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Abstract. We study the large time behaviour of the solutions of a nonlocal regularisation
of a scalar conservation law. This regularisation is given by a fractional derivative of order
1 + α, with α ∈ (0, 1), which is a Riesz-Feller operator. The nonlinear flux is given by
the locally Lipschitz function |u|q−1u/q for q > 1. We show that in the sub-critical case,
1 < q < 1 + α, the large time behaviour is governed by the unique entropy solution of
the scalar conservation law. Our proof adapts the proofs of the analogous results for the
local case (where the regularisation is the Laplacian) and, more closely, the ones for the
regularisation given by the fractional Laplacian with order larger than one, see L. I. Ignat
and D. Stan (2018). The main difference is that our operator is not symmetric and its
Fourier symbol is not real. We can also adapt the proof and obtain similar results for
general Riesz-Feller operators.

Keywords: large time asymptotic; regularisation of conservation law; Riesz-Feller
operator
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1. Introduction

In this paper, we study the large time asymptotic behaviour of nonnegative solu-

tions to the convection-diffusion equation

(1.1)

{

∂tu(t, x) + |u(t, x)|q−1∂xu(t, x) = ∂xDα[u(t, ·)](x), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
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where u0 ∈ L1(R)∩L∞(R) and q > 1. The operator Dα[·], acting on x, has α ∈ (0, 1)

and is defined by means of

(1.2) Dα[g](x) = dα+1

∫ 0

−∞

g(x+ z)− g(x)

|z|α+1
dz for 0 < α < 1, dα+1 =

1

Γ(−α) .

The operator ∂xDα[·] is of Riesz-Feller type, as we shall see below. The operatorDα[·]
can also be seen as a right Weyl-Marchaud fractional derivative (see [29], [37]) of

order α. The nonlinear flux f(u) = |u|q−1u/q is considered here as a paradigm

locally Lipschitz function.

The equation in (1.1) is a modified Burgers’ equation, and appears in [34] as

a model of viscoelastic waves with α = 1
2 . There are other models of physical

phenomena, where this kind of nonlocal operator appears, such as problems in fluid

dynamics, see for instance the references listed in [3].

The models that motivate our study describe the internal structure of hydraulic

jumps in a shallow water model. The general form being, for C1, C2 > 0,

∂tu+ ∂x(f(u)) = C1∂xD1/3[u] + C2∂
3
xu, t > 0, x ∈ R,

see [24] and [35], where the flux might be u2 or u3 and the dispersive term might or

might not be relevant, depending on the asymptotic regime considered.

Another example where such operators appear (although not as a regularising

term) can be found in [20], where a model for dune formation is presented.

Formally, the study of the large time behaviour can be transferred to a limit

problem by the appropriate scaling; for any λ > 0, let the change of variables be

(1.3) t = λqs, x = λy

and the function be

(1.4) uλ(s, y) := λu(λqs, λy).

Then, if u is a solution of (1.1), uλ satisfies

(1.5)

{

∂suλ + |uλ|q−1∂yuλ = λq−1−α∂yDα[uλ(s, ·)](y), s > 0, y ∈ R,

uλ(0, y) = λu0(λy), y ∈ R.

Observe that when t → ∞, if we keep s of order one, then λ → ∞, and in the
new variables this means that, depending on the sign of the exponent q − 1 − α,

different terms dominate the limit behaviour. According to this heuristic argument,

we can distinguish three different regimes: The sub-critical case 1 < q < 1 + α
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(the conservation law formally dominates), the critical case q = 1 + α (one expects

self-similar behaviour associated to the balance of all terms) and the super-critical

case 1 + α < q (the nonlocal heat equation formally dominates).

In this paper we focus on the sub-critical case for nonnegative solutions, henceforth

we assume that 1 < q < 1 + α. Our main theorem is:

Theorem 1.1. Let 1 < q < 1 + α and 1 6 p < ∞. Given u0 ∈ L∞(R) ∩ L1(R)

with
∫

R
u0(x) dx = M > 0 and u0(x) > 0 for all x ∈ R, then there exists a unique

solution (1.1) with

(i) for p = 1, ∂tu ∈ C((0,∞), L1(R)), u ∈ C((0,∞), Cb(R) ∩ C1(R)) and u ∈
C([0,∞), L1(R)),

(ii) for 1 < p <∞, ∂tu ∈ C((0,∞), Lp(R)) and u ∈ C((0,∞), Lp(R) ∩ Ḣθ,p(R)) for

any 0 < θ < 1 + α+min{α, q − 1}.
Moreover, u satisfies

(1.6) lim
t→∞

t(1−1/p)/q‖u(t, ·)− UM (t, ·)‖Lp(R) = 0,

where UM is the unique entropy solution of

(1.7)

{

∂tUM + ∂x(|UM |q−1UM/q) = 0, t > 0, x ∈ R,

UM (0, x) =Mδ0, x ∈ R.

Here the notation Ḣθ,p(R) is for the homogeneous Sobolev spaces (see e.g., [4]) of

order θ > 0

(1.8) Ḣθ,p(R) := {g ∈ S ′(R) : F−1[|ξ|θF(g)] ∈ Lp(R)}

and F denotes the Fourier transform

(1.9) F(g(x))(ξ) =
1√
2π

∫

R

g(x)e−iξx dx.

We also recall here the definition of entropy solution of (1.7), see [25]:

Definition 1.1. Let UM be a weak solution of (1.7) such that

UM ∈ L∞((0,∞), L1(R)) ∩ L∞((τ,∞) × R) ∀ τ ∈ (0,∞).

Then UM is said to be an entropy solution of (1.7) if and only if the following

inequality holds for every k ∈ R and ϕ ∈ C∞
c ((0,∞)× R) nonnegative:

(1.10)

∫ ∞

0

∫

R

(|UM − k|∂tϕ+ sgn(UM − k)(f(UM )− f(k))∂xϕ) dxdt > 0

with f(u) = |u|q−1u/q, and for any ψ ∈ Cb(R)

(1.11) lim ess
t↓0

∫

R

UM (t, x)ψ(x) dx =Mψ(0).
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We recall that this unique entropy solution is given by the N -wave profile, see [27].

The proof follows the method developed by Kamin and Vázquez in [23], namely

that with the rescaling (1.3)–(1.4), (1.6) is formally equivalent to

(1.12) lim
λ→∞

‖uλ(s0, ·)− UM (s0, ·)‖Lp(R) = 0

for some s0 > 0 fixed. We recall that the local case in R
N for N ∈ N and for all

q > 1 has been analysed by Escobedo, Vázquez and Zuazua, see [17], [18], [19].

The sub-critical case, for the fractional Laplacian as viscous term, in dimension

one has been studied by Ignat and Stan in [22], and these are the results that we

shall adapt. We also mention that Biler, Karch and Woyczyński in [6], [7] study the

critical and super-critical cases for a more general Lévy operator as viscous term,

showing the expected asymptotic behaviour; this being given by the self-similar

solution and by the fractional heat kernel, respectively. This operator is defined

by means of a Fourier multiplier, such that the symbol can be represented by the

Lévy-Khintchine formula in the Fourier variable, see [5], Chapter 1, Theorem 1.

The fractional Laplacian serves as a particular example of such operators. In all

these results the non-negativity of the symbol and the symmetry of the operator are

necessary conditions. Operator (1.2) does not satisfy these conditions.

For completeness, we also consider the case of a general Riesz-Feller operator.

Thus, we show how the analogous to Theorem 1.1 follows if the term ∂xDα[u] is

replaced by the Riesz-Feller operator term Dβ
γ [u] of order β ∈ (1, 2) and skewness γ.

We recall that such an operator can be defined by means of a Fourier multiplier

operator (see, e.g., [28]) and we choose the definition

(1.13) F(Dβ
γ [g])(ξ) = ψβγ (ξ)F(g)(ξ),

where β ∈ (0, 2] and |γ| 6 min{β, 2− β} and the symbol satisfies

(1.14) ψβγ (ξ) = −|ξ|βe−i sgn(ξ)γπ/2.

In particular, we observe that the derivative of (1.2) is of this form with β = 1 + α

and γ = 1 − α, as we explain in the next section. We recall that the definition we

use here for Riesz-Feller operators differs from the usual one: the symbol we obtain

is the complex conjugate of the one with the standard definition. This is simply

because such a definition uses the complex conjugate of (1.9) (up to a scaling factor)

as the Fourier transform.

Finally, we mention that we focus on nonnegative solutions that might be consid-

ered as certain density functions. Results for sign-changing solutions for the local

case and the one regularised by the fractional Laplacian appear in [18], Section 3

and [9], Section 6, respectively.
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The paper is organised as follows. Section 2 contains preliminary results and

is divided into three sections. In the first one, we recall some properties of the

nonlocal operator (1.2) and its derivative. These include some equivalent integral

representations, the computation of their Fourier symbol and the definition and

properties of certain dual operators. In the second part we recall the linear problem

and derive some estimates of the fundamental solutions that will be necessary later.

We end the section be defining mild solutions for problem (1.1) and giving existence

and regularity results for this. We also recall the viscous entropy inequality, and

derive a comparison principle. Most of the results appear in [15] or can be adapted

from [22] with the ingredients given in the previous sections, thus, we shall only

prove whatever does not appear elsewhere.

In Section 3 we derive necessary a priori estimates, namely an Oleinik type entropy

inequality and an energy type estimate. In order to do this we first consider the prob-

lem with a positive initial condition (which makes the nonlinear flux regular, since

positivity is preserved, by the comparison principle). In this case we can show the

desired estimates, which are then preserved in the limit to a nonnegative initial condi-

tion. The proofs are similar to those in [22], we only give the details where necessary.

In Section 4 we prove Theorem 1.1. First, we translate the results of Section 3 into

the rescaled problem (1.5). Additionally, before proving the limit λ → ∞, we have
to take care of the behaviour of uλ for large |y|. With these estimates we prove the
limit (1.12). We finish Section 5 by showing how the proofs generalise to Riesz-Feller

operators.

We recall that we do not give the proofs that are analogous to those given in [22],

the interested reader is also referred to Diez-Izagirre’s PhD thesis, see [14], Chapter 3

for details.

2. Preliminary results

In this section we recast the necessary lemmas that are needed to adapt the results

of [22].

2.1. Derivation and integration by parts rules. In this section we derive

integration by parts rules for (1.2).

First we need the notation for the following operator:

(2.1) Dα[g](x) = −dα+1

∫ ∞

0

g(x+ z)− g(x)

|z|α+1
dz.

Then the following integration by parts follows, see [15].
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Lemma 2.1. Let α ∈ (0, 1), u ∈ C2
b (R) and ϕ ∈ C∞

c (R). Then for all t > 0

∫

R

ϕ(x)∂xDα[u(t, ·)](x) dx =

∫

R

∂xDα[ϕ](x)u(t, x) dx.

We also recall the following representation of the operators, see also [15].

Lemma 2.2 (Integral representations). If α ∈ (0, 1), then for all g ∈ C1
b (R) and

all x ∈ R,

∂xDα[g](x) = dα+2

∫ 0

−∞

g(x+ z)− g(x)− g′(x)z

|z|α+2
dz

and

∂xDα[g](x) = dα+2

∫ ∞

0

g(x+ z)− g(x)− g′(x)z

|z|α+2
dz.

With equation (1.9) we obtain, formally, the Fourier symbol of Dα[·] (see, e.g.,
[31], Chapter 7):

(2.2) F(Dα[g](x))(ξ) = (iξ)αF(g)(ξ),

and that of Dα[·],

(2.3) F(Dα[g](x))(ξ) = −(−iξ)αF(g)(ξ).

In particular, Dα[·] is not of Riesz-Feller type because its symbol has β = α and

γ = 2 − α, but Dα[·] belongs to this class since β = α and γ = α. We also observe

that their symbols satisfy (iξ)α = −(−(−iξ)α), where the bar on the right-hand side

denotes complex conjugation.

We can then conclude that

F(∂xDα[g])(ξ) = (iξ)α+1F(g)(ξ).

We observe, writing

(iξ)α+1 = −|ξ|α+1
(

cos
(

(1 − α)
π

2

)

− i sgn(ξ) sin
(

(1 − α)
π

2

))

,

that ∂xDα[·] is an operator of Riesz-Feller type with β = 1 + α and γ = 1 − α, see

(1.13)–(1.14). Then we also get:

F(∂xDα[g])(ξ) = (−iξ)α+1 F(g)(ξ) for 0 < α < 1.
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With this Fourier representation formulas we can now prove the following integra-

tion by parts rule:

Lemma 2.3. Let 0 < α < 1 and 1
2 < θ1, θ2 < 1 such that 1+α = θ1+θ2. Assume

also that g ∈ H2(R), so that ∂xDα[g],Dθ1 [g],Dθ2 [h] ∈ L2(R), and let h ∈ L2(R).

Then ∫

R

∂xDα[g](x)h(x) dx = −
∫

R

Dθ1 [g](x)Dθ2 [h](x) dx.

P r o o f. Since ∂xDα[g], h ∈ L2(R), then Plancherel’s theorem yields
∫

R

∂xDα[g](x)h(x) dx =

∫

R

(iξ)1+αF(g)(ξ)F(h)(ξ) dξ

= −
∫

R

(iξ)θ1F(g)(ξ)(−(−iξ)θ2)F(h)(ξ) dξ

= −
∫

R

F(Dθ1 [g])(ξ)F(Dθ2 [h])(ξ) dξ

= −
∫

R

Dθ1 [g](x)Dθ2 [h](x) dx

for 1
2 < θ1, θ2 < 1 such that 1 + α = θ1 + θ2. �

We now recall some facts about the fractional Laplacian that we need later to

conclude Lp-regularity of the solution.

There are several equivalent definitions of the fractional Laplacian, see [26]. Here

we consider the one given by the Fourier symbol for 0 < θ < 2, namely,

(2.4) |D|θ[g](x) := (−∆)θ/2[g](x) := F−1(|ξ|θF(g)(ξ))(x).

We observe that applying Plancherel’s theorem ‖|D|θ[g]‖L2(R) = ‖g‖Ḣθ,2(R) and also

(2.5) ‖Dθ[g]‖L2(R) = ‖Dθ[g]‖L2(R) = ‖g‖Ḣθ,2(R) for 0 < θ < 1

since

‖Dθ[g]‖L2(R) = ‖(i·)θF(g)(·)‖L2(R) = ‖| · |θF(g)(·)‖L2(R) = ‖|D|θ[g]‖L2(R).

For comparison purposes, we give an equivalent definition of the fractional Laplacian

of order θ > 1 for functions g ∈ C2
b (R), see [16]:

(2.6) (−∆)θ/2[g] = cθ

∫

R

g(x+ z)− g(x)− g′(x)z

|z|θ+1
dz with θ ∈ (1, 2)

where

cθ =
2θΓ((θ + 1)/2)

π
1/2Γ(−θ/2) .
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2.2. Linear fractional diffusion equation. In this section we recall some re-

sults concerning the linear problem

(2.7)

{

∂tU(t, x)− ∂xDα[U(t, ·)](x) = 0, t > 0, x ∈ R,

U(0, x) = u0(x), x ∈ R.

For initial data u0 ∈ L∞(R) the solution of (2.7) can be represented as

U(t, x) = (K(t, ·) ∗ u0)(x) =
∫

R

K(t, x− y)u0(y) dy

such that the kernel K(t, x) is defined by means of

(2.8) K(t, x) = F−1(e(iξ)
α+1t)(x) ∀ t > 0, x ∈ R,

which can be formally obtained using Fourier transform, see [2] for the proof. Some

pertinent properties of the kernel are derived in [1] and [15]. In particular, we recall

that

(2.9) K(t, x) =
1

t1/(1+α)
K
(

1,
x

t1/(1+α)

)

∀ t > 0, x ∈ R,

where K is nonnegative and K(t, x) ∈ C∞((0,∞) × R). It also preserves mass and

has the semi-group property.

Since the regularity of solutions is established with respect to derivation with the

fractional Laplacian, we need the following estimates:

Lemma 2.4 (Time behaviour of K). For all α, θ ∈ (0, 1) and 1 6 p 6 ∞, K(t, x)

satisfies the following estimates for any t > 0:

‖K(t, ·)‖Lp(R) = Ct−(1−1/p)/(1+α), ‖∂xK(t, ·)‖Lp(R) . t−(1−1/p)/(1+α)−1/(1+α),

‖|D|θ[K(t, ·)]‖Lp(R) . t−(1−1/p)/(1+α)−θ/(1+α),

‖|D|θ[∂xK(t, ·)]‖Lp(R) . t−(1−1/p)/(1+α)−(1+θ)/(1+α)

for a constant C > 0.

P r o o f. The first and second identities follow from (2.9); namely, the mass-

conservation property of K and ∂xK and from their boundedness on (0, T ) × R

for any T > 0.

For the third estimate we first use (2.9), then we rescale the fractional Laplacian:

(2.10) ||D|θ[K(t, ·)](x)| = 1

t1/(1+α)

∣

∣

∣
|D|θ

[

K
(

1,
·

t1/(1+α)

)]

(x)
∣

∣

∣

=
1

t(1+θ)/(1+α)

∣

∣

∣
|D|θ[K(1, ·)]

( x

t1/(1+α)

)∣

∣

∣
.
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Now, when computing the Lp-norm, we apply the change of variableX = x/t1/(1+α):

(2.11)

‖|D|θ[K(t, ·)](x)‖Lp(R) =
1

t(1+θ)/(1+α)

(
∫

R

∣

∣

∣
|D|θ[K(1, ·)]

( x

t1/(1+α)

)∣

∣

∣

p

dx

)1/p

=
1

t(1+θ)/(1+α)
t1/(p(1+α))

(
∫

R

||D|θ[K(1, ·)](X)|p dX
)1/p

.

It only remains to prove that the Lp-norm of |D|θ[K(1, ·)] is finite. In order to show
this, we first observe that using (2.4), the integrand of (2.11) is bounded:

(2.12) ||D|θ[K(1, ·)](X)| = 1√
2π

∣

∣

∣

∣

∫

R

|ξ|θe(iξ)1+α

eiXξ dξ

∣

∣

∣

∣

6
1√
2π

∫

R

|ξ|θe−|ξ|1+α sin(απ/2) dξ <∞.

Next we show that ||D|θ[K(1, ·)(X)|p is integrable for large |X |. We will apply
Lemma 2 of [30], which gives that for large X

∫ ∞

0

e−iXξe−σξ
r

ξθ dξ = O(|X |−1−θ)

with r ∈ (0, 2), θ > 0 and σ such that

(2.13) σ ∈
{

a+ ib ∈ C : − cos
(rπ

2

)

6 a 6 1, |b| 6 − tan
(rπ

2

)}

.

We first write

|D|θ[K(1, ·)](X) =
1√
2π

∫

R

|ξ|θe(iξ)1+α

eiXξ dξ

=
1√
2π

∫

R

|ξ|θe−|ξ|1+α(sin(απ/2)−i sgn(ξ) cos(απ/2))eiXξ dξ

=
1√
2π

∫ ∞

0

ξθe−ξ
1+α(sin(απ/2)−i cos(απ/2))e−i(−X)ξ dξ

+
1√
2π

∫ ∞

0

ξθe−ξ
1+α(sin(απ/2)+i cos(απ/2))e−iXξ dξ.

Note that we have applied the change of variables ξ → −ξ in the second integral.
Then, applying Lemma 2 of [30] in both integral terms, with r = 1 + α, implies

(2.14) ||D|θ[K(1, ·)](X)| . 1

|X |1+θ , |X | ≫ 1.
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Observe that condition (2.13), since θ > 0, is satisfied for, in this case,

σ = sin
(απ

2

)

− i cos
(απ

2

)

.

and its complex conjugate.

Then (2.12) and (2.14) imply |D|θ[K(1, ·)](X) ∈ Lp(R) for p > 1, which together

with (2.11) implies the third estimate.

Finally, the fourth estimate is obtained in a similar way. The main difference is

that we have to differentiate the kernel first, which gives a factor iξ in the integrand,

but we can still apply Lemma 2 of [30] to get

||D|θ[∂XK(1, ·)](X)| = 1√
2π

∣

∣

∣

∣

∫

R

|ξ|θ(iξ)e(iξ)1+α

eiXξ dξ

∣

∣

∣

∣

.
1

|X |2+θ for |X | ≫ 1.

Then, with this and (2.9), we can argue as for (2.10) to conclude the proof. �

2.3. Mild formulation, existence and regularity results. We now define the

mild formulation associated to (1.1):

Definition 2.1 (Mild solution). Given T ∈ (0,∞] and u0 ∈ L∞(R), we say that

a mild solution of (1.1) on (0, T )×R is a function u ∈ Cb((0, T )×R) which satisfies

(2.15) u(t, x) = K(t, ·) ∗ u0(x) −
∫ t

0

∂xK(t− s, ·) ∗ f(u(s, ·))(x) ds

in a.e. (t, x) ∈ (0, T )× R, where f(u) = |u|q−1u/q with q > 1.

Regarding existence and uniqueness of mild solutions, we have the following:

Theorem 2.1 (Existence and uniqueness). Let u0 ∈ L∞(R). Then there ex-

ists a unique global mild solution u to the initial value problem (1.1) with u ∈
C((0,∞), C1(R)) ∩ Cb((0,∞)× R) and such that

(2.16) ess inf{u0} 6 u(t, x) 6 ess sup{u0}, t > 0, x ∈ R.

If u0 ∈ L∞(R) ∩ L1(R), then also u ∈ C([0,∞), L1(R)) and

(2.17) ‖u(t, ·)‖L1(R) 6 ‖u0‖L1(R) ∀ t > 0.
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P r o o f. The existence and uniqueness result, the upper bound of (2.16) and (2.17)

have already been proved in [15] for a regular flux function. We observe that in order

to obtain existence and regularity, we can proceed as in [15], Propositions 4–5, but

since the flux function is only continuous with bounded first derivative, we can only

apply two steps of the argument. This means that we can only gain C1 regularity

in x and continuity for t ∈ (0, T ) for any T > 0, thus u ∈ C((0, T ), C1
b (R)).

Now, in order to prove global existence, uniqueness and regularity as well as the

upper bound analogous to the one in (2.16), we first regularise the flux function

(to at least a C2 function) and apply the results in the previous reference. The

lower bound analogous to the one in (2.16) is proved by following the proof of [15],

Lemma 3, Proposition 6 while changing the role of the supremum and the infimum.

Then we have to pass to the limit to get the results for the original flux.

We define the function fδ by means of

(2.18) fδ(v) := (δ2 + v2)(q−1)/2 (v + δ)

q
.

Notice that the function fδ is C
2 for δ > 0 and converges to f(v) = |v|q−1v/q with

|fδ(v)− f(v)| 6 δC|v|q−1 as δ → 0, for a positive constant C.

Let uδ be the solution of

(2.19)

{

∂tuδ(t, x) + ∂x(fδ(uδ(t, x))) = ∂xDα[uδ(t, ·)](x), t > 0, x ∈ R,

uδ(0, x) = u0(x), x ∈ R.

As a consequence, we obtain the global existence in time for (2.19). Therefore,

by continuity in t > 0 and the uniqueness result we can extend the solution for

t ∈ (0,∞) and it satisfies ess inf u0 6 uδ(t, x) 6 ess supu0 for all (t, x) ∈ (0,∞)× R.

Now, we extend the result of (2.19) to (1.1). First, we prove that for any T > 0,

uδ converges uniformly to u as δ → 0 in (t, x) ∈ (0, T )×R, where u is a mild solution

of (1.1). We compute:

‖uδ(t, ·)− u(t, ·)‖L∞(R)

=

∥

∥

∥

∥

∫ t

0

∂xK(t− s, ·) ∗ (fδ(uδ)− f(u))(x) ds

∥

∥

∥

∥

L∞(R)

6

∫ t

0

‖∂xK(t− s, ·)‖L1(R)‖fδ(uδ(s, ·))− f(u(s, ·))‖L∞(R) ds

6 C

∫ t

0

(t− s)−1/(1+α)‖fδ(uδ(s, ·)) − f(uδ(s, ·))‖L∞(R) ds

+ C

∫ t

0

(t− s)−1/(1+α)‖f(uδ(s, ·)) − f(u(s, ·))‖L∞(R) ds

= δC(‖u0‖∞)tα/(1+α) + C(T )

∫ t

0

(t− s)−1/(1+α)‖uδ(s, ·)− u(s, ·)‖L∞(R) ds,
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where the constant C(T ) depends linearly on sup
t∈(0,T ]

‖u(t, ·)‖∞, which is finite for

all T , see [15]. Here we have used the second estimate with p = 1 of Lemma 2.4, the

convergence fδ → f as δ → 0 and the local Lipschitz continuity of f .

Since 1+α > 1, we can apply the fractional Gronwall Lemma (see [8], Lemma 2.4)

to obtain that for any T > 0 and δ > 0 there exists a positive constant C(T ) such that

‖uδ(t, ·)− u(t, ·)‖L∞(R) 6 δC(T ) ∀ t ∈ [0, T ].

In particular, this implies that uδ converges uniformly on compact sets of t and

point-wise (since u ∈ C((0, T ), C1(R)). Thus, we can conclude the global existence

of u and (2.16).

Finally, (2.17) follows as in [15], Theorem 2. �

As a corollary we obtain positivity of the solutions for positive initial conditions:

Corollary 2.1. Let u0 ∈ L∞(R) with u0(x) > ε > 0, then the unique mild

solution of (1.1) satisfies

(2.20) ε 6 u(t, x) 6 ‖u0‖∞ ∀ t > 0, x ∈ R.

Moreover, u ∈ C∞
b ((0,∞)× R).

P r o o f. Estimate (2.20) is a direct consequence of (2.16).

Since now u is positive, it means that |u| = u, so the flux is f(u) = uq/q and

belongs to C∞([ε, ‖u0‖∞]). This implies that then u ∈ C∞
b ((0,∞)×R), see [15]. �

We now give some Lp-regularity of the mild solution.

Proposition 2.1 (Lp-regularity). Let 1 < p < ∞ and u be the unique mild

solution of (1.1) with u0 ∈ L∞(R) ∩ L1(R). Then ∂tu ∈ C((0,∞), Lp(R)) and

u ∈ C((0,∞), Lp(R) ∩ Ḣθ,p(R)) for any θ < 1 + α+min{α, q − 1}.

The proof is based on applying the fractional Laplacian to the mild formula-

tion (2.15) followed by the bootstrap argument used in [22], Proposition 3.1. We use

the fractional Laplacian to study regularity, because we can readily apply the chain

and product rules available from [21], Theorem 3, Corollary of Theorem 5, [10],

Proposition 3.1 and [36], Proposition A.1. This is also the reason why we need

Lemma 2.4 (the estimates needed to gain regularity by applying fractional deriva-

tives on the kernel are obtained by convenience applying the fractional Laplacian

instead of (1.2)). With this ingredients one can just mimic the proof given in [22].

Finally, we give another auxiliary result that we will need later on. Namely, the

mild solution of (1.1) satisfies a weak entropy inequality for the Kružkov’s entropies,

see [15], Theorem 1:
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Theorem 2.2 (Weak viscous entropy inequality). For all k ∈ R, let ηk(v) =

|v−k| ∈ C(R) be a convex entropy function and u ∈ C((0,∞), C1(R))∩Cb((0,∞)×R)

a solution of (1.1). Then for all non-negative ϕ ∈ C∞
c ((0,∞)× R)

(2.21)

∫ ∞

0

∫

R

(|u(t, x)− k|∂tϕ+ sgn(u(t, x)− k)(f(u(t, x)) − f(k))∂xϕ

+ |u(t, x)− k|∂xDα[ϕ(t, ·)](x)) dxdt > 0,

where f(u) = |u|q−1u/q.

We remark that the proof of this result is as in [15], but for the problem with

the regularised flux (2.18), as above. The proof is completed by passing to the limit

δ → 0. We omit the details here.

3. Oleinik type inequality for nonnegative solutions

In this section we derive an Oleinik type inequality. We prove it for nonnegative

solutions by first deriving the inequality for positive ones (for which the flux is

regular).

Let u0 ∈ L∞(R) be nonnegative, then we consider the following approximating

problem:

(3.1)

{

∂tuε(t, x) + (uε)
q−1∂xuε(t, x) = ∂xDα[uε(t, ·)](x), t > 0, x ∈ R,

uε(0, x) = u0(x) + ε, x ∈ R.

The existence and uniqueness of this problem is guaranteed by Theorem 2.1 and

Corollary 2.1 implies that uε(x, t) > 0 for all (x, t). Then the following holds:

Lemma 3.1. Let u(t, x) be the solution of (1.1) with 0 6 u0 ∈ L∞(R) and let

uε(t, x) be the solution of (3.1). Then for every T > 0,

max
t∈[0,T ]

‖uε(t, ·)− u(t, ·)‖L∞(R) → 0 as ε→ 0.

The proof is analogous to that in [22], we do not prove it here. It is based on the

comparison of the mild solutions in norm and on the application of the fractional

Gronwall Lemma [8].

We can now obtain an Oleinik type entropy inequality.

Proposition 3.1 (Oleinik entropy inequality). Let u0 ∈ L∞(R). Then for any

ε > 0, the solution uε of (3.1) satisfies

∂x(u
q−1
ε (t, x)) 6

1

t
∀ t > 0, x ∈ R.
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The proof is analogous to that in [22]; we briefly give the idea here since this

proposition is key to the proof of Theorem 1.1: First, one writes the equation for

w = (uq−1
ε )x as

(3.2) wt + w2 + uq−1
ε wx +N(w, ue) = 0,

whereN is the resulting nonlinear and nonlocal term, and shows thatW = sup
x∈R

w(·, x)
satisfies

W ′(t) +W 2(t) +Q(t)W (t) 6 0, Q(t) > 0,

which, by ODEs arguments, implies the result. The estimates of the nonlocal term

of (3.2) can be adapted from the proof in [22]. This requires splitting the integral,

using the representation (2.6), near zero and away from zero, but this can be done

similarly using the integral representations of Lemma 2.2 in our case.

We can show properties of the family uε to the solution of (1.1) by taking the limit

ε→ 0. Namely:

Lemma 3.2. Let u be the solution of problem (1.1) with non-negative initial data

u0 ∈ L∞(R) ∩ L1(R). Then the following estimates hold:

(i) (Mass conservation)
∫

R
u(t, x) dx = M for all t > 0, where M is defined as

M =
∫

R
u0(x) dx.

(ii) (Oleinik entropy condition) ∂x(u
q−1(t, x)) 6 1/t for all t > 0 in a weak distri-

butional sense.

(iii) (Upper bound) 0 6 u(t, x) 6 (qM/(q − 1))1/qt−1/q for all t > 0 and x ∈ R.

(iv) (Decay in Lp-norm) for 1 6 p 6 ∞,

‖u(t, ·)‖Lp(R) 6
( q

q − 1

)(p−1)/(pq)

M (p−1)/pq+1/pt−(1−1/p)/q ∀ t > 0.

(v) (Decay of the spatial derivative) ∂xu(t, x) 6 C(q)M (2−q)/qt−2/q for all t > 0

and a.e. x ∈ R.

(vi) (W 1,1
loc (R) estimate) For any R > 0,

∫

|x|<R

|∂xu(t, x)| dx 6 2RC(q)M (2−q)/qt−2/q + 2
( q

q − 1
M

)1/q

t−1/q ∀ t > 0.

(vii) (Energy estimate) For every 0 < τ < T ,

∫ T

τ

∫

R

|D(α+1)/2[u(t, ·)](x)|2 dxdt 6 1

2

( q

q − 1

)1/q

τ−1/qM (q+1)/q.
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P r o o f. The proof of (i) is as in [22].

We recall the proof of (ii): First we recall that u ∈ C((0,∞), Lp(R)∩ Ḣθ,p(R)) for

any θ < 1 + α + min{α, q − 1} and uε ∈ C∞
b ((0,∞) × R), then using Lemma 3.1,

uε → u as ε→ 0 point-wise for all t > 0 and x ∈ R. As a result, (ii) holds by taking

the limit ε → 0 and Proposition 3.1. With this, one can again proceed as in [22] to

conclude (iii) and (iv). The proofs of (v) and (vi) follow as in [22] too, they do not

depend on the form of the nonlocal operator.

We now prove (vii). First, we multiply (1.1) by u and get the following identity,

after integrating with respect to x:

1

2

d

dt

∫

R

u2 dx−
∫

R

u∂xDα[u](x) dx = 0.

We observe that using integration by parts

−
∫

R

u∂xDα[u](x) dx =

∫

R

∂xuDα[u](x) dx > 0,

the last inequality is shown in [12], Lemma 2.2. Then, proceeding as in the proof of

Lemma 2.3 with θ1 = θ2, using (2.2)–(2.3) with α replaced by
1
2 (α+ 1), we have

0 6 −
∫

R

u∂xDα[u](x) dx =

∫

R

(iξ)F(u)(ξ)(iξ)αF(u)(ξ) dξ

=

∣

∣

∣

∣

∫

R

(−1)(1+α)/2+1(iξ)(1+α)/2(−iξ)(1+α)/2F(u)(ξ)F(u)(ξ) dξ

∣

∣

∣

∣

=

∫

R

(iξ)(1+α)/2F(u)(ξ)(iξ)(1+α)/2F(u)(ξ) dξ.

Applying again Plancherel’s theorem we finally have

(3.3)
1

2

d

dt

∫

R

u2(t, x) dx+

∫

R

|D(α+1)/2[u(t, ·)](x)|2 dx = 0.

The conditions for Plancherel’s theorem to be applied follow from (iv) and Proposi-

tion 2.1.

Finally, we integrate (3.3) over (τ, T ) for some τ > 0 to get

1

2

∫

R

u2(T, x) dx− 1

2

∫

R

u2(τ, x) dx+

∫ T

τ

∫

R

|D(α+1)/2[u(t, ·)](x)|2 dxdt = 0.

Then, (vii) follows taking into account that the first term is nonnegative and apply-

ing (iv) for p = 2. �
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4. Asymptotic behaviour

In this section we prove Theorem 1.1. As we have mentioned, this is equivalent

to proving limit (1.12) for some fixed s. Henceforth, we consider for λ > 1, uλ be

defined by means of (1.3)–(1.4). We follow the proof in [22], we use Lemma 3.2

(translated to uλ) and the following lemma:

Lemma 4.1 (Tail control estimate). Let λ > 1 and uλ be the solution of (1.5)

with 0 6 u0 ∈ L∞(R)∩L1(R). Then for any λ > 1 and R > 0, there exists a constant

C(M, q) > 0 such that

∫

|y|>2R

uλ(s, y) dy 6

∫

|y|>R

u0(y) dy + C(M, q)
(sλq−1−α

Rα+1
+
s1/q

R

)

∀ s > 0.

Noticing that Dα[uλ(s, ·)](y) = λα+1Dα[u(λqs, ·)](λy) and the same scaling works
for ∂yDα[·], we can just follow [22] to conclude the result.
P r o o f of Theorem 1.1. The existence and the regularity item (i) and (ii) follow

from Theorem 2.1 and Proposition 2.1. It remains to show the large time behaviour.

First, we show that (1.6) and (1.12) are equivalent. Without loss of generality we

consider s0 = 1, applying the scaling (1.3)–(1.4), and observing that (1.7) is invariant

under the rescaling, we get that for any λ > 1,

uλ(1, y)− UM (1, y) = t1/q(u(t, x)− UM (t, x)).

And performing the change of variables in the integral, we finally get

‖uλ(1, y)− UM (1, y)‖Lp(R) = t(1−1/p)/q‖u(t, x)− UM (t, x)‖Lp(R).

Let us then prove (1.12). We divide the proof into several steps. Let us first show

the convergence of a sub-sequence of {uλ}λ>1. Using Theorem 5 of [33] we shall get

that {uλ}λ>1 is relatively compact in C([s1, s2], L
2
loc(R)) for any 0 < s1 < s2 <∞.

We let BR = (−R,R) and we apply Theorem 5 of [33], to the triple W 1,1(BR) →֒
L2(BR) →֒ H−1(BR). Observe that (i) and (iii) in Lemma 3.2 imply that {uλ}λ>1

is uniformly bounded in L∞((s1, s2), W
1,1(BR)), and this gives the first condition

of this theorem. Then by [33], Lemma 4 we can conclude that

(4.1) ‖uλ(s+h, ·)−uλ(s, ·)‖L∞((0,T−h),H−1(BR)) → 0 as h→ 0 uniformly for λ > 1

provided that {∂suλ}λ>1 is uniformly bounded in L
p((s1, s2), H

−1(BR)) for some

p < ∞. Let us show this with p = 2. First, let us choose ϕ ∈ Cc((0,∞)× BR) and
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extend it by zero outside BR. For such ϕ and λ > 1 we have

(4.2)
∣

∣

∣

∣

∫ s2

s1

∫

R

(∂suλ)ϕdy ds

∣

∣

∣

∣

6

∣

∣

∣

∣

∫ s2

s1

∫

R

∂y(uλ)
qϕdy ds

∣

∣

∣

∣

+ λq−1−α

∣

∣

∣

∣

∫ s2

s1

∫

R

∂yDα[uλ]ϕdy ds

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ s2

s1

∫

R

uqλ∂yϕdy ds

∣

∣

∣

∣

+ λq−1−α

∣

∣

∣

∣

∫ s2

s1

∫

R

D(1+α)/2[uλ]D(1+α)/2[ϕ] dy ds

∣

∣

∣

∣

6 ‖uqλ‖L2((s1,s2),L2(R))‖ϕ‖L2((s1,s2),H1(R))

+ λ(q−1−α)/2

(

λq−1−α

∫ s2

s1

∫

R

|D(1+α)/2[uλ]|2 dy ds
)1/2

×
(
∫ s2

s1

∫

R

|D(1+α)/2[ϕ]|2 dy ds
)1/2

6 C′(M, q, s1, s2)‖ϕ‖L2((s1,s2),H1(R))

+ λ(q−1−α)/2 1√
2

( q

q − 1

)1/(2q)

M (1+q)/(2q)s
−1/(2q)
1 ‖ϕ‖L2((s1,s2),Ḣ(1+α)/2(R))

6 C(M, q, s1, s2)‖ϕ‖L2((s1,s2),H1(R)).

Here, we have applied Lemma 2.3 in the second inequality and the energy estimate

Lemma 3.2 (iv), as well as (2.5). All these steps can be performed since conservation

of mass and the regularity of u is transferred to uλ (see Proposition 2.1, in particular)

and by the choice of ϕ. Now, the Riesz representation theorem, see [13], Chapter IV

Corollary 4 and (4.2) imply that

‖∂suλ‖L2((s1,s2),H−1(BR)) 6 C(M, q, s1, s2) ∀λ > 1,

and we can conclude (4.1). Hence, we can apply Theorem 5 of [33], this means that

{uλ}λ>1 is relatively compact in C([s1, s2], L
2(BR)).

As a consequence, there exists u∞ ∈ C([s1, s2], L
2(BR)) such that, up to a sub-

sequence, uλ → u∞ as λ → ∞ in C([s1, s2], L
2(BR)). By a diagonal argument we

can conclude the convergence for any compact set and therefore,

(4.3) uλ −→ u∞ as λ→ ∞ in C([s1, s2], L2
loc(R)).

We observe that (4.3) implies also that uλ → u∞ in C([s1, s2], L
1
loc(R)). In order to

extend this convergence to C([s1, s2], L
1(R)), we use Lemma 4.1, see [22]. Hence,

uλ −→ u∞ as λ→ ∞ in C([s1, s2], L1(R)).
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The next step is to prove that u∞ = UM , i.e., that it satisfies Definition 1.1. First,

we recall that u satisfies (2.21) of Theorem 2.2. Therefore, uλ satisfies the following

inequality for any nonnegative ϕ ∈ C∞
c ((0,∞)× R), using Lemma 2.2:

(4.4)

∫ ∞

0

∫

R

(

|uλ − k|∂sϕ+
1

q
sgn(uλ − k)((uλ)

q − kq)∂yϕ

+ λq−1−α∂yDα[|uλ − k|](y)ϕ
)

dy ds > 0.

In what follows we pass to the limit λ → ∞ in (4.4). We prove that the last term
tends to zero as λ→ ∞. We split this integral term into two as follows, given r > 0:

∫ ∞

0

∫

R

∂yDα[|uλ − k|](y)ϕ(s, y) dy ds

= dα+2

∫ ∞

0

∫

R

∫ −r

−∞

|uλ(s, y + z)− k| − |uλ(s, y)− k| − ∂y(|uλ − k|)z
|z|α+2

ϕ(s, y) dz dy ds

+ dα+2

∫ ∞

0

∫

R

|uλ(s, y)− k|
∫ r

0

ϕ(s, y + z)− ϕ(s, y)− ∂yϕz

|z|α+2
dz dy ds.

The second integral term has been obtained by using Fubini’s theorem, integration

by parts in y in the third term, and the pertinent changes of variables.

Following the ideas of [22], we bound the first and second integral terms applying

the regularity of ϕ and the non-negativity and conservation of mass of uλ. Then,

this means that the last term on the left-hand side of (4.4) goes to zero as λ→ ∞.
Since uλ → u∞ in C((0,∞), L1(R)), we can pass to the limit in property (i) of

Lemma 3.2, so that
∫

R
u∞(s, y) dy = M . Moreover, uλ → u∞ a.e. in (0,∞) × R,

which shows that property (ii) of Lemma 3.2 with p = ∞ is transferred to u∞:

‖u∞(s, ·)‖L∞(R) 6 C(M)s−1/q.

This last inequality is sufficient to prove that (uλ)
q → (u∞)q as λ → ∞ in

C((0,∞), L1(R)) and, therefore, passage to the limit λ → ∞ in (4.4) gives

Definition 1.1–(1.10) (with UM replaced by u∞) for every constant k ∈ R and

ϕ ∈ C∞
c ((0,∞)× R), ϕ > 0.

Finally, we have to check that u∞ satisfies Definition 1.1, (1.11) for any ψ ∈ Cb(R).

First, one proves it for any ψ ∈ C2
b (R), which, by density, can be generalised to

ψ ∈ H2(R). Finally, the result with ψ ∈ Cb(R) follows by an approximation argument

and Lemma 3.2.

Thus, we have shown that u∞ satisfies Definition 1.1. Since (1.7) has a unique

entropy solution UM , then {uλ}λ>1 converges to UM in C([s1, s2], L
1(R)) as λ→ ∞.

In order to finish the proof, one has to extend this convergence to Lp(R) with

1 < p <∞. This follows by interpolation as in [22]. �
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5. Regularisation by a general Riesz-Feller operator

In this section, we focus on showing how to generalise the previous results of

Sections 2, 3 and 4 for the problem

(5.1)

{

∂tu(t, x) + |u(t, x)|q−1∂x(u(t, x)) = Dβ
γ [u(t, ·)](x), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

where the diffusion is given by a general Riesz-Feller operator (1.13)–(1.14). Here β

and γ satisfy the assumptions of such definition and u0 ∈ L∞(R) ∩ L1(R).

We use the following formulation of the nonlocal operator, given in [2], Proposi-

tion 2.3 (or see [11], [28], [32]): for any 0 < β < 2 and |γ| 6 min{β, 2− β},

Dβ
γ [g](x) = c1γ

∫ ∞

0

g(x− z)− g(x) + g′(x)z

z1+β
dz+ c2γ

∫ ∞

0

g(x+ z)− g(x)− g′(x)z

z1+β
dz

for 1 < β < 2, where (see e.g., [28])

c1γ =
Γ(1 + β)

π

sin
(

(β − γ)
π

2

)

and c2γ =
Γ(1 + β)

π

sin
(

(β + γ)
π

2

)

,

in particular, c1γ + c2γ > 0.

Using Lemma 2.2 it is easy to show that

(5.2) Dβ
γ [g](x) =

1

dβ+1
(c1γ∂xDβ−1[g](x) + c2γ∂xDβ−1[g](x)).

Existence and regularity results for (5.1) are proved similarly by defining mild

solutions as in Definition 2.1 with the kernel

(5.3) Kβ
γ (t, x) := F−1(etψ

β
γ (ξ))(x).

These steps have already been explained in [15], Section 6. This is because Kβ
γ

satisfies similar properties as K does, the proofs are given in e.g., [2], Lemma 2.1.

Thus, we can say that Theorem 2.1 and Corollary 2.1 hold unchanged for (5.1).

In order to generalise Proposition 2.1 for (5.1), we need the following lemma

(analogous to Lemma 2.4):

Lemma 5.1 (Time behaviour of Kβ
γ ). For all θ ∈ (0, 1) and 1 6 p 6 ∞, the

kernel Kβ
γ (t, x), such that β ∈ (1, 2) and |γ| 6 min{β, 2 − β}, satisfies the following

estimates for any t > 0:

‖Kβ
γ (t, ·)‖Lp(R) = Ct−(1−1/p)/β, ‖∂xKβ

γ (t, ·)‖Lp(R) . t−(1−1/p)/β−1/β ,

‖|D|θ[Kβ
γ (t, ·)]‖Lp(R) . t−(1−1/p)/β−θ/β,

‖|D|θ[∂xKβ
γ (t, ·)]‖Lp(R) . t−(1−1/p)/β−(1+θ)/β

for a constant C > 0.
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P r o o f. The properties of (5.3), analogous to the ones for (2.8), are given in [2],

Lemma 2.1, and combining the self-similarity, the mass conservation of (5.3) and its

derivative, and the fact that these are bounded on (0, T ) × R for any T > 0, we

conclude the first and second estimates.

For the third estimate, we apply the self-similarity property of Kβ
γ and rescale

as follows:

(5.4)

||D|θ[Kβ
γ (t, ·)](x)| =

1

t1/β

∣

∣

∣
|D|θ

[

Kβ
γ

(

1,
·

t1/β

)]

(x)
∣

∣

∣
=

1

t(1+θ)/β

∣

∣

∣
|D|θ[Kβ

γ (1, ·)]
( x

t1/β

)∣

∣

∣
.

If the Lp-norm of (5.4) is finite, we get, applying the change of variable X = x/t1/β ,

the desired estimate:

‖|D|θ[Kβ
γ (t, ·)](x)‖Lp(R) =

1

t(1+θ)/β
t1/(pβ)

(
∫

R

||D|θ[Kβ
γ (1, ·)](X)|p dX

)1/p

. t−(1−1/p)/β−θ/β.

Thus, it remains to show that the Lp-norm is finite. One gets the boundedness of

the integrand using definition (2.4):

(5.5) ||D|θ[Kβ
γ (1, ·)](X)| = 1√

2π

∣

∣

∣

∣

∫

R

|ξ|θe−|ξ|βei sgn(ξ)γπ/2

eiXξ dξ

∣

∣

∣

∣

6
1√
2π

∫

R

|ξ|θe−|ξ|β cos(γπ/2) dξ <∞,

where |γ| 6 2−β < 1, which implies that cos(12γπ) > 0. Hence, in order to conclude,

it is sufficient to control the behaviour for large |X |. Starting from (5.5), we write

|D|θ[Kβ
γ (1, ·)](X) =

1√
2π

∫

R

|ξ|θe−|ξ|βei sgn(ξ)γπ/2

eiXξ dξ

=
1√
2π

∫

R

|ξ|θe−|ξ|β(cos(γπ/2)+i sgn(ξ) sin(γπ/2))eiXξ dξ

=
1√
2π

∫ ∞

0

ξθe−ξ
β(cos(γπ/2)+i sin(γπ/2))e−i(−X)ξ dξ

+
1√
2π

∫ ∞

0

ξθe−ξ
β(cos(γπ/2)−i sin(γπ/2))e−iXξ dξ.

Now, let

σ = cos
(γπ

2

)

+ i sin
(γπ

2

)

.

Now we apply [30], Lemma 2, which implies

(5.6) ||D|θ[Kβ
γ (1, ·)](X)| . 1

|X |1+θ , |X | ≫ 1.
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Since θ > 0, we can apply the lemma if the condition

σ, σ ∈
{

a+ ib ∈ C : − cos
(βπ

2

)

6 a 6 1, |b| 6 − tan
(βπ

2

)}

is satisfied. This holds since

|γ| 6 min{β, 2− β} ⇒ γπ

2
∈
(

− (2− β)π

2
,
(2− β)π

2

)

⊂
(

−π

2
,

π

2

)

and this implies that if σ = a+ ib,

cos
( (2− β)π

2

)

= − cos
(βπ

2

)

6 a = cos
(γπ

2

)

6 1

and the imaginary part satisfies

|b| =
∣

∣

∣
sin

(γπ

2

)∣

∣

∣
6 sin

( (2− β)π

2

)

6 tan
((2− β)π

2

)

= − tan
(βπ

2

)

.

As a result of (5.5) and the previous behaviour given in (5.6), we conclude that

|D|θ[Kβ
γ (1, ·)](X) ∈ Lp(R) for any 1 6 p 6 ∞.

Finally, the fourth estimate follows similarly. We leave the details to the reader. �

Now with Lemma 5.1, we can proceed as in the proof of [22], Proposition 3.1 to

obtain Proposition 2.1 for (5.1).

In order to conclude the corresponding weak viscous entropy inequality, similarly

to Theorem 2.2 and the Oleinik type of inequality and all other a priori estimates,

similarly to Proposition 3.1 and Lemma 3.2, for positive solutions, we need the

following lemma:

Lemma 5.2 (Partial integration by parts and energy estimate). Let β ∈ (1, 2)

and |γ| 6 min{β, 2− β}. Then:
(i) For functions g and h such that Dβ

γ [g],Dθ1 [g], h,Dθ2 [h] ∈ L2(R),

∫

R

Dβ
γ [g](x)h(x) dx = − 1

dβ+1
(c1γ + c2γ)

∫

R

Dθ1 [g](x)Dθ2 [h](x) dx,

where 1
2 < θ1, θ2 < 1 and β = θ1 + θ2.

(ii) Moreover, for 1 < β < 2 and g, Dβ
γ [g] ∈ L2(R) ∩C2

b (R), we have

−
∫

R

g(x)Dβ
γ [g](x) dx > 0.

1077



P r o o f. We note that Lemma 2.3 has easy generalisation
∫

R

∂xDβ−1[g](x)h(x) dx = −
∫

R

Dθ1 [g](x)Dθ2 [h](x) dx

for 1
2 < θ1, θ2 < 1 with β = θ1 + θ2. This and Lemma 2.3 with α = β− 1 implies (i),

using representation (5.2).

In order to show (ii), we again use representation (5.2) and Lemma 2.1. This gives
∫

R

gDβ
γ [g](x) dx =

1

dβ+1

(

c1γ

∫

R

g∂xDβ−1[g](x) dx+ c2γ

∫

R

g∂xDβ−1[g](x) dx

)

=
1

dβ+1
(c1γ + c2γ)

∫

R

g∂xDβ−1[g](x) dx 6 0,

where the last inequality is proved as in e.g., [12]. �

Part (i) of the above lemma allows to prove a weak entropy inequality, namely
∫ ∞

0

∫

R

(

|u(t, x)− k|∂tϕ+
1

q
sgn(u(t, x)− k)(|u(t, x)|q−1u(t, x)− |k|q−1k)∂xϕ

+|u(t, x)− k|Dβ
γ [ϕ(t, ·)](x)

)

dxdt > 0,

where, as we have defined also in [15],

Dβ
γ [g](x) =

1

dβ+1
(c1γ∂xDβ−1[g](x) + c2γ∂xDβ−1[g](x)).

We observe that the above lemma is necessary to conclude the analogous of

Lemma 3.2, in particular, property (vii). Indeed, we need an energy estimate similar

to (3.3). Let us briefly indicate how this is obtained. First, we multiply the equation

by u and integrate by parts:

1

2

d

dt

∫

R

u2 dx−
∫

R

uDβ
γ [u](x) dx = 0.

Now, using (i) above, we obtain the energy type of identity:

1

2

d

dt

∫

R

u2 dx+
1

dβ+1
(c1γ + c2γ)

∫

R

Dβ/2[u](x)Dβ/2[u](x) dx = 0.

The second term is positive by (ii), this means that, in fact,

1

2

d

dt

∫

R

u2 dx+
1

dβ+1
(c1γ + c2γ)

∫

R

|Dβ/2[u](x)|2 dx = 0.

The rest of the argument follows unchanged, combining all the results that we have

mentioned. Thus, we can generalise the large time asymptotic result Theorem 1.1

for equation (5.1) in the sub-critical case, 1 < q < β, for nonnegative solutions,

obtaining the same rate of convergence.
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