

coloring of plane graphs. A graph is 1-planar if it can be drawn in the Euclidean

plane so that each edge is crossed by at most one other edge. It has been proved

that 1-planar graphs can be colored with at most seven colors. Later, the precise

number of colors needed to color 1-planar graphs was shown to be six, see [5]. That

is to say, every 1-planar graph is 6-colorable. Fabrici and Madaras in [11] studied the

existence of subgraphs of bounded degrees in 1-planar graphs. Zhang considered the

edge coloring of 1-planar graphs in [21], [22] and [23]. Sun in [18] studied the total

coloring of 1-planar graphs and showed that every 1-planar graph G with maximum

degree ∆(G) > 12 and girth at least five is totally (∆(G)+1)-colorable. For vertex

coloring of 1-planar graphs, it is proved that every 1-planar graph without 4-cycles

or adjacent 5-vertices is 5-colorable (see [15]), 1-planar graphs without 4-cycles or

5-cycles are 5-colorable, see [16]. Moreover, 1-planar graph with girth at least 7

is (1,1,1,0)-colorable, see [8]. It is conjectured that every 1-planar graph without

3-cycles is 5-colorable, see [6].

Inspired by the results above, we focus on the improper coloring of 1-planar

graphs in this paper and prove that every 1-planar graph with girth at least 6 is

(1,1,1,1)-colorable. We conjecture that all 1-planar graphs are (2,2,2,0,0)-colorable.

Now we introduce some basic definitions about graphs. A cycle in a graph is

a nonempty trail in which only the first and last vertices are equal. A cycle con-

taining k vertices and k edges is called a k-cycle, which is also referred to as a cycle

of length k. The girth of a graph is the length of the shortest cycle contained in

the graph. For an element x ∈ V (G) ∪ F (G), we use d(x), δ(G), and ∆(G) to

represent the degree of x, the minimum and maximum vertex degree of G, respec-

tively. If u1, u2, . . . , un are vertices on the boundary of f in cyclic order, then we use

[u1u2 . . . un] to denote face f . A k-vertex, k+-vertex, and k−-vertex is a vertex of

degree k, at least k, and at most k, respectively. A similar notation can be applied

to faces. For more details about graph theory, the reader is referred to classical

textbooks, see [4], [20].
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2. Preliminaries

Let G be a 1-planar graph. Assume that G has been drawn on a plane such that

every edge is crossed at most once and the number of crossings is as small as possible.

If z is a crossing formed by the intersection of two edges x1y1 and x2y2, the four

vertices x1, y1, x2, and y2 are distinct. The associated plane graph G
∗ of G is a plane

graph obtained by turning all crossings of G into new 4-vertices. The 4-vertices in G∗

are called cross vertices if they are the crossings of G. If the vertices are both vertices

of G and G∗, then they are called true vertices. One should note that cross vertices

are not real vertices of G. In the same vein as the definition of cross vertices, the

faces in G∗ are called cross faces if there are some cross vertices on them. Otherwise,

they are called normal faces. Particularly, the 4-faces with two non-adjacent cross

vertices in G∗ are called bad 4-faces. For the figures within this paper, the white and

black dots will be used to represent the crossings and vertices of G (unless otherwise

specified). We also use the following additional notation (here, v is a vertex and f

is a face in G∗):

nt4(v): the number of true 4-vertices adjacent to v in G;

nt4(f): the number of true 4-vertices on f ;

n6(f): the number of 6-vertices on f ;

nc(f): the number of cross vertices on f ;

m3c(v): the number of cross 3-faces incident to v;

m4(v): the number of 4-faces incident to v;

m4c(v): the number of cross 4-faces with one cross vertex incident to v;

m4b(v): the number of bad 4-faces incident to v;

NG(v): the neighbors of v in G;

NG∗(v): the neighbors of v in G∗.

3. 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable

Theorem 3.1. 1-planar graphs with girth at least 6 are (1, 1, 1, 1)-colorable.

3.1. Structural properties. LetG be a 1-planar graph, C = {1, 2, 3, 4} be a color

set with four colors and ϕ be a coloring of G, where the color of vertex v is ϕ(v) ∈ C.

Theorem 3.1 is proved by contradiction. Assume that G is a counterexample with the

minimum number of vertices and crossings satisfying that the girth of G is at least 6.

Then G is not (1,1,1,1)-colorable. By the minimality of G, it is apparent that G is

connected, and every subgraph of G with fewer vertices is (1,1,1,1)-colorable. Let G∗

be the associated plane graph of G. The following properties hold.
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Property 3.1. The minimum degree of G satisfies δ(G) > 4.

P r o o f. By contradiction. Let G contain a 3−-vertex v, and let G
′

be obtained

from G by deleting v. Then, by minimality of G, G
′

is (1,1,1,1)-colorable with at

most three colors used at neighbours of v. Hence, by assigning v the color which is not

used in its neighbors, we can extend the (1,1,1,1)-coloring of G
′

to a (1,1,1,1)-coloring

of G, a contradiction. �

Property 3.2. No two 4-vertices are adjacent in G.

P r o o f. Let v be a 4-vertex of G and v1, . . . , v4 be its neighbors. Assume that v1
is a 4-vertex. Consider the subgraph G

′

of G by deleting vertices v and v1, i.e.,

G
′

= G − {v, v1}. By the minimality of G, we can obtain that G
′

has a (1,1,1,1)-

coloring ϕ. Now we will show that the coloring ϕ of G
′

can be extended to

a (1,1,1,1)-coloring of G. First, we assign a color in C to the vertex v1 properly

as v1 is a 4-vertex adjacent to v, and there is at least one color available. Sec-

ondly, if {ϕ(v1), . . . , ϕ(v4)} 6= C, then the color to be assigned to v is ϕ(v) =

C \ {ϕ(v1), . . . , ϕ(v4)}; otherwise, {ϕ(v1), . . . , ϕ(v4)} = C and the vertex v can be

colored with the same color as v1. Then we obtain a (1,1,1,1)-coloring of G, which

is in contradiction to the choice of G. �

Property 3.3. Every 5-vertex is adjacent to at most two 4-vertices in G.

P r o o f. Let v be a 5-vertex and v1, . . . , v5 be the neighbors of v. Assume

that v is adjacent to at least three 4-vertices in G. Without loss of generality,

assume that d(v1) = d(v2) = . . . = d(vi) = 4 (3 6 i 6 5). Consider the sub-

graph G
′

= G − {v, v1, v2, . . . , vi}(3 6 i 6 5). By the minimality of G, G
′

has

(1,1,1,1)-coloring ϕ. Since there are four colors in C and the degree of each vertex

of v1, v2, . . . , vi is four; moreover, all of them are adjacent to vertex v. Hence, the

vertices v1, v2, . . . , vi can be colored properly. To color the vertex v, there are two

cases. More precisely, if {ϕ(v1), ϕ(v2), . . . , ϕ(v5)} 6= C, assign a color to vertex v as

follows: ϕ(v) = C \ {ϕ(v1), . . . , ϕ(v5)}; otherwise, if {ϕ(v1), ϕ(v2), . . . , ϕ(v5)} = C,

then there is exactly one color used twice, we call it color k, we assign one of the

following colors to vertex v in this case: ϕ(v) = {ϕ(v1), . . . , ϕ(vi)} \ {k} (3 6 i 6 5).

It is not difficult to verify that it is a (1,1,1,1)-coloring of G. Therefore, a 5-vertex

cannot be adjacent to more than two 4-vertices in G. �

Property 3.4 ([21], Lemma 3). Let G∗ be the associated plane graph of 1-planar

graph G. Then for any two cross vertices u and v, uv /∈ E(G∗).
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Property 3.5. Let v be a k-vertex in G∗. Then the number of cross 3-faces

adjacent to v satisfies m3c(v) 6 L, where

L =















⌊k

3

⌋

× 2 + 1, k ≡ 2 (mod 3),

⌊k

3

⌋

× 2, otherwise.

Property 3.6. Let v be a true 4-vertex incident to two cross 3-faces and one bad

4-face of G∗, see Figure 1. Then the following properties hold:

(a) The remaining face that v is incident to is a 6+-face.

(b) If v is incident to a 6-face [xv1vv4yux], then [xv1vv4yux] has three cross vertices.

(c) If v is incident to a 7+-face, then this face has at least two cross vertices.

x

z
y

v

v1

v2

v3

v4

x

z

y

v

v1

v2

v3

v4
u

(1) (2)

Figure 1. d(v) = 4, m3c(v) = 2, m4b(v) = 1.

P r o o f. Suppose that v is a true 4-vertex incident to two cross 3-faces [vv1v2],

[vv2v3], and one bad 4-face [vv3zv4], see Figure 1.

(a) Note that the girth of G is at least 6. Hence, x, y are two different vertices

and xy /∈ E(G), otherwise, [xv2zx] is a 3-cycle, or [xv2zyx] is a 4-cycle in G, see

Figure 1 (2). Hence, the face [xv1vv4yux] is a 6
+-face in this case.

(b) If [xv1vv4yux] is a 6-face (see Figure 1 (2)), then u must be a cross vertex of G,

otherwise, [uxv2zyu] is a 5-cycle of G
∗, a contradiction.

(c) If [xv1vv4yux] is a 7
+-face, where v1 and v4 are the cross vertices on it, then

the 7+-face has at least two cross vertices. �

It appears that analogous results hold also for a true 4-vertex incident to two cross

3-faces and one cross 4-face with exactly one cross vertex.

Property 3.7. Let v be a true 4-vertex incident to two cross 3-faces and one

cross 4-face with exactly one cross vertex of G∗, see Figure 2. Then the remaining

face that v is incident to is a 6+-face with at least two cross vertices.
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x

u

y

v

v4

v1

v2

v3

w

Figure 2. d(v) = 4, m3c(v) = 2, m4c(v) = 1.

P r o o f. Suppose that v is a true 4-vertex incident to two cross 3-faces [vv1v2],

[vv3v4] and one cross 4-face with exactly one cross vertex [wv1vv4], see Figure 2.

Then x and y cannot be the same vertex, otherwise, [xv1vv4y] is a 4-cycle of G. More-

over, xy /∈ E(G), otherwise [xv4vv3yx] is a 5-cycle of G. Therefore, [xv2vv3y . . . x] is

a 6+-face with at least two cross vertices v2 and v3 on it. �

Property 3.8. Let v be a 5-vertex. Suppose that v is adjacent to three cross

3-faces [vv1v2], [vv2v3], and [vv4v5], see Figure 3. By the conditions on girth of G,

y and z are different vertices, yz /∈ E(G), xv4 /∈ E(G). Moreover, the following

properties hold:

(a) The face [v1vv5y . . . zv1] is a cross 6
+-face with at least two cross vertices.

(b) If [xv3vv4ux] is a 5-face, then it is a 5-face with two cross vertices.

(c) If [xv3vv4 . . . x] is a 6+-face, then it is a cross 6+-face with at least one cross

vertex.

x

u

y

v

v4

v1

v2
v3

v5

z

Figure 3. d(v) = 5, m3c(v) = 3.

The proof is similar to the proof of Properties 3.6 and 3.7.

3.2. The discharging procedure. We prove Theorem 3.1 by contradiction. As-

sume that G is a 1-planar graph with girth at least 6, which is not (1,1,1,1)-colorable.

Further G∗ is the corresponding planar graph of G which is obtained by turning all

crossings into cross vertices. Then G∗ satisfies Euler’s formula |V (G∗)| − |E(G∗)|+

|F (G∗)| = 2. Moreover, the following relationship holds:
∑

v∈V (G∗)

d(v) =
∑

f∈F (G∗)

d(f) = 2|E(G∗)|.
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Taking now into account the associated plane graph G∗ of the minimal counter-

example G, we define a charge function ω on the vertex and face set of G∗ as follows:

(3.1) ω(x) = d(x) − 4 ∀x ∈ V (G∗) ∪ F (G∗).

From Euler’s formula, one can conclude that the total sum of charges of vertices and

faces is equal to

(3.2)
∑

v∈V (G∗)

(d(v) − 4) +
∑

f∈F (G∗)

(d(f)− 4) = −8.

Then appropriate discharging rules are defined to redistribute these charges in the

way that the total sum of charges keeps fixed during the discharging process. These

rules transform ω to a new charge function ω∗, for which it is shown that ω∗(x) > 0

for every x ∈ V (G∗) ∪ F (G∗). This, however, leads to a contradiction, as

(3.3) −8 =
∑

x∈V (G∗)∪F (G∗)

ω(x) =
∑

x∈V (G∗)∪F (G∗)

ω∗(x) > 0.

Let τ(x → y) denote the charge that sends x to y for any x, y ∈ V (G∗) ∪ F (G∗).

The discharge rules are defined as follows:

(R1) Let f be a cross 3-face, f = [uvw], where w is a cross vertex, u and v are true

vertices. Then τ(u → f)= 1
2 , τ(v → f) = 1

2 .

(R2) Let u, v ∈ V (G), uv ∈ E(G). If d(v) = 4, then τ(u → v) = 1
8 .

(R3) Let f be a face in G∗ and v be a true 4-vertex on f :

(R3.1) If f is a 5-face with two cross vertices, then τ(f → v) = 1
4 .

(R3.2) If f is a 6-face with one cross vertex, then τ(f → v) = 1
4 .

(R3.3) If f is a 6-face with at least two cross vertices, then τ(f → v) = 1
2 .

(R3.4) If f is a cross 7+-face, then τ(f → v) = 1
2 .

(R4) Let f be a face in G∗, v be a 5-vertex on f

(R4.1) If f is a 5-face with two cross vertices, then τ(f → v) = 1
4 .

(R4.2) If f is a 6+-face with one cross vertex, then τ(f → v) = 1
4 .

(R4.3) If f is a 6+-face with at least two cross vertices, then τ(f → v) = 1
2 .

(R5) Let f be a face in G∗, v be a 6-vertex on f :

(R5.1) If f is a 5-face with two cross vertices, then τ(f → v) = 1
4 .

(R5.2) If f is a 6+-face with one cross vertex, then τ(f → v) = 1
4 .

(R5.3) If f is a 6+-face with at least two cross vertices, then τ(f → v) = 3
8 .

In the following, we prove that ω∗(x) > 0 for any x ∈ V (G∗) ∪ F (G∗). Let

v1, v2, . . . , vd(v) be the neighbors of v in G∗ in cyclic order. Note that δ(G∗) > 4

as δ(G) > 4.
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Final charge of vertex in G∗. Now consider the charge function of the vertices

in G∗. Let v be a vertex of G∗. We consider the following cases:

(1) d(v) = 4.

Case 1 : If v is a cross vertex in G∗, then, according to the discharge rules, v is

not involved in discharging rules, so ω∗(v) = ω(v) = 4− 4 = 0.

Case 2 : If v is a true 4-vertex in G∗, v is incident to at most two 3-faces, see

Figure 1 (1). By Property 3.2, the vertices in NG(v) are 5
+-vertices. According to

discharge rule (R2), v can receive 1
8 from each of its adjacent 5

+-vertices. We have

three subcases according to the number of cross 3-faces that v is incident to.

Subcase 2.1 : d(v) = 4, m3c(v) = 2.

Subcase 2.1.1 : If d(v) = 4, m3c(v) = 2, m4(v) = 1, Properties 3.6 and 3.7 give the

details of bad 4-face or cross 4-face with exact one cross vertex that v is incident.

We can conclude that whatever the 4-face is, v can always get 1
2 from the remaining

incident to 6+-face by using discharge rules (R3.3) or (R3.4). By combining with

discharge rules (R1) and (R2), the new charge function satisfies:

ω∗(v) = ω(v) +
1

8
d(v)−

1

2
m3c(v) +

1

2
= 4− 4 +

1

8
× 4−

1

2
× 2 +

1

2
= 0.

x

y

v

v1

v2

v3

v4

(1)

u

y
v

v1

v4

v3

v2

(2)

z

x
u

y

v

v1

v4

v3

v2

(3)

Figure 4. d(v) = 4, m3c(v) = 2, m4(v) = 0.

Subcase 2.1.2 : If d(v) = 4, m3c(v) = 2, m4(v) = 0, see Figure 4. Suppose

that the case shown in Figure 4 (1) happens. Then x, y should be different ver-

tices, xy /∈ E(G∗), and the face [xv1vv2y . . . x] is a 6+-face with at least two cross

vertices. So by discharge rule (R3.3) or (R3.4), v can receive 1
2 from its incident

6+-face [xv1vv2y . . . x]. If the cases shown in Figures 4 (2) and 4 (3) happen, then

the other two faces v incident to are 5+-faces. More precisely, if the face that v is

incident to is a 5-face, it has two cross vertices (see Figure 4 (2)); then by discharging

rule (R3.1), each 5-face with two cross vertices sends 1
4 to v. Otherwise, the face is

a cross 6+-face with at least one cross vertex (see Figure 4 (3)), and by discharging

rules (R3.2), (R3.3), or (R3.4), it will send at least 1
4 to v. Therefore, the new charge
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function satisfies

ω∗(v) > ω(v) +
1

8
d(v)−

1

2
m3c(v) +

1

2
= 4− 4 +

1

8
× 4−

1

2
× 2 +

1

2
= 0.

Subcase 2.2 : d(v) = 4, m3c(v) 6 1. By discharging rules (R1) and (R2), v sends 1
2

to at most one cross 3-face and receives 1
8 from each of its adjacent vertices. So in

this case, it is not necessary to consider received charge from its incident faces, hence

ω∗(v) > ω(v) +
1

8
d(v)−

1

2
m3c(v) > 4− 4 +

1

8
× 4−

1

2
= 0.

(2) d(v) = 5. If v is a vertex of degree 5 in G∗, we can conclude that v is incident

to at most three cross 3-faces (by Property 3.5) and v is adjacent to at most two

true 4-vertices (by Property 3.3), i.e., nt4(v) 6 2. According to the number of cross

3-faces that v is incident to, there are three subcases.

Case 1 : d(v) = 5, m3c(v) = 3. Suppose that v is a 5-vertex incident to three

cross 3-faces, see Figure 3. According to discharge rules (R1) and (R2), v sends 1
2 to

each incident cross 3-face, 1
8 to each adjacent 4-vertex. By discharge rule (R4.3) and

Property 3.8 (a), v can always get 1
2 from cross 6

+-face [v1vv5y . . . zv1]. By discharge

rules (R4.1), (R4.2) and Property 3.8 (b) (c), v can get at least 1
4 from cross 5

+-face

[xv3vv4 . . . x]. Therefore,

ω∗(v) > ω(v)−
1

8
nt4(v) −

1

2
m3c(v) +

1

2
+

1

4
= 5− 4−

1

8
× 2−

1

2
× 3 +

1

2
+

1

4
= 0.

u

w

vv1 v3

v5 v4

v2

(1)

u

v

v1 v3

v5 w

v2

v4

(2)

u

w

v

v1

v5 v4

v2

v3

(3)

v

v1

v3

u

v2

v4

v5

(4)

Figure 5. d(v) = 5, m3c(v) = 2.

Case 2 : d(v) = 5, m3c(v) = 2. All the possibilities are shown in Figure 5. If

the face [uv1vv5 . . . u] in Figure 5 (1), face [uv2vv3 . . . u] in Figure 5 (2) and face

[uv2vv3 . . . u] in Figure 5 (4) are 5-faces, they must be 5-faces with two cross vertices.

Hence, by discharge rule (R4.1), v can get 1
4 from each of the cross 5-faces with

two cross vertices. Otherwise, they are cross 6+-faces with at least one cross vertex.

Hence, by discharge rules (R4.2) and (R4.3), v can get 1
4 from each of them. In
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addition, the face [uv2vv3 . . . wu] in Figure 5 (3) is a 6
+-face with at least two cross

vertices; then v can get 1
2 from this face. Hence, in each of these cases, v can always

get at least 1
4 from its incident cross 5

+-faces. Therefore,

ω∗(v) > ω(v)−
1

8
nt4(v) −

1

2
m3c(v) +

1

4
= 5− 4−

1

8
× 2−

1

2
× 2 +

1

4
= 0.

Case 3 : d(v) = 5, m3c(v) 6 1. In this case, it is not necessary to consider the

charge received from the incident faces. According to discharge rules (R1) and (R2),

we always have

ω∗(v) > ω(v)−
1

8
nt4(v)−

1

2
m3c(v) > 5− 4−

1

8
× 2−

1

2
× 1 =

1

4
> 0.

x

v

y

v3

v1

v6
v5

v4

v2

(1)

x

y

v

v1

v3

v5v6

v4

v2

(2)

v

v1

v3

v5

v6

v4

v2

(3)

v

v1

v3

v5

v6

v4

v2

(4)

Figure 6. d(v) = 6.

(3) d(v) = 6. Assume that v is a 6-vertex in G. Then v is adjacent to at most six

true 4-vertices, i.e., nt4(v) 6 6. Property 3.5 gives that v is incident to at most four

cross 3-faces, see Figure 6 (1).

Case 1 : d(v) = 6, m3c(v) = 4. By observation, it is easy to conclude that x, y are

two different vertices and xy /∈ E(G) in Figure 6 (1). Furthermore, the face

[xv3vv4y . . . x] that v is incident to is a 6+-face with at least two cross vertices v3
and v4. In the same vein, [v1vv6 . . . v1] is a 6

+-face with at least two cross vertices.

According to discharge rules (R1), (R2) or (R5.3), we have that

ω∗(v) > ω(v)−
1

8
nt4(v)−

1

2
m3c(v) +

3

8
× 2 = 6− 4−

1

8
× 6−

1

2
× 4 +

3

4
= 0.

Case 2 : d(v) = 6, m3c(v) = 3. The possible cases are shown in Figure 6 (2) (3) (4).

Suppose that the case in Figure 6 (2) happens, the face [xv3vv4y . . . v3] that v is

incident to is a 6+-face with at least two cross vertices v3 and v4, by discharge

rule (R5.2), v can get 3
8 from it. Suppose that one of the cases in Figure 6 (3) and

Figure 6 (4) happens. Then either [v1vv6 . . . v1] is a 5-face with two cross vertices,
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or a cross 6+-face with at least one cross vertex. By discharge rules (R5.1), (R5.2)

or (R5.3), we can conclude v can always get at least 1
4 from its incident faces. Hence,

ω∗(v) > ω(v)−
1

8
nt4(v) −

1

2
m3c(v) +

1

4
= 6− 4−

1

8
× 6−

1

2
× 3 +

1

4
= 0.

Case 3 : d(v) = 6, m3c(v) 6 2. In this case, there is no need to consider receiving

charge from its incident faces for v. According to discharge rules (R1), (R2) and (R5),

ω∗(v) > ω(v)−
1

8
nt4(v)−

1

2
m3c(v) > 6− 4−

1

8
× 6−

1

2
× 2 =

1

4
> 0.

(4) d(v) = k (k > 7), then nt4(v) 6 k. According to discharge rules (R1) and (R2),

ω∗(v) = ω(v)−
1

8
× nt4(v)−

1

2
m3c(v).

Now if k = 7, then m3c(v) 6 4 and nt4(v) 6 7, yielding

ω∗(v) > 7− 4−
1

8
× 7−

1

2
× 4 =

1

8
> 0.

If k = 8, then m3c(v) 6 5 and nt4(v) 6 8 with

ω∗(v) > 8− 4−
1

8
× 8−

1

2
× 5 =

1

2
> 0.

Finally, if k > 9, then m3c(v) 6 ⌊k
3⌋ × 2 + 1, nt4(v) 6 k and

ω∗(v) > k − 4−
1

8
× k −

1

2
× (⌊

k

3
⌋ × 2 + 1) >

13k − 12× 9

24
> 0.

So far, we have proved that ω∗(v) > 0 for every vertex in G∗. In the following

subsection, we consider the new charge function on the faces in planar graph G∗.

Final charge of faces in G∗. Note that all the 3-faces, 4-faces and 5-faces that

appear in G∗ are cross faces since the girth of G is at least 6. We start from cross

3-face and discuss the classification according to the degree of the face in G∗.

(1) d(f) = 3, f = [uvw]. If d(f) = 3, then by Property 3.4, there is exactly one

cross vertex on f , say u. According to the discharge rule (R1), f receives 1
2 from

each of its true vertices v and w, therefore

ω∗(f) = ω(f) +
1

2
× 2 = 3− 4 + 1 = 0.

(2) d(f) = 4. According to the discharge rules, there is no flow in charge in this

situation, so

ω∗(f) = ω(f) = 4− 4 = 0.
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(3) d(f) = 5. According to Property 3.4, no two cross vertices are adjacent.

Hence, there are at most two cross vertices on f . We have the following two subcases

according to the number of cross vertices on f .

Case 1 : nc(f) = 2 . Then nt4(f) + n5(f) + n6(f) 6 3. According to discharge

rules (R3.1), (R4.1) and (R5.1), f sends 1
4 to each of the true 4-vertices, 5-vertices

and 6-vertices on it. Hence,

ω∗(f) = ω(f)−
1

4
nt4(f)−

1

4
n5(f)−

1

4
n6(f) = 5−4−

1

4
×[nt4(f)+n5(f)+n6(f)]>

1

4
> 0.

Case 2 : nc(f) < 2. By discharge rules, there is no transfer of charge involving f .

Hence,

ω∗(f) = ω(f) = 5− 4 = 1 > 0.

(4) d(f) = 6. Then there are at most three cross vertices on f by Property 3.4.

We discuss the new charge function in the following two subcases:

Case 1 : nc(f) > 2. Then nt4(f) + n5(f) + n6(f) 6 4. According to discharge

rules (R3.3), (R4.3) and (R5.3), f sends 1
2 to each of its true 4-vertices and 5-vertices

and sends 3
8 to each of its 6-vertices. Hence,

ω∗(f) = ω(f)−
1

2
nt4(f)−

1

2
n5(f)−

3

8
n6(f) > 6− 4−

1

2
[nt4(f) + n5(f) + n6(f)]

> 6− 4−
1

2
× 4 = 0.

Case 2 : nc(f) = 1. Then nt4(f) + n5(f) + n6(f) 6 5. According to discharge

rules (R3.2), (R4.2) and (R5.2), f sends 1
4 to each of the true 4-vertices, 5-vertices

and 6-vertices on it. Hence,

ω∗(f) = ω(f)−
1

4
nt4(f)−

1

4
n5(f)−

1

4
n6(f) = 6−4−

1

4
[nt4(f)+n5(f)+n6(f)] >

3

4
> 0.

Case 3 : nc(f) = 0. By discharge rules, there is no flow in charge for f . So

ω∗(f) = ω(f) = 6− 4 = 2 > 0.

(5) d(f) = k(k > 7).

Case 1 : nc(f) > 1. Then nt4(f) + n5(f) + n6(f) 6 k− 1. According to discharge

rules (R3.4), (R4.2), (R4.3), (R5.2) and (R5.3), f sends at most 1
2 to each of true

4-vertices, 5-vertices, 6-vertices on it. Hence,

ω∗(f) > ω(f)−
1

2
nt4(f)−

1

2
n5(f)−

1

2
n6(f) > k − 4−

1

2
[nt4(f) + n5(f) + n6(f)]

>
k

2
−

7

2
> 0.
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Case 2 : nc(f) = 0. According to the discharge rules, the new charge function

satisfies the following inequality:

ω∗(f) = ω(f) = k − 4 > 0.

By now, we have proved that ω∗(f) > 0 for every face in G∗.

The discussion above proves that

∑

x∈V (G∗)∪F (G∗)

ω∗(x) > 0.

This leads to the obvious contradiction

−8 =
∑

x∈V (G∗)∪F (G∗)

ω(x) =
∑

x∈V (G∗)∪F (G∗)

ω∗(x) > 0.

Hence, the counterexample does not exist and the proof of Theorem 3.1 is finished.

�

In general, we believe that the following holds:

Conjecture 3.9. Every 1-planar graph is (2, 2, 2, 0, 0)-colorable.
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