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Abstract. Let A = [aij]lmxn be an m x n matrix of zeros and ones. The matrix A is said
to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with
nonzero (1,1)-entry. We characterize all linear maps perserving the set of n x 1 Ferrers
vectors over the binary Boolean semiring and over the Boolean ring 7. Also, we have
achieved the number of these linear maps in each case.
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1. INTRODUCTION

In the analysis of a biological lattice, (0,1)-matrices are an essential tool. Some
samples are the hunt predictor patterns, the climate-growth patterns, the pollinator-
plant patterns, see [1]. In this paper, we will characterize the linear maps that
preserve the set of n x 1 Ferrers vectors over the binary Boolean semiring or over
the Boolean ring Z5. Some works on linear preserver problems can be found in [3]
and [4]. The required definitions are listed below.

A semiring is a set S together with two binary operators S(+,-) satisfying the
following conditions:

(1) additive associativity: for all a,b,c € S, a+ (b+¢) = (a+b) + ¢,
(2) additive commutativity: for all a,b € S, a +b=">b+ a,
(3) multiplicative associativity: for all a,b,c € S, a-(b-¢) = (a-b)-c,
(4) left and right distributivity: for all a,b,c € S, a- (b+¢) = (a-b) + (a - ¢) and
(b+c)-a=(b-a)+(c-a).
In other words, a semiring is an algebraic structure similar to a ring, but without
the requirement that each element must have an additive inverse.
A ring R is called a Boolean ring if 22 = x for all = € R.
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Example 1.1. Let X be a nonempty set. Define
A®B=AUB, A-B=ANB VA, BePX).

Then (P(X),®,-) is a Boolean semiring having () and X as its zero and identity,
respectively. The empty set ) is the only additively invertible element of (P(X), @, -).
So, (P(X),®, ) is not a Boolean ring. Also, A@® A = A for all A € P(X), see [5].
Example 1.2. Let
1
S ={0}u [5, 1}
and define

r@0=0dx=x, Vzels,

1 1
x@yzi, Va:,yeb,l},

x -y =min{z,y}, Va,yeSs.
It is easy to show that (S,®,-) is a Boolean semiring with zero 0 and identity 1.
Moreover, 0 is the only additively invertible element of the semiring (S, @, -), see [5].

On {0,1} there are two semiring structures. The first is the Boolean semiring that
corresponds to 1 + 1 =1 and we will denote it by B, see [2].
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The second is the Boolean ring 7, that corresponds to 1+ 1 = 0, see [2].
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By M, »(B) we mean the set of all m x n matrices with entries from B. Let
B" = M, 1(B) and let e; € B™ be the vector with exactly one nonzero entry 1 in
the jth position. The vectors e; are called cells. The zero vector of M, 1(B) is
denoted by O, ;.

A function T: My, n(B) — M,, ,(B) is said to be a linear operator of M,, ,(B)
if for any A,B € M,, ,(B) and for any o € B, T(A+ B) = T(A) + T(B) and
T(aA) = oT(A). Let T: My n(B) = My n(B) be a linear operator. For a set
X C Mpn(B), if A € X implies that T(A) € X, we say that T preserves X.
Furthermore, we say that T strongly preservers X if A € X, if and only if T'(A) € X.

In [1], Beasley has found the structure of bijective linear maps preserving m x n
Ferrers matrices over the Boolean semiring as follows.
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Theorem 1.3 ( [1]). Let T: My, n(B) = My, n(B) be a bijective linear operator
that maps the set of all Ferrers matrices in M,, ,(B) to itself. Then either:
(1) T is the identity, or
(2) m =n and T is the transpose operator.

This paper consists of two sections. In the first and second sections we will charac-
terize the structure of linear maps preserving n x 1 Ferrers vectors over the Boolean
semiring B and over the ring 75, respectively. In this paper we denote the ith row
of a matrix A by a; and the (7, j) entry of a matrix A by a;;.

Definition 1.4. An m X n matrix of zeros and ones is said to be a Ferrers
matrix if:
> it has decreasing row sums,
> it is row and column dense, i.e., there are no zeros between two nonzero entries
for every row and every column,
> its (1,1)-entry is 1.

In other words, A = [a;;] is a Ferrers matrix if and only if a;; = 1 implies that
ag; = 1 for all k < i and [ < j. For example,

1 1 1
A=1{1 1 0
1 0 0
is a 3 x 3 Ferrers matrix.

In this paper, we denote a Ferrers vector by v, also we denote the set of nx 1 Ferrers
vectors over a set S by (FVS),. It is observable that (FVS), = {v(1),...,v(n)},
where v(i) =e1 +ea+ ...+ ¢;.

)T

Definition 1.5. Let 1 < i < n. A Ferrers vector v = (v1,v2,...,v,)"' is said to

be an i-weight Ferrers vector if v; = 1 and v;41 = 0 (unless i = n).

T

For example, v = (1,1,1,0,...,0) " is a 3-weight Ferrers vector.

2. LINEAR PRESERVER OF n X 1 FERRERS VECTORS OVER B

Definition 2.1. A nonzero row vector v = (v, vs,...,v,)  is said to be a stair
(of order i), if there exists i (1 <4 < n)such that v, =land vy =... =v;—1 =0
(unless ¢ = 1). The order of a stair v is denoted by s(v). Also the zero row vector is

said to be a stair of order n + 1.

The following theorem characterizes the structure of linear maps preserving Ferrers
vectors over B.
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Theorem 2.2. Let T: B™ — B"™ be a linear map and let A be the representation
matrix of T with respect to {e1,...,e,}. Then T is a linear preserver of n x 1 Ferrers
vectors if and only if for alli =1,...,n, a; is a stair and 1 = s(a1) < s(az) < ... <
s(an) < n+ 1, where a; is the ith row A. In other words, A has the following form:

column ki1 column ko column k,
1
: * * * *
rowpy | 1
1
0 : * * *
oW P2 1
1
(2.1) 0 0 . i ik
row p3 1
1 *
0 0 0 0 :
row Py 1 *
0 0 0 0 0

where l <p1 <...<pp<nand1 <k <...<ks <n.

Proof. First, we show that any matrix of the above form is the represen-
tation matrix of a linear preserver of n x 1 Ferrers vectors. Suppose that v =
(v1,va,...,v,)" is any arbitrary Ferrers vector. Since s(a;) = 1 and v; = 1,
(Av); = 1. If (Av); =1 for some [ (1 <1 < n), we show that (Av); =1 for all ¢ < [.

By the assumtion, a; is a stair of order k¥ (1 < k < n). Since s(a;) = k and

(Av); = 1, we have n n
1= (A’U)l = ZAUU]‘ = ZAUUJ"
j=1 j=k
So, there exist some j (k < j < n) such that a;; =1 and v; = 1. Since j > k and v
is a Ferrers vector, v1 = v3 = ... = vy = 1. Now, let ¢ < [. By the assumption,
s(a;) < s(a;) = k and hence there exists some m (1 < m < k) such that a;, = 1.
Since m < k, v, = 1 and these imply that

(Av)i = QjmUm + Z"aijvj =1.
j=1
jEm
So, (Av); = ... = (Av); = 1 and hence Av is a Ferrers vector. Then T is a linear
preserver of n x 1 Ferrers vectors.
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Conversely, let T be a linear preserver of n x 1 Ferrers vectors. We first show that
s(a1) = 1. Since e; is a Ferrers vector and T is a linear preserver of n x 1 Ferrers
vectors, T'(e1) = Aey is a Ferrers vector and hence aj; # 0. Now, we show that if
p < ¢, then s(ap) < s(aq). Assume if possible that k = s(ap) > m = s(aq). So,
apk = agm = 1. Consider the Ferrers vector v = (v1,v2,...,v,) =e1+e2+...+em.
Since m < k, vy = ... = v, = 0 and hence

n n
(Av), = § ap;jv; = § ap;v; = 0.
=1 =k

On the other hand, a4y = v = 1 and consequently,

n n
(Av)q = Z AqjVj = QgmUm + Z aqiv; = 1.
j=1 j=1
Jj#Em
So, (Av)y = 1 and (Av), = 0. Since p < ¢, Av is not a Ferrers vector, which is
a contradiction. Therefore,

1= s(al) < s(ag) <... < S(a‘n)v

and the proof is complete. [l

We need the following lemma to find the number of linear preservers of n x 1
Ferrers vectors over B.

Lemma 2.3. Let F,, ={f: {1,...,n} = {1,...,n}: f is nondecreasing}. Then
n n n
Ful = i1, in): 1< <o Sdn <[ =D > 0 Y L
i1=1’i2=i1 inzin—l
Proof. For 1 <i; <ig<... < i, <1, let

Fulit, o vig) = {f € Far f(1) =in,..., f(k) = ix}.

We show that

n

\Falin, - vie)l = D | Falin, .- ixg)l-

Tt 1=1k

For f € Fp(i1,...,ik), let f(k+ 1) = ixy1. This implies that
ik-‘,—l € {ik;ik + 1) v 7n}a

and hence

Fuliv,.vin) = | Faliv,. . i ixga).

Tk+1 =1k
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So, we have

\Falin,-ie)l = | | Falin,. . sinyiesr)].

Tt 1=1k
Since the sets Fo, (i1, ..., ik, k), Frn(ity .- sk, i+ 1),. .., Fulit,. .., ik, n) are mutu-
ally disjoint, we conclude that
n
\Falin, - vin)l = D [ Fulin,. ik ing)].
Tt 1=1k

n
On the other hand, we have F,, = |J F(i1) and therefore,

i1=1
=S R =3 3 Flinia =3 3 s 3 (Bl il
i1=1 i1=11i9=11 i1=112=1, in=1n—1
Since |Fy (i1, ...,in)| = 1, we conclude that
n n n
T S5 S ol
i1=1142=11 in=in—1

O
We denote the set of all linear preservers of n x 1 Ferrers vectors over B

by (LFVB),.

Theorem 2.4. Let |(LFVB),| be the cardinal number of (LEFVB),,. Then

n n n
|(LFVB), Z Z Z it tin—1,
1=142=11 =1

in=In—1

Proof. Let T be an arbitrary linear preserver of n x 1 Ferrers vectors over B.
Now consider all possible choices for operator T. We have T((FVB),) C (FVB),
and hence,

Tw(1)) =v(ir), T(v(2))=v(ia),..., T(v(n))=wv(in)
for some {i1,...,in} C {1,...,n}. We show that i; < is < ... < i,. Let j €
{2,...,n}. Then
@D v(@) =v(G =1 +ej=T() =T —-1)+T(e)
= v(ij) = v(ij-1) + T(e;)
= (v(i3)r = (W(i—1))k + (T(eg))r VEe{l,...,n}.
Since (v(ij—1)) = 1 for all 1 <k < i;—1 and (T'(e;))x € {0,1}, we have (v(i;))r =1

for all 1 <k < 4;—;. This implies that i;_1 <1i; < n.
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Now, let N (T'(e;)) be the number of all possible choices of T'(e;) such that
T(v(j)) = v(i;). Forall 1 < k < ij_1 and for all 2 < j < n we have (v(ij))r =
(v(ij—1))kr = 1. By the use of equation (I) and noting that 1+1 =140 =1, we
obtain that

(T(ej))k =0 or (T(e;)),=1.

Then
N(T(e;)) =24 Vje{2,...,n}.

Let N (T) be the number of all possible choices for all T'(e;) (2 < j < n). Then
N(T) =2" x ... x 2n-t = 20tfin-t,

Since i1 < ... < iy, by the use of Lemma 2.3, we can conclude that
n n n
(LEVB),[ =Y Y ... Y avtetin
i1=1142=1%1 G =ln—1
O

Example 2.5. The representation matrix of a linear preserver of 3 x 1 Ferrers
vectors according to Theorem 2.2 has one of the following 172 forms:

(1 a2 a13]
Ti=|0 1 oo, {on2,013,003, a3,a33}€{0,1}, n(T1)=2° =32,
L0 a3z ass]
(1 a2 a13]
To=10 0 1 |, {oag,0u3a3}€{0,1}, n(Tp) =2°=38,
L0 0 ass]
[1 o1z i3]
T3=10 0 0 |, {az,a13}€{0,1}, n(T3)=22=4,
L0 0 0 |
(1 a2 i3]
Ti= |1 ap |, {12,013, a2, 003,032,033} € {0,1}, n(Ty) = 2° =64,
L0 a3z ass]
(1 a2 i3]
Ts= |1 aup |, {12,013, a2, 00,032,033} € {0,1}, n(Ts) = 2° = 64.
L1 a3z ass]
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Also, by the use of Theorem 2.4 we observe that

(LEVB)s|

23: 23: 9i1tiz _ 23: 23: 9l+iz 4 23: 23: 92+iz +23+3
o=iq i3=in

ia=11ig=is i2=2i3=is

H
; ,,Mw

3 3
1+1 4 Z 21+2 4 21+3 4 Z 22+2 4 22+3 + 23+3

_

13=2 13=2

’L
=3x224+92x224+2%+2x 24 +2°+20 =172.

Example 2.6. The MATLAB code for calculating |(LEVB),| is as follows for
every n:

function S=prj_gen(n)
h=fopen(’prog.m’,’w’);
fprintf (h,’function S=prog(n)\n’);
fprintf (h,’S=0;\n’);
for i=1:n
if i==
ind=’1";
else
ind=[’i’ num2str(i-1)];
end
fprintf (h,’for i%d=Y%s:n\n’,i,ind);
end
fprintf(h,’S=S+27(’);
for i=1:n-1
if i7=n-1
pow=[’1i’ num2str(i) ’+’];
else
pow=[’1i’ num2str(i)];
end
fprintf (h,pow) ;
end
fprintf(h,’);\n’);
for i=1:n
fprintf(h,’end \n’);
end
fclose(h);
S=prog(n) ;
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function S=prog(n)
S=0;
for il=1:n
for i2=il:n
for i3=i2:n
for i4=i3:n
for ib=i4:n
for i6=i5:n
for i7=i6:n
for i8=i7:n
for i9=i8:n
for i10=i9:n
for i11=i10:n

for i12=il11l:n
S=S+J(i1+i2+i3+i4+i5+i6+i7+i8+19+i10+il11);

end
end
end
end
end
end
end
end
end
end
end
end
clc
clear
for n=2:10
S=prj_gen(n);
disp(’ )
disp([’n = ’ num2str(n)])

disp([’ ILFV’ num2str(n) ’(B)| = ’ num2str(S)])

end
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|((LFVB),)|

8
172
12528
3412496
3604201088
14993777471936
2.475778594880996 e + 17
1.628864745018387 e + 22
10 4.27831114511251 e + 27

© 0 NS Utk w3

3. LINEAR PRESERVER OF n X 1 FERRERS VECTORS OVER /75

In this section, we consider the Boolean ring Zo = {0, 1} such that 1+1=0. We
find all linear preservers of n x 1 Ferrers vectors over Zs.

k
Ek) = )" ai;. The following theorem characterizes the struc-
j=1

ture of linear operators preserving Ferrers vectors over Zs.

For a matrix A, let a

Theorem 3.1. Let T: 75 — Z% be a linear operator. Let A = [a;;] be the
representation matrix of T with respect to {e1,...,e,}. Then T is a linear preserver
of n x 1 Ferrers vectors if and only if the following conditions hold:

(1) a;3 =1 and a2 = ... = a1, =0,
(2) foreveryl <i<n—1land1<k<n, ifagk) =0, then az(-l_f_)l =0.

Proof. Let T be a linear preserver of n x 1 Ferrers vectors. We first show that
a;n =1 and a;; = 0 for all 1 < j < n. By the assumption, there exists 1 < j1 <n
such that Av(1) = v(j1), so a;1 = 1. Also, there exists 1 < jo < n such that
Av(2) = v(jz2), so (Av(2))1 = 1, which implies 1 + a2 = 1 and hence a2 = 0.

By induction we show that a1 = ... = a1, = 0. Let a120 = ... = a1p,—1 = 0.
For Awv(n), there exists 1 < j, < n such that Av(n) = v(j,). Consequently,
1+0+...+0+ai, =1 and so ay, = 0.

Now, we prove that for all 1 < k < n, al(.k) = 0 implies that agi)l = 0. Assume if
possible that there exists 1 < I < n such that agl) = 0 but a§21 # 0. Consider the
Ferrers vector v(l) = (1,...,1,0,...,0)". So (Av(l)); = 0, but (Av(l));x1 = 1 and
this is a contradiction.

Conversely, suppose that a1; = 1 and a12 = ... = a1, = 0 and agk) = 0 for all

1 < k < n implies that az(i)l = 0. We show that A is a linear preserver of n x 1
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Ferrers vectors on Zs. Let 1 < k < n be arbitrary and suppose that there exists
1 <4 < n such that (Av(k)); = 0. We show that (Av(k));+1 = 0.
k
Since (Av(k)); = a;1 + a2 + ... + a;, = 0, we have af = Y aij; = 0. Then by the
j=1
assumption a'™ = 0, so ag_lf_)l = 0. Since a¥ ; = (Av(k))i+1, we have (Av(k))iy1 = 0.

i
Therefore, A is a linear preserver of n x 1 Ferrers vectors on Zs. (Il

Lemma 3.2. Let |[(LFVZ3),| be the cardinal number of (LFVZ5),,. Then

[(LEVZ3),| =n™.

Proof. Let T be an arbitrary linear preserver of n x 1 Ferrers vectors on 7.
Now, consider all possible choices for T'. We have T'((FVZ3),,) C (FVZ3), and hence

T(w(1)) =wv(ia), T(v(2))=v(ia),..., T(v(n)) =wv(in),

where {i1,42,...,in} € {1,2,...,n}. Since e; = v(j — 1) + v(j), we have

(3.1) T(e;) =T(v(j — 1))+ T(v(4))-
So, for every 1 < j < n, T(e;) is completely determined by T'(v(1)),...,T(v(n)).
Thus, for finding a linear preserver T over Zs we need to know T'(v(1)),...,T(v(n)).

If T is a linear preserver, then for 1 < j < n there exists 1 < i; < n such that
T(v(j)) = v(i;). Now, by the use of multiplication principle, we have

(LFVZ2)n| = n™.

O

Example 3.3. For every 1 < n < 10 we compare [(LFVZ3),| and |(LFVB),| in
the following table:

n |(LFVB),,| [(LEVZ2)y,|
2 8

2 8 4

3 172 27

4 12528 256

) 3412496 3125

6 3604201088 46656

7 14993777471936 823543

8  2.475778594880996 e + 17 16777216

9  1.628864745018387 e + 22 387420489
10 4.2731114511251 e + 27 le+10
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