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Abstract. We study the large time behaviour of the solutions of a nonlocal regularisation
of a scalar conservation law. This regularisation is given by a fractional derivative of order
1+ «, with € (0,1), which is a Riesz-Feller operator. The nonlinear flux is given by
the locally Lipschitz function |u|?7lu/q for ¢ > 1. We show that in the sub-critical case,
1 < g < 1+ «, the large time behaviour is governed by the unique entropy solution of
the scalar conservation law. Our proof adapts the proofs of the analogous results for the
local case (where the regularisation is the Laplacian) and, more closely, the ones for the
regularisation given by the fractional Laplacian with order larger than one, see L.I.Ignat
and D.Stan (2018). The main difference is that our operator is not symmetric and its
Fourier symbol is not real. We can also adapt the proof and obtain similar results for
general Riesz-Feller operators.

Keywords: large time asymptotic; regularisation of conservation law; Riesz-Feller
operator
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1. INTRODUCTION

In this paper, we study the large time asymptotic behaviour of nonnegative solu-
tions to the convection-diffusion equation

(L.1) { Owu(t, z) + |u(t, z)| T 10u(t, x) = 0. D[u(t, )] (), t>0, zeR,
‘ U(O,{E) = UO(x)a z € R,
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where ug € L'(R)NL*>®(R) and ¢ > 1. The operator D*[-], acting on z, has o € (0, 1)
and is defined by means of

0
glx + 2) — g(x) 1
—|z|a+1 dz for0<a<l, dyt1 = —I‘(—a)'

(12) Dg)(e) = dai [
— 00
The operator 0, D?]] is of Riesz-Feller type, as we shall see below. The operator D*[]
can also be seen as a right Weyl-Marchaud fractional derivative (see [29], [37]) of
order . The nonlinear flux f(u) = |u|?"'u/q is considered here as a paradigm
locally Lipschitz function.
The equation in (1.1) is a modified Burgers’ equation, and appears in [34] as
a model of viscoelastic waves with a = % There are other models of physical
phenomena, where this kind of nonlocal operator appears, such as problems in fluid
dynamics, see for instance the references listed in [3].
The models that motivate our study describe the internal structure of hydraulic

jumps in a shallow water model. The general form being, for Cy,Cs > 0,
Ayu + 9. (f (1)) = CL8,DY3[u] + C203u, t>0, z €R,

see [24] and [35], where the flux might be u? or u3 and the dispersive term might or
might not be relevant, depending on the asymptotic regime considered.
Another example where such operators appear (although not as a regularising
term) can be found in [20], where a model for dune formation is presented.
Formally, the study of the large time behaviour can be transferred to a limit
problem by the appropriate scaling; for any A > 0, let the change of variables be

(1.3) t=XAs, xz=My
and the function be

(1.4) ux(s,y) = Au(As, Ay).
Then, if u is a solution of (1.1), uy satisfies

(1.5) Osux + [ux|T"10yux = X199, Dux(s,)](y),  s>0, yeR,

' U')\(O7y) = AUO()‘y)a Yy € R.
Observe that when ¢t — oo, if we keep s of order one, then A — oo, and in the
new variables this means that, depending on the sign of the exponent ¢ — 1 — «,

different terms dominate the limit behaviour. According to this heuristic argument,
we can distinguish three different regimes: The sub-critical case 1 < ¢ < 1 + «
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(the conservation law formally dominates), the critical case ¢ = 1 + « (one expects
self-similar behaviour associated to the balance of all terms) and the super-critical
case 1 + a < ¢ (the nonlocal heat equation formally dominates).

In this paper we focus on the sub-critical case for nonnegative solutions, henceforth
we assume that 1 < ¢ < 1+ «. Our main theorem is:

Theorem 1.1. Let 1 < ¢ < 1+ aand 1< p < oo. Given ug € L*®(R) N LY(R)
with [, uo(x)dez = M > 0 and ug(x) > 0 for all x € R, then there exists a unique
solution (1.1) with

(i) for p = 1, dyu € C((0,00), L (R)), u € C((0,00),Cp(R) N CL(R)) and u €
C([0,00), LY(R)),
(ii) for 1 < p < oo, dyu € C((0,00), LP(R)) and u € C((0,00), LP(R) N H*?(R)) for
any 0 < 0 <1+ a+ min{a,q—1}.
Moreover, u satisfies

(1.6) lim ¢34 (t, ) — Unr(t, )| o) = O,

t—o0

where Uy is the unique entropy solution of

(1.7) 8tUM+8x(|UM|q_1UM/q)=O, t>0, x €R,
’ Un(0,2) = Mo, z € R.

Here the notation H??(R) is for the homogeneous Sobolev spaces (see e.g., [4]) of
order 6 >0

(1.8) HP(R) == {g € §'(R): F'[|¢]"F(9)] € L(R)}
and F denotes the Fourier transform

1 .
1.9 Flg(z = — x)e ¢ da.
(1.9 (@@ = —= [ ota)
We also recall here the definition of entropy solution of (1.7), see [25]:
Definition 1.1. Let Ups be a weak solution of (1.7) such that
U € L°°((0,00), LY(R)) N L*((,00) x R) V7 € (0, 00).

Then Uy, is said to be an entropy solution of (1.7) if and only if the following
inequality holds for every k € R and ¢ € C2°((0,00) x R) nonnegative:

110) [ [ (10— 1o+ sl — I~ F()0.5) i > 0
with f(u) = |u|?"tu/q, and for any 1) € Cy(R)

(1.11) limess/R Un(t, z)y(x) de = M(0).

tl0
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We recall that this unique entropy solution is given by the N-wave profile, see [27].
The proof follows the method developed by Kamin and Vazquez in [23], namely
that with the rescaling (1.3)—(1.4), (1.6) is formally equivalent to

(1.12) lim [lux(so,") = Un(s0,)|[zrr) =0
A—00

for some so > 0 fixed. We recall that the local case in RY for N € N and for all
g > 1 has been analysed by Escobedo, Vazquez and Zuazua, see [17], [18], [19].

The sub-critical case, for the fractional Laplacian as viscous term, in dimension
one has been studied by Ignat and Stan in [22], and these are the results that we
shall adapt. We also mention that Biler, Karch and Woyczynski in [6], [7] study the
critical and super-critical cases for a more general Lévy operator as viscous term,
showing the expected asymptotic behaviour; this being given by the self-similar
solution and by the fractional heat kernel, respectively. This operator is defined
by means of a Fourier multiplier, such that the symbol can be represented by the
Lévy-Khintchine formula in the Fourier variable, see [5], Chapter 1, Theorem 1.
The fractional Laplacian serves as a particular example of such operators. In all
these results the non-negativity of the symbol and the symmetry of the operator are
necessary conditions. Operator (1.2) does not satisfy these conditions.

For completeness, we also consider the case of a general Riesz-Feller operator.
Thus, we show how the analogous to Theorem 1.1 follows if the term 0,D%[u] is
replaced by the Riesz-Feller operator term DS [u] of order 5 € (1,2) and skewness .
We recall that such an operator can be defined by means of a Fourier multiplier
operator (see, e.g., [28]) and we choose the definition

(1.13) F(DSg)(€) = v5(&)F(9)(€),

where 8 € (0,2] and |y| < min{8,2 — 8} and the symbol satisfies
(1.14) 1/)5(5) = —|¢|PeisEn(©)rm/2,

In particular, we observe that the derivative of (1.2) is of this form with § =1+ «
and v = 1 — «, as we explain in the next section. We recall that the definition we
use here for Riesz-Feller operators differs from the usual one: the symbol we obtain
is the complex conjugate of the one with the standard definition. This is simply
because such a definition uses the complex conjugate of (1.9) (up to a scaling factor)
as the Fourier transform.

Finally, we mention that we focus on nonnegative solutions that might be consid-
ered as certain density functions. Results for sign-changing solutions for the local
case and the one regularised by the fractional Laplacian appear in [18], Section 3
and [9], Section 6, respectively.
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The paper is organised as follows. Section 2 contains preliminary results and
is divided into three sections. In the first one, we recall some properties of the
nonlocal operator (1.2) and its derivative. These include some equivalent integral
representations, the computation of their Fourier symbol and the definition and
properties of certain dual operators. In the second part we recall the linear problem
and derive some estimates of the fundamental solutions that will be necessary later.
We end the section be defining mild solutions for problem (1.1) and giving existence
and regularity results for this. We also recall the viscous entropy inequality, and
derive a comparison principle. Most of the results appear in [15] or can be adapted
from [22] with the ingredients given in the previous sections, thus, we shall only
prove whatever does not appear elsewhere.

In Section 3 we derive necessary a priori estimates, namely an Oleinik type entropy
inequality and an energy type estimate. In order to do this we first consider the prob-
lem with a positive initial condition (which makes the nonlinear flux regular, since
positivity is preserved, by the comparison principle). In this case we can show the
desired estimates, which are then preserved in the limit to a nonnegative initial condi-
tion. The proofs are similar to those in [22], we only give the details where necessary.

In Section 4 we prove Theorem 1.1. First, we translate the results of Section 3 into
the rescaled problem (1.5). Additionally, before proving the limit A — oo, we have
to take care of the behaviour of uy for large |y|. With these estimates we prove the
limit (1.12). We finish Section 5 by showing how the proofs generalise to Riesz-Feller
operators.

We recall that we do not give the proofs that are analogous to those given in [22],
the interested reader is also referred to Diez-Izagirre’s PhD thesis, see [14], Chapter 3
for details.

2. PRELIMINARY RESULTS

In this section we recast the necessary lemmas that are needed to adapt the results
of [22].

2.1. Derivation and integration by parts rules. In this section we derive
integration by parts rules for (1.2).
First we need the notation for the following operator:

(21) R e

Then the following integration by parts follows, see [15].
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Lemma 2.1. Let a € (0,1), u € CZ(R) and ¢ € C°(R). Then for all t > 0

/ ()0, D ut, )| () da = / 8, D9 () (w)u(t, ) du.
R R

We also recall the following representation of the operators, see also [15].

Lemma 2.2 (Integral representations). If a € (0,1), then for all g € C}(R) and

all x € R,
O glz+2)—glx) —g(x)z

Z[aT2 dz

0.0%(g)(w) = dusz |

— 00

and

&gﬁ[g](x) — da+2 /Ooo g(fE + Z) |_Ziga(f2) _ g,(fE)Z ©

With equation (1.9) we obtain, formally, the Fourier symbol of D*[-] (see, e.g.,
[31], Chapter 7):

(2:2) F(D%gl(2))(€) = (1) F(9)(E),

and that of D[],

(2:3) F(Dlgl(2))(§) = = (=i&)* F(g)(£)-

In particular, D[] is not of Riesz-Feller type because its symbol has f = a and
v = 2 — a, but D[] belongs to this class since 3 = a and 7 = . We also observe

that their symbols satisfy (i£)® = —(—(—i£)®), where the bar on the right-hand side
denotes complex conjugation.
We can then conclude that

F(9:D[g])(€) = (1) F(g)(&).

We observe, writing

T

(1) = ¢+ (cos((1 = @)F ) —isgn(©)sin (1 - a)7) ).

that 0,D*[] is an operator of Riesz-Feller type with 8 =1+ o« and v =1 — a, see
(1.13)—(1.14). Then we also get:

F(0:D[g])(€) = (=i§)* " F(g)(€) for0<a<1.
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With this Fourier representation formulas we can now prove the following integra-
tion by parts rule:

Lemma 2.3. Let 0 < a < 1 and % < 01,02 < 1 such that 1+« = 61 +65. Assume
also that g € H*(R), so that 0,D%[g], D [g], D%2[h] € L?(R), and let h € L*(R).
Then

[ 207l )he)do = — [ D" (g)(@) D b (o)
R R
Proof. Since 9,D%[g], h € L?(R), then Plancherel’s theorem yields

/ 0, D°[g) (x)h(z) dz = / (i6) 1 F(g) (€ F (W) (©) dé
R R

. / (i6)" F(g) ()~ (1)) F(R)() d¢
. / F(D"[g)) () F (D (1)) (€) de
- / D [g) () D% 1] ()

for%<91,92<1suchthat1+a=91+92. O

We now recall some facts about the fractional Laplacian that we need later to
conclude LP-regularity of the solution.

There are several equivalent definitions of the fractional Laplacian, see [26]. Here
we consider the one given by the Fourier symbol for 0 < 6 < 2, namely,

(2.4) IDI’[g)(x) := (=A)"2[g](x) :== FH(EI"F(9)(€)) ().
We observe that applying Plancherel’s theorem |[||D|%[g]||2(r) = |9l 6.2 (g and also
(2.5) 1Dl ey = IDTgl 2y = lgllgoey for 0< 0 <1
since
D% (9l 2y = 1G) F(@) Ollz2wy = I PF(@9) Ol 2wy = I1D1[g)ll 2 (wy-

For comparison purposes, we give an equivalent definition of the fractional Laplacian
of order 6§ > 1 for functions g € CZ(R), see [16]:

(2.6)  (=A)/2[g] = CG/R gz +2) I_ziq@(fl) —9@2 0. with 0 (1,2)

where ~2°T((60+1)/2)
= Tanrr(—g/2)
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2.2. Linear fractional diffusion equation. In this section we recall some re-
sults concerning the linear problem

(2.7) {atU(t,x) — 0, D[U(t,)](x) =0, >0, z€R,

U(0,z) = uo(x), z e R.

For initial data up € L>°(R) the solution of (2.7) can be represented as
Ul(t,z) = (K(t,-) * uo)( /Ktm— Juo(y) dy

such that the kernel K (¢, ) is defined by means of

(2.8) K(t,z) = F 1" (z) Vt>0, z€R,

which can be formally obtained using Fourier transform, see [2] for the proof. Some
pertinent properties of the kernel are derived in [1] and [15]. In particular, we recall
that

X

1
(2.9) K(t,2) = yara K (1’ /(1)

) Vt>0, zeR,

where K is nonnegative and K (t,z) € C*°((0,00) x R). It also preserves mass and
has the semi-group property.

Since the regularity of solutions is established with respect to derivation with the
fractional Laplacian, we need the following estimates:

Lemma 2.4 (Time behaviour of K). For all a,6 € (0,1) and 1 < p < o0, K(t,x)
satisfies the following estimates for any t > 0:

K ()| o) = Ct~(-1/p)/(ta) 0K (t, ) rrm) < t=(1=1/p)/(14)=1/(1+a)
I1DJP[K (¢, Mzew S ¢~ (=1/p)/(A+)=6/(1+a)
D0 K (8, )| ogey S 4P/ A= (140) (ke

for a constant C > 0.

Proof. The first and second identities follow from (2.9); namely, the mass-
conservation property of K and 9,K and from their boundedness on (0,7) x R
for any 7' > 0.

For the third estimate we first use (2.9), then we rescale the fractional Laplacian:

I [ (1 oy ) )]
DKL) (s ) |

(2.10) IDPIR () = 77y
_ 1
T (140)/(14a)
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Now, when computing the LP-norm, we apply the change of variable X = x/tl/(”a):
(2.11)

DI’[K S S DIIK(1 T 3|"q v
IDPEE @ e = g (], [IPPIEO] (e )| 0
1 1/(p(1+a)) o v )
= a0/ (re) ! R||D| [K(L)I(X)PdX ) .

It only remains to prove that the LP-norm of |D|?[K(1,)] is finite. In order to show
this, we first observe that using (2.4), the integrand of (2.11) is bounded:

1 colta
2.12 DIP[K(1,))(X :_/ 606) 1X§d‘
@12 IDPRQOICO0| - | [ et exeag
1 e
< 2TE/R|£|96—|£| + sm(an/2)d£<oo.

Next we show that ||[D|?[K(1,-)(X)[? is integrable for large |X|. We will apply
Lemma 2 of [30], which gives that for large X

| e e ag—o(x| )

0

with 7 € (0,2), 8 > 0 and o such that
T rT
i P = —)<a<l, < - - )¢
(2.13) o€ {a—l—leC cos( 2) a<1, b tan( 5 )}
We first write
0 1 0 (&) ixe
|D| [K(L-)](X)Z\/—Z—TE RI&I e et dg
1 [ . .
_ |£|967|§| (sin(an/2)—isgn(&) cos(am/Q))elXE df
V2n /[R
1 > Tdag; . .
_ 50875 (sm(am/2)71cos(am/Q))efl(fX)E df
V2n /0

L[, ey . |
+ efg (sm(am/2)+1cos(arc/2))ele§ de.
) ‘

Note that we have applied the change of variables £ — —¢ in the second integral.
Then, applying Lemma 2 of [30] in both integral terms, with » = 1 + «, implies

(2.14) IDPIK (1, )](X)] < o

S X | X > 1.
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Observe that condition (2.13), since 8 > 0, is satisfied for, in this case,
() —1eos(F)
o=sin|— ) —icos{— ).
2 2
and its complex conjugate.

Then (2.12) and (2.14) imply |D|?[K(1,-)](X) € LP(R) for p > 1, which together
with (2.11) implies the third estimate.

Finally, the fourth estimate is obtained in a similar way. The main difference is
that we have to differentiate the kernel first, which gives a factor i€ in the integrand,
but we can still apply Lemma 2 of [30] to get

1 . ieylte 1
DIk 001 = | [ 66609 6 ae| € o tor X131

Then, with this and (2.9), we can argue as for (2.10) to conclude the proof. O

2.3. Mild formulation, existence and regularity results. We now define the
mild formulation associated to (1.1):

Definition 2.1 (Mild solution). Given T € (0, 00] and ug € L>®(R), we say that
a mild solution of (1.1) on (0,7) x R is a function u € Cy((0,T) x R) which satisfies

(2.15) u(t,x) = K(t,-) xug(z / 0 K (t * f(u(s,-))(r)ds

in a.e. (t,2) € (0,T) x R, where f(u) = |u|9"'u/q with ¢ > 1.

Regarding existence and uniqueness of mild solutions, we have the following;:

Theorem 2.1 (Existence and uniqueness). Let ug € L°°(R). Then there ex-

ists a unique global mild solution u to the initial value problem (1.1) with u €
C((0,00), CH(R)) N Cy((0,00) x R) and such that

(2.16) essinf{uo} <u(t,z) <esssup{up}, t>0, x€R.
If ug € L*°(R) N LY(R), then also u € C([0,00), L'(R)) and

(2.17) Ju(t, @) < lluollprw) VE>0.
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Proof. The existence and uniqueness result, the upper bound of (2.16) and (2.17)
have already been proved in [15] for a regular flux function. We observe that in order
to obtain existence and regularity, we can proceed as in [15], Propositions 4-5, but
since the flux function is only continuous with bounded first derivative, we can only
apply two steps of the argument. This means that we can only gain C' regularity
in z and continuity for ¢ € (0,T) for any T > 0, thus v € C((0,T), C}(R)).

Now, in order to prove global existence, uniqueness and regularity as well as the
upper bound analogous to the one in (2.16), we first regularise the flux function
(to at least a C? function) and apply the results in the previous reference. The
lower bound analogous to the one in (2.16) is proved by following the proof of [15],
Lemma 3, Proposition 6 while changing the role of the supremum and the infimum.
Then we have to pass to the limit to get the results for the original flux.

We define the function fs5 by means of

)
(2.18) f5(v) = (62 + p2)la02(0E D).
q
Notice that the function fs is C? for § > 0 and converges to f(v) = |v|9" v/q with
|fs(v) — f(v)] < 8Cv|9~t as § — 0, for a positive constant C.
Let us be the solution of

(2.19) { Drus(t,2) + D (fo(us(t,2)) = 0. D%[us(t, ](@),  ¢>0, 2 € R,
us (0, 2) = uo(2), z € R.

As a consequence, we obtain the global existence in time for (2.19). Therefore,
by continuity in ¢ > 0 and the uniqueness result we can extend the solution for
t € (0,00) and it satisfies essinfug < us(t, x) < esssupug for all (¢, z) € (0,00) x R.

Now, we extend the result of (2.19) to (1.1). First, we prove that for any T > 0,
ug converges uniformly to v as 6 — 0in (t,2) € (0,T) x R, where u is a mild solution
of (1.1). We compute:

us(t, ) — u(t, ) L= r)
/8[( % (f5(us) — f(u))(x) ds

L=(R)

< / 10K (¢ — s, )l 22 s )) — £, )l ey s
<c / )7V | fi(us(s,)) — () o s ds
e / U+ | f(ug(s,)) — Flus, ) ey d
= 30t/ 4 (1) | (¢ = )0 fug(s, ) — s, g gay s,
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where the constant C(T") depends linearly on sup |ju(?,-)||co, Which is finite for
t€(0,T]
all T, see [15]. Here we have used the second estimate with p = 1 of Lemma 2.4, the

convergence fs — f as & — 0 and the local Lipschitz continuity of f.
Since 1+« > 1, we can apply the fractional Gronwall Lemma (see [8], Lemma 2.4)
to obtain that for any 7' > 0 and § > 0 there exists a positive constant C'(T") such that

lus(t, <) — ult, )| o) < 6C(T) Vi€ [0,T).

In particular, this implies that us converges uniformly on compact sets of ¢ and
point-wise (since u € C((0,7T), C*(R)). Thus, we can conclude the global existence
of w and (2.16).

Finally, (2.17) follows as in [15], Theorem 2. O

As a corollary we obtain positivity of the solutions for positive initial conditions:

Corollary 2.1. Let ug € L>®(R) with ug(z) > ¢ > 0, then the unique mild
solution of (1.1) satisfies

(2.20) e <ult,z) < |luglloe VE>0, x €R.

Moreover, u € Cg°((0,00) x R).

Proof. Estimate (2.20) is a direct consequence of (2.16).
Since now w is positive, it means that |u| = wu, so the flux is f(u) = u?/q and
belongs to C™°([e, ||uol/oo]). This implies that then u € Cp°((0,00) x R), see [15]. O

We now give some LP-regularity of the mild solution.

Proposition 2.1 (LP-regularity). Let 1 < p < oo and u be the unique mild
solution of (1.1) with ug € L*®(R) N LY(R). Then d;u € C((0,00), LP(R)) and
u € C((0,00), LP(R) N H??(R)) for any 6 < 14 a + min{a, g — 1}.

The proof is based on applying the fractional Laplacian to the mild formula-
tion (2.15) followed by the bootstrap argument used in [22], Proposition 3.1. We use
the fractional Laplacian to study regularity, because we can readily apply the chain
and product rules available from [21], Theorem 3, Corollary of Theorem 5, [10],
Proposition 3.1 and [36], Proposition A.1. This is also the reason why we need
Lemma 2.4 (the estimates needed to gain regularity by applying fractional deriva-
tives on the kernel are obtained by convenience applying the fractional Laplacian
instead of (1.2)). With this ingredients one can just mimic the proof given in [22].

Finally, we give another auxiliary result that we will need later on. Namely, the
mild solution of (1.1) satisfies a weak entropy inequality for the Kruzkov’s entropies,
see [15], Theorem 1:
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Theorem 2.2 (Weak viscous entropy inequality). For all k € R, let ni(v) =
|v—k| € C(R) be a convex entropy function andu € C((0,00), C*(R))NCy,((0, 00) x R)
a solution of (1.1). Then for all non-negative ¢ € C°((0,00) x R)

oo
ea) [ [(utt.a) - How +sguu(t. ) - R)(Sule,) ~ )0
0
Tt ) — k0D [p(t, () dzdt >0,
where f(u) = |u|7 u/q.

We remark that the proof of this result is as in [15], but for the problem with
the regularised flux (2.18), as above. The proof is completed by passing to the limit
0 — 0. We omit the details here.

3. OLEINIK TYPE INEQUALITY FOR NONNEGATIVE SOLUTIONS

In this section we derive an Oleinik type inequality. We prove it for nonnegative
solutions by first deriving the inequality for positive ones (for which the flux is

regular).

Let ugp € L*°(R) be nonnegative, then we consider the following approximating
problem:
(3.1) Opue(t, @) + (ue)T 10puc(t, x) = 0. D¥[uc(t, )] (), t>0, z€R,

. ue(0,2) = up(x) + ¢, x € R.

The existence and uniqueness of this problem is guaranteed by Theorem 2.1 and
Corollary 2.1 implies that uc(x,t) > 0 for all (x,t). Then the following holds:

Lemma 3.1. Let u(t,x) be the solution of (1.1) with 0 < ug € L*(R) and let
us(t,x) be the solution of (3.1). Then for every T > 0,

Etv' - t,' e _>0 _>O.
s [[us(t, ) = u(t, ) =) > 0 as e

The proof is analogous to that in [22], we do not prove it here. It is based on the
comparison of the mild solutions in norm and on the application of the fractional
Gronwall Lemma [8].

We can now obtain an Oleinik type entropy inequality.

Proposition 3.1 (Oleinik entropy inequality). Let ug € L*°(R). Then for any
€ > 0, the solution u. of (3.1) satisfies

1
Dz (ul(t,z)) < n Vt>0, z€R.
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The proof is analogous to that in [22]; we briefly give the idea here since this
proposition is key to the proof of Theorem 1.1: First, one writes the equation for
w=(ul"1), as

(3.2) wy +w? + ul  w, + N(w,u.) =0,

where N is the resulting nonlinear and nonlocal term, and shows that W = sup w(-, x)
satisfies vek

W'(t) + W2(t) + Q)W (1) <0, Q(t) >0,

which, by ODEs arguments, implies the result. The estimates of the nonlocal term
of (3.2) can be adapted from the proof in [22]. This requires splitting the integral,
using the representation (2.6), near zero and away from zero, but this can be done
similarly using the integral representations of Lemma 2.2 in our case.

We can show properties of the family . to the solution of (1.1) by taking the limit
€ — 0. Namely:

Lemma 3.2. Let u be the solution of problem (1.1) with non-negative initial data
up € L>®(R) N LY(R). Then the following estimates hold:
(i) (Mass conservation) [, u(t,z)dx = M for all t > 0, where M is defined as
M = [, uo(z) dw.
(i) (Oleinik entropy condition) 8, (u?~1(t,z)) < 1/t for allt > 0 in a weak distri-
butional sense.
(iii) (Upper bound) 0 < u(t,z) < (¢M/(q —1))"/9¢71/4 for all t > 0 and = € R.
(iv) (Decay in LP-norm) for 1 < p < oo,

Jults ooy < (g) " aro i g,

(v) (Decay of the spatial derivative) d,u(t,z) < C(q)MP=D/9t=2/4 for all t > 0
and a.e. x € R.
(vi) (WI})’Cl([R) estimate) For any R > 0,

1/q
/ 9u(t, 2)| dz < 2RC(q)M@—D/a¢=2/1 4 2(LM) =11 vt > 0.
lz|<R qg—1

(vii) (Energy estimate) For every 0 < 7 < T,

T
1 1/
/ / DD 2 u(t, (@) dudt < 5 (L) e ang/a,
T R 2 q 1
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Proof. The proof of (i) is as in [22].

We recall the proof of (ii): First we recall that u € C((0, 00), LP(R) N H??(R)) for
any 0 < 1+ a+ min{a,q — 1} and u. € C;°((0,00) x R), then using Lemma 3.1,
ue — u as € — 0 point-wise for all t > 0 and = € R. As a result, (ii) holds by taking
the limit € — 0 and Proposition 3.1. With this, one can again proceed as in [22] to
conclude (iii) and (iv). The proofs of (v) and (vi) follow as in [22] too, they do not
depend on the form of the nonlocal operator.

We now prove (vii). First, we multiply (1.1) by u and get the following identity,
after integrating with respect to x:

1d 5 o B
2dt/u dx—Au&xD [u](z) dz = 0.

We observe that using integration by parts

/u@ D u dx—/(‘) uDu >0,

the last inequality is shown in [12], Lemma 2.2. Then, proceeding as in the proof of
Lemma 2.3 with #; = 65, using (2.2)-(2.3) with « replaced by 1 (a + 1), we have

0< — [ w0, Dul(w)ds = [ (9F()OFFTIE e

/R (1) /24 (1) (40)/2 (i) 1402 F () (€ Fa) (@) dlé

- / (i6) 09072 F(u) (€) (1) (F ) P2 () (€) dE.

Applying again Plancherel’s theorem we finally have

1d

(3.3) o u?(t, x) dx + /[R | DD 2[4 (¢, )] () |? dz = 0.

The conditions for Plancherel’s theorem to be applied follow from (iv) and Proposi-

tion 2.1.
Finally, we integrate (3.3) over (7,7T) for some 7 > 0 to get

T
1/uQ(Tw)da:— l/uQ(mr)dij/ /|D(“+1)/2[u(t,-)](x)|2da:dt:0.
2 R 2 R T R

Then, (vii) follows taking into account that the first term is nonnegative and apply-
ing (iv) for p = 2. O
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4. ASYMPTOTIC BEHAVIOUR

In this section we prove Theorem 1.1. As we have mentioned, this is equivalent
to proving limit (1.12) for some fixed s. Henceforth, we consider for A > 1, uy be
defined by means of (1.3)-(1.4). We follow the proof in [22], we use Lemma 3.2
(translated to uy) and the following lemma:

Lemma 4.1 (Tail control estimate). Let A > 1 and uy be the solution of (1.5)
with 0 < ug € L®°(R)NLY(R). Then for any A > 1 and R > 0, there exists a constant
C(M,q) > 0 such that

/ (s,9)d </ (y) dy + C(M )(SXH*Q Sl/q) Vs >0
ux(s,Y)dy % uply) dy + )\ oo s> 0.
ly|>2R ly|>R Rotl R

Noticing that D*[uy(s,)](y) = A*T1D[u(\%s, -)](Ay) and the same scaling works
for 0,D[], we can just follow [22] to conclude the result.

Proof of Theorem 1.1. The existence and the regularity item (i) and (ii) follow
from Theorem 2.1 and Proposition 2.1. It remains to show the large time behaviour.

First, we show that (1.6) and (1.12) are equivalent. Without loss of generality we
consider sg = 1, applying the scaling (1.3)—(1.4), and observing that (1.7) is invariant
under the rescaling, we get that for any A > 1,

ur(l,y) = Uni(1,y) = V9 (ult, 2) — Une(t, ).
And performing the change of variables in the integral, we finally get
lua(L,y) = Unt (1L, 9) | Loy = P79 |ult, @) = Uni (¢, @) || o 2) -

Let us then prove (1.12). We divide the proof into several steps. Let us first show
the convergence of a sub-sequence of {uy}x>1. Using Theorem 5 of [33] we shall get
that {ux}r>1 is relatively compact in C([s1, s2], L. (R)) for any 0 < 51 < s2 < 00.

We let Br = (—R, R) and we apply Theorem 5 of [33], to the triple W!(Bg) <
L*(Br) — H~(Bg). Observe that (i) and (iii) in Lemma 3.2 imply that {uy}>1
is uniformly bounded in L% ((s1, s2), W11 (Bg)), and this gives the first condition
of this theorem. Then by [33], Lemma 4 we can conclude that

(4.1) Jlur(s+h,)—ux(s, ')HLOO((O’T,}L)’Hfl(BR)) — 0 as h — 0 uniformly for A > 1

provided that {dsux}a>1 is uniformly bounded in LP((s1,s2), H '(Bg)) for some
p < co. Let us show this with p = 2. First, let us choose ¢ € C.((0,00) x Br) and
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extend it by zero outside Br. For such ¢ and A > 1 we have
(4.

2)

[ [ @ueaas
S1 R

/ /%(u)\)qapdyds / /%Da[u)\]apdyds
S1 R S1 R

So 52 @
/ / uldypdyds / / DUH)/2[y, DO+ /2[ ] dy ds
S1 R S1 R

< NJuSllz2((s1,50), L2@) 19N L2 ((51,50), 11 ()

S2 1/2
+ \(—1-)/2 <)\q1a / / |D(1+a)/2[u)\]|2 dy ds)
S1 R

So 1/2
([ [ DTy as)
S1 R

< C'(M,q,51,82) 101 L2((51,80), 1 (R))

+>\(q—1—a)/2i( q )1/(QQ)M(1+Q)/(QQ)8;1/(2q
V2\qg—1
S C(M,q,s1,52)[|0l L2((51,50), H1 (R)) -

< + \1me

+ )\qflfa

)HSOHLZ((sl,sg),H(1+“)/2(R))

Here, we have applied Lemma 2.3 in the second inequality and the energy estimate
Lemma 3.2 (iv), as well as (2.5). All these steps can be performed since conservation
of mass and the regularity of u is transferred to uy (see Proposition 2.1, in particular)
and by the choice of ¢. Now, the Riesz representation theorem, see [13], Chapter IV
Corollary 4 and (4.2) imply that

10sux|lL2((sy,80), -1 (Br)) < C(M,q,51,52) YA>1,

and we can conclude (4.1). Hence, we can apply Theorem 5 of [33], this means that
{ux}rs1 is relatively compact in C([s1, 2], L?(BRr)).

As a consequence, there exists uo, € C([s1,52], L?(Bg)) such that, up to a sub-
sequence, uy — Us as A — oo in C([s1, s3], L>(Br)). By a diagonal argument we
can conclude the convergence for any compact set and therefore,

(4.3) Uy — Uso  as A — 00 in O([s1, s2], L (R)).

We observe that (4.3) implies also that uy — U in C([s1, s2], L

loc

(R)). In order to
extend this convergence to C([s1, s2], L}(R)), we use Lemma 4.1, see [22]. Hence,

Uy — Uss  as A — oo in C([sy, s2], L' (R)).
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The next step is to prove that us = Uyy, i.e., that it satisfies Definition 1.1. First,
we recall that u satisfies (2.21) of Theorem 2.2. Therefore, u) satisfies the following
inequality for any nonnegative ¢ € C2°((0,00) x R), using Lemma 2.2:

o 1
(4.4) / / (lu = kO + — sgn(ur = B)((ur)? = KDy
o JR q
A0 DOy — k|](y)go) dyds > 0.

In what follows we pass to the limit A — oo in (4.4). We prove that the last term
tends to zero as A — co. We split this integral term into two as follows, given r > 0:

/oo/ 9y D [Jux — kl(y)e(s,y) dy ds
0 JR

o0 - _ _ _ _ _
— da+2/ // |U)\(S,y + Z) k| |U)\(S,y) k| ay(|u>\ k|)zg@(8,y) dZdde
0 R/ —o0

|Z|oz+2
+da+2/ /|u>\(s,y)—k‘|/ go(s,y—f—z)—apg,y)—(?yapz dz dyds.
o Jr 0 |2

The second integral term has been obtained by using Fubini’s theorem, integration

by parts in y in the third term, and the pertinent changes of variables.

Following the ideas of [22], we bound the first and second integral terms applying
the regularity of ¢ and the non-negativity and conservation of mass of uy. Then,
this means that the last term on the left-hand side of (4.4) goes to zero as A — oc.

Since u) — U in C((0,00), L*(R)), we can pass to the limit in property (i) of
Lemma 3.2, so that [, us(s,y)dy = M. Moreover, uy — s a.e. in (0,00) x R,
which shows that property (ii) of Lemma 3.2 with p = co is transferred to uqo:

%o (85 )l oo (r) < C(M)s~/1,

This last inequality is sufficient to prove that (ux)? — (ux)? a8 A — 00 in
C((0,00), L}(R)) and, therefore, passage to the limit A — oo in (4.4) gives
Definition 1.1-(1.10) (with Ujs replaced by ue,) for every constant £k € R and
p € CP((0,00) x R), ¢ > 0.

Finally, we have to check that u., satisfies Definition 1.1, (1.11) for any ¢ € Cy(R).
First, one proves it for any 1 € CZ(R), which, by density, can be generalised to
¥ € H%(R). Finally, the result with ¢ € C,(R) follows by an approximation argument
and Lemma 3.2.

Thus, we have shown that u., satisfies Definition 1.1. Since (1.7) has a unique
entropy solution Uy, then {uy}a=1 converges to Uy in C([s1, s2], L1 (R)) as A — oo.

In order to finish the proof, one has to extend this convergence to LP(R) with
1 < p < oo. This follows by interpolation as in [22]. O
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5. REGULARISATION BY A GENERAL RIESZ-FELLER OPERATOR

In this section, we focus on showing how to generalise the previous results of
Sections 2, 3 and 4 for the problem

(5.1) Opu(t, ) + [u(t,z)]97 0, (u(t, x)) = Dg[u(t, (=), t>0, z€R,

. u(0,2) = up(x), z € R,
where the diffusion is given by a general Riesz-Feller operator (1.13)—(1.14). Here S
and v satisfy the assumptions of such definition and ug € L>(R) N L*(R).

We use the following formulation of the nonlocal operator, given in [2], Proposi-
tion 2.3 (or see [11], [28], [32]): for any 0 < 8 < 2 and || < min{f,2 — S},

DP[gl(z) = ¢} /Ooo glx —z) —ZIQJEJE) +9'(z)z dztc /O°° g(z+2) —zig) — ' (2)z w

for 1 < 8 < 2, where (see e.g., [28])

¢t = Msin ((B - ’y)g) and ¢} = Msm ((5 +'Y)g>7

in particular, c}/ + c?/ > 0.
Using Lemma 2.2 it is easy to show that

(5.2) D3 [g)(x) (30, D gl (x) + 30, D7~ [g] ().

dp
Existence and regularity results for (5.1) are proved similarly by defining mild
solutions as in Definition 2.1 with the kernel

(5.3) KB(t,2) == F () ().

These steps have already been explained in [15], Section 6. This is because Kg
satisfies similar properties as K does, the proofs are given in e.g., [2], Lemma 2.1.
Thus, we can say that Theorem 2.1 and Corollary 2.1 hold unchanged for (5.1).

In order to generalise Proposition 2.1 for (5.1), we need the following lemma
(analogous to Lemma 2.4):

Lemma 5.1 (Time behaviour of Kg) For all 6 € (0,1) and 1 < p < oo, the
kernel Kf(t,x), such that 5 € (1,2) and || < min{f, 2 — S}, satisfies the following
estimates for any t > 0:

IS (M oy = CH P80, KB oy S 7022,
1D Ny S ¢ 0 HP/E2008,
I\IDla[afo(t, Mizr@w) S +—(1=1/p)/B—=(1+0)/B

for a constant C > 0.
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Proof. The properties of (5.3), analogous to the ones for (2.8), are given in [2],
Lemma 2.1, and combining the self-similarity, the mass conservation of (5.3) and its
derivative, and the fact that these are bounded on (0,7) x R for any 7" > 0, we
conclude the first and second estimates.

For the third estimate, we apply the self-similarity property of Kg and rescale
as follows:

(5.4)

IDPIRS () = 75 100 [K2 (1, 75) | @) = s [P 1201 (55 |

If the LP-norm of (5.4) is finite, we get, applying the change of variable X = z/t'/#,
the desired estimate:

1/p
IDIPE () oy = syt ( [ ipriza. ->]<X>|pdx)

< ¢~ (A-1/p)/B=0/5,

Thus, it remains to show that the LP-norm is finite. One gets the boundedness of
the integrand using definition (2.4):

e|Baisan(E)v=/2
[ lepreriere e o
R

1 0 —1¢18
< — e~ €17 cos(vm/2) qe 0,
— [« ¢

(5.5) IDPIKE(L, ))(X)] = J%

where || < 2— 3 < 1, which implies that COS(%’)/TE) > 0. Hence, in order to conclude,
it is sufficient to control the behaviour for large | X|. Starting from (5.5), we write

1 || oisen(©/2 |
|D|9[K5(17.)](X) — \/—2_11/R|§|ae [g|Pet =8 eX5d§
1 8 . . .
_ = |§|967|§| (cos('yn/2)+1sgn(f)sm('yrc/Q))e]XE d§
V2n /R
1 > B s .
_ 066" (cos(ym/2)+isin(rm/2)) =i~ X6 g
V2n /0
4 \/% /OO feeffﬁ(cos(vm/mfisin(wn/2))efiX§ df
TJo

o= cos(%) + isin(%).

Now we apply [30], Lemma 2, which implies

Now, let

(5.6) IDPIKE (1, ))(X)] S =

< T |X| > 1.
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Since 6 > 0, we can apply the lemma if the condition

0,0 € {a—f—ibEC: —COS(%) <a<l, b < —tan(%)}

is satisfied. This holds since

(2—0)rn (Q—B)R)C( n TE)

. YT
< 72_ Ta (_ )
M S min{f,2 -5} = € 5 5

and this implies that if o = a + ib,

COS(@) = —COS(%) <a= COS(%) <1

and the imaginary part satisfies

= ()] < (257 < nf(2575) < ().

As a result of (5.5) and the previous behaviour given in (5.6), we conclude that
0158
IDI”[KJ(1,)](X) € LP(R) for any 1 <p < oo,

Finally, the fourth estimate follows similarly. We leave the details to the reader.

O

Now with Lemma 5.1, we can proceed as in the proof of [22], Proposition 3.1 to

obtain Proposition 2.1 for (5.1).

In order to conclude the corresponding weak viscous entropy inequality, similarly

to Theorem 2.2 and the Oleinik type of inequality and all other a priori estimates,

similarly to Proposition 3.1 and Lemma 3.2, for positive solutions, we need the

following lemma:

Lemma 5.2 (Partial integration by parts and energy estimate). Let 8 € (1,

and |y| < min{p,2 — B}. Then:
(i) For functions g and h such that DP[g], D% [g], h, D%[h] € L*(R),

/R DE[g)(x)h(x) dz = ——— (] + ) / D% [g) () D ] () d,

dﬁﬂ

where % < 01,05 <1 and B =61+ 05.
(ii) Moreover, for 1 < § < 2 and g, DQ [9] € L*(R) N C%(R), we have

- / 9(2) D2 [g)(x) d > 0.

2)
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Proof. We note that Lemma 2.3 has easy generalisation

/ 0, D71 [g) (x)h(x) dx = — / D% [g) () D% ] () d

for 3 < 01, 0 <1 with 8 = 61 + 6>. This and Lemma 2.3 with o = 8 — 1 implies (i),
using representation (5.2).
In order to show (ii), we again use representation (5.2) and Lemma 2.1. This gives

/R gDJ[g)(x) dz = (c; /R 99, D" g)(z)da + 2 /R 90, D5~ 1[g](z) dx>

dp+1

1
— @ +&) [ 90,07 Mgl de <0
dg+1 R
where the last inequality is proved as in e.g., [12]. O

Part (i) of the above lemma allows to prove a weak entropy inequality, namely

A / ) = oo + = sen(u(t,2) = B)(ult, ) ult, 2) = KT 1)sp
+u(t,2) = FDT[e(t, )] (=) ) dedt >0,

where, as we have defined also in [15],

D[g)(x) = ——(c30, D5~ g](z) + 50, D"~ [g](x)).

dgt1

We observe that the above lemma is necessary to conclude the analogous of
Lemma 3.2, in particular, property (vii). Indeed, we need an energy estimate similar
0 (3.3). Let us briefly indicate how this is obtained. First, we multiply the equation
by v and integrate by parts:

1d
5&/RUde - /Rqu[u](x)dx =0.
Now, using (i) above, we obtain the energy type of identity:

1d 2
dz
2dt + d@+1

(c + CV) /R DP/2[u)(x)DB/2[u](z) dz = 0.
The second term is positive by (ii), this means that, in fact,

1d
oq% Ru2d —|— c +c /|D’6/2 (z)*dz = 0.

The rest of the argument follows unchanged, combining all the results that we have
mentioned. Thus, we can generalise the large time asymptotic result Theorem 1.1
for equation (5.1) in the sub-critical case, 1 < ¢ < f, for nonnegative solutions,
obtaining the same rate of convergence.
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