

Leila Fazlpar; Ali Armandnejad
Linear preserver of $n \times 1$ Ferrers vectors

Czechoslovak Mathematical Journal, Vol. 73 (2023), No. 4, 1189–1200

Persistent URL: <http://dml.cz/dmlcz/151954>

Terms of use:

© Institute of Mathematics AS CR, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* <http://dml.cz>

LINEAR PRESERVER OF $n \times 1$ FERRERS VECTORS

LEILA FAZLPAR, Rafsanjan, ALI ARMANDNEJAD, Kerman

Received October 3, 2022. Published online May 9, 2023.

Abstract. Let $A = [a_{ij}]_{m \times n}$ be an $m \times n$ matrix of zeros and ones. The matrix A is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero $(1, 1)$ -entry. We characterize all linear maps preserving the set of $n \times 1$ Ferrers vectors over the binary Boolean semiring and over the Boolean ring \mathbb{Z}_2 . Also, we have achieved the number of these linear maps in each case.

Keywords: Ferrers matrix; linear preserver; Boolean semiring

MSC 2020: 15A04, 05B20

1. INTRODUCTION

In the analysis of a biological lattice, $(0, 1)$ -matrices are an essential tool. Some samples are the hunt predictor patterns, the climate-growth patterns, the pollinator-plant patterns, see [1]. In this paper, we will characterize the linear maps that preserve the set of $n \times 1$ Ferrers vectors over the binary Boolean semiring or over the Boolean ring \mathbb{Z}_2 . Some works on linear preserver problems can be found in [3] and [4]. The required definitions are listed below.

A semiring is a set S together with two binary operators $S(+, \cdot)$ satisfying the following conditions:

- (1) additive associativity: for all $a, b, c \in S$, $a + (b + c) = (a + b) + c$,
- (2) additive commutativity: for all $a, b \in S$, $a + b = b + a$,
- (3) multiplicative associativity: for all $a, b, c \in S$, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$,
- (4) left and right distributivity: for all $a, b, c \in S$, $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ and $(b + c) \cdot a = (b \cdot a) + (c \cdot a)$.

In other words, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse.

A ring R is called a *Boolean ring* if $x^2 = x$ for all $x \in R$.

Example 1.1. Let X be a nonempty set. Define

$$A \oplus B = A \cup B, \quad A \cdot B = A \cap B \quad \forall A, B \in P(X).$$

Then $(P(X), \oplus, \cdot)$ is a Boolean semiring having \emptyset and X as its zero and identity, respectively. The empty set \emptyset is the only additively invertible element of $(P(X), \oplus, \cdot)$. So, $(P(X), \oplus, \cdot)$ is not a Boolean ring. Also, $A \oplus A = A$ for all $A \in P(X)$, see [5].

Example 1.2. Let

$$S = \{0\} \cup \left[\frac{1}{2}, 1 \right]$$

and define

$$\begin{aligned} x \oplus 0 &= 0 \oplus x = x, \quad \forall x \in S, \\ x \oplus y &= \frac{1}{2}, \quad \forall x, y \in \left[\frac{1}{2}, 1 \right], \\ x \cdot y &= \min\{x, y\}, \quad \forall x, y \in S. \end{aligned}$$

It is easy to show that (S, \oplus, \cdot) is a Boolean semiring with zero 0 and identity 1. Moreover, 0 is the only additively invertible element of the semiring (S, \oplus, \cdot) , see [5].

On $\{0, 1\}$ there are two semiring structures. The first is the Boolean semiring that corresponds to $1 + 1 = 1$ and we will denote it by \mathcal{B} , see [2].

$$\begin{array}{c|cc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 1 \end{array} \quad \begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

The second is the Boolean ring \mathbb{Z}_2 that corresponds to $1 + 1 = 0$, see [2].

$$\begin{array}{c|cc} + & 0 & 1 \\ \hline 0 & 0 & 1 \\ 1 & 1 & 0 \end{array} \quad \begin{array}{c|cc} \cdot & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \end{array}$$

By $M_{m,n}(\mathcal{B})$ we mean the set of all $m \times n$ matrices with entries from \mathcal{B} . Let $\mathcal{B}^n = M_{n,1}(\mathcal{B})$ and let $e_j \in \mathcal{B}^n$ be the vector with exactly one nonzero entry 1 in the j th position. The vectors e_j are called *cells*. The zero vector of $M_{n,1}(\mathcal{B})$ is denoted by $O_{n,1}$.

A function $T: M_{m,n}(\mathcal{B}) \rightarrow M_{m,n}(\mathcal{B})$ is said to be a linear operator of $M_{m,n}(\mathcal{B})$ if for any $A, B \in M_{m,n}(\mathcal{B})$ and for any $\alpha \in \mathcal{B}$, $T(A + B) = T(A) + T(B)$ and $T(\alpha A) = \alpha T(A)$. Let $T: M_{m,n}(\mathcal{B}) \rightarrow M_{m,n}(\mathcal{B})$ be a linear operator. For a set $X \subseteq M_{m,n}(\mathcal{B})$, if $A \in X$ implies that $T(A) \in X$, we say that T preserves X . Furthermore, we say that T strongly preserves X if $A \in X$, if and only if $T(A) \in X$.

In [1], Beasley has found the structure of bijective linear maps preserving $m \times n$ Ferrers matrices over the Boolean semiring as follows.

Theorem 1.3 ([1]). Let $T: M_{m,n}(\mathcal{B}) \rightarrow M_{m,n}(\mathcal{B})$ be a bijective linear operator that maps the set of all Ferrers matrices in $M_{m,n}(\mathcal{B})$ to itself. Then either:

- (1) T is the identity, or
- (2) $m = n$ and T is the transpose operator.

This paper consists of two sections. In the first and second sections we will characterize the structure of linear maps preserving $n \times 1$ Ferrers vectors over the Boolean semiring \mathcal{B} and over the ring \mathbb{Z}_2 , respectively. In this paper we denote the i th row of a matrix A by a_i and the (i, j) entry of a matrix A by a_{ij} .

Definition 1.4. An $m \times n$ matrix of zeros and ones is said to be a Ferrers matrix if:

- ▷ it has decreasing row sums,
- ▷ it is row and column dense, i.e., there are no zeros between two nonzero entries for every row and every column,
- ▷ its $(1, 1)$ -entry is 1.

In other words, $A = [a_{ij}]$ is a Ferrers matrix if and only if $a_{ij} = 1$ implies that $a_{kl} = 1$ for all $k \leq i$ and $l \leq j$. For example,

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

is a 3×3 Ferrers matrix.

In this paper, we denote a Ferrers vector by v , also we denote the set of $n \times 1$ Ferrers vectors over a set S by $(FVS)_n$. It is observable that $(FVS)_n = \{v(1), \dots, v(n)\}$, where $v(i) = e_1 + e_2 + \dots + e_i$.

Definition 1.5. Let $1 \leq i \leq n$. A Ferrers vector $v = (v_1, v_2, \dots, v_n)^\top$ is said to be an i -weight Ferrers vector if $v_i = 1$ and $v_{i+1} = 0$ (unless $i = n$).

For example, $v = (1, 1, 1, 0, \dots, 0)^\top$ is a 3-weight Ferrers vector.

2. LINEAR PRESERVER OF $n \times 1$ FERRERS VECTORS OVER \mathcal{B}

Definition 2.1. A nonzero row vector $v = (v_1, v_2, \dots, v_n)^\top$ is said to be a stair (of order i), if there exists i ($1 \leq i \leq n$) such that $v_i = 1$ and $v_1 = \dots = v_{i-1} = 0$ (unless $i = 1$). The order of a stair v is denoted by $s(v)$. Also the zero row vector is said to be a stair of order $n + 1$.

The following theorem characterizes the structure of linear maps preserving Ferrers vectors over \mathcal{B} .

Theorem 2.2. Let $T: \mathcal{B}^n \rightarrow \mathcal{B}^n$ be a linear map and let A be the representation matrix of T with respect to $\{e_1, \dots, e_n\}$. Then T is a linear preserver of $n \times 1$ Ferrers vectors if and only if for all $i = 1, \dots, n$, a_i is a stair and $1 = s(a_1) \leq s(a_2) \leq \dots \leq s(a_n) \leq n + 1$, where a_i is the i th row of A . In other words, A has the following form:

$$(2.1) \quad \begin{array}{c} \text{column } k_1 \quad \text{column } k_2 \quad \dots \quad \text{column } k_s \\ \hline \text{row } p_1 & \begin{pmatrix} 1 & & & & & \\ \vdots & * & & * & & * \\ 1 & & 1 & & & \\ & & \vdots & * & & * \\ & & 0 & & & \\ \text{row } p_2 & & & 1 & & \\ & & & \vdots & & \\ & & & 0 & & * \\ & & & & & * \\ \text{row } p_3 & & & & & \\ & & & & & \ddots \\ & & & & & 1 & * \\ & & & & & \vdots & \\ & & & & & 0 & * \\ \text{row } p_t & & & & & 1 & \\ & & & & & 0 & \\ & & & & & 0 & 0 \end{pmatrix} \\ \text{row } p_t & \end{array},$$

where $1 \leq p_1 \leq \dots \leq p_t \leq n$ and $1 \leq k_1 \leq \dots \leq k_s \leq n$.

Proof. First, we show that any matrix of the above form is the representation matrix of a linear preserver of $n \times 1$ Ferrers vectors. Suppose that $v = (v_1, v_2, \dots, v_n)^\top$ is any arbitrary Ferrers vector. Since $s(a_1) = 1$ and $v_1 = 1$, $(Av)_1 = 1$. If $(Av)_l = 1$ for some l ($1 \leq l \leq n$), we show that $(Av)_i = 1$ for all $i < l$.

By the assumption, a_l is a stair of order k ($1 \leq k \leq n$). Since $s(a_l) = k$ and $(Av)_l = 1$, we have

$$1 = (Av)_l = \sum_{j=1}^n A_{lj} v_j = \sum_{j=k}^n A_{lj} v_j.$$

So, there exist some j ($k \leq j \leq n$) such that $a_{lj} = 1$ and $v_j = 1$. Since $j \geq k$ and v is a Ferrers vector, $v_1 = v_2 = \dots = v_k = 1$. Now, let $i \leq l$. By the assumption, $s(a_i) \leq s(a_l) = k$ and hence there exists some m ($1 \leq m \leq k$) such that $a_{im} = 1$. Since $m \leq k$, $v_m = 1$ and these imply that

$$(Av)_i = a_{im} v_m + \sum_{\substack{j=1 \\ j \neq m}}^n a_{ij} v_j = 1.$$

So, $(Av)_1 = \dots = (Av)_l = 1$ and hence Av is a Ferrers vector. Then T is a linear preserver of $n \times 1$ Ferrers vectors.

Conversely, let T be a linear preserver of $n \times 1$ Ferrers vectors. We first show that $s(a_1) = 1$. Since e_1 is a Ferrers vector and T is a linear preserver of $n \times 1$ Ferrers vectors, $T(e_1) = Ae_1$ is a Ferrers vector and hence $a_{11} \neq 0$. Now, we show that if $p < q$, then $s(a_p) \leq s(a_q)$. Assume if possible that $k = s(a_p) > m = s(a_q)$. So, $a_{pk} = a_{qm} = 1$. Consider the Ferrers vector $v = (v_1, v_2, \dots, v_n)^\top = e_1 + e_2 + \dots + e_m$. Since $m < k$, $v_k = \dots = v_n = 0$ and hence

$$(Av)_p = \sum_{j=1}^n a_{pj} v_j = \sum_{j=k}^n a_{pj} v_j = 0.$$

On the other hand, $a_{qm} = v_m = 1$ and consequently,

$$(Av)_q = \sum_{j=1}^n a_{qj} v_j = a_{qm} v_m + \sum_{\substack{j=1 \\ j \neq m}}^n a_{qj} v_j = 1.$$

So, $(Av)_q = 1$ and $(Av)_p = 0$. Since $p < q$, Av is not a Ferrers vector, which is a contradiction. Therefore,

$$1 = s(a_1) \leq s(a_2) \leq \dots \leq s(a_n),$$

and the proof is complete. \square

We need the following lemma to find the number of linear preservers of $n \times 1$ Ferrers vectors over \mathcal{B} .

Lemma 2.3. *Let $\mathcal{F}_n = \{f: \{1, \dots, n\} \rightarrow \{1, \dots, n\}: f \text{ is nondecreasing}\}$. Then*

$$|\mathcal{F}_n| = |\{(i_1, \dots, i_n): 1 \leq i_1 \leq \dots \leq i_n \leq n\}| = \sum_{i_1=1}^n \sum_{i_2=i_1}^n \dots \sum_{i_n=i_{n-1}}^n 1.$$

P r o o f. For $1 \leq i_1 \leq i_2 \leq \dots \leq i_k \leq n$, let

$$\mathcal{F}_n(i_1, \dots, i_k) = \{f \in \mathcal{F}_n: f(1) = i_1, \dots, f(k) = i_k\}.$$

We show that

$$|\mathcal{F}_n(i_1, \dots, i_k)| = \sum_{i_{k+1}=i_k}^n |\mathcal{F}_n(i_1, \dots, i_{k+1})|.$$

For $f \in \mathcal{F}_n(i_1, \dots, i_k)$, let $f(k+1) = i_{k+1}$. This implies that

$$i_{k+1} \in \{i_k, i_k + 1, \dots, n\},$$

and hence

$$\mathcal{F}_n(i_1, \dots, i_k) = \bigcup_{i_{k+1}=i_k}^n \mathcal{F}_n(i_1, \dots, i_k, i_{k+1}).$$

So, we have

$$|\mathcal{F}_n(i_1, \dots, i_k)| = \left| \bigcup_{i_{k+1}=i_k}^n \mathcal{F}_n(i_1, \dots, i_k, i_{k+1}) \right|.$$

Since the sets $\mathcal{F}_n(i_1, \dots, i_k, i_k)$, $\mathcal{F}_n(i_1, \dots, i_k, i_k + 1), \dots, \mathcal{F}_n(i_1, \dots, i_k, n)$ are mutually disjoint, we conclude that

$$|\mathcal{F}_n(i_1, \dots, i_k)| = \sum_{i_{k+1}=i_k}^n |\mathcal{F}_n(i_1, \dots, i_k, i_{k+1})|.$$

On the other hand, we have $\mathcal{F}_n = \bigcup_{i_1=1}^n \mathcal{F}_n(i_1)$ and therefore,

$$|\mathcal{F}_n| = \sum_{i_1=1}^n |\mathcal{F}_n(i_1)| = \sum_{i_1=1}^n \sum_{i_2=i_1}^n |\mathcal{F}_n(i_1, i_2)| = \sum_{i_1=1}^n \sum_{i_2=i_1}^n \dots \sum_{i_n=i_{n-1}}^n |\mathcal{F}_n(i_1, \dots, i_n)|.$$

Since $|\mathcal{F}_n(i_1, \dots, i_n)| = 1$, we conclude that

$$|\mathcal{F}_n| = \sum_{i_1=1}^n \sum_{i_2=i_1}^n \dots \sum_{i_n=i_{n-1}}^n 1.$$

□

We denote the set of all linear preservers of $n \times 1$ Ferrers vectors over \mathcal{B} by $(\text{LFV}\mathcal{B})_n$.

Theorem 2.4. *Let $|\text{LFV}\mathcal{B})_n|$ be the cardinal number of $(\text{LFV}\mathcal{B})_n$. Then*

$$|(\text{LFV}\mathcal{B})_n| = \sum_{i_1=1}^n \sum_{i_2=i_1}^n \dots \sum_{i_n=i_{n-1}}^n 2^{i_1+\dots+i_{n-1}}.$$

P r o o f. Let T be an arbitrary linear preserver of $n \times 1$ Ferrers vectors over \mathcal{B} . Now consider all possible choices for operator T . We have $T((\text{FV}\mathcal{B})_n) \subseteq (\text{FV}\mathcal{B})_n$ and hence,

$$T(v(1)) = v(i_1), \quad T(v(2)) = v(i_2), \dots, \quad T(v(n)) = v(i_n)$$

for some $\{i_1, \dots, i_n\} \subseteq \{1, \dots, n\}$. We show that $i_1 \leq i_2 \leq \dots \leq i_n$. Let $j \in \{2, \dots, n\}$. Then

$$\begin{aligned} (I) \quad v(j) &= v(j-1) + e_j \Rightarrow T(v(j)) = T(v(j-1)) + T(e_j) \\ &\Rightarrow v(i_j) = v(i_{j-1}) + T(e_j) \\ &\Rightarrow (v(i_j))_k = (v(i_{j-1}))_k + (T(e_j))_k \quad \forall k \in \{1, \dots, n\}. \end{aligned}$$

Since $(v(i_{j-1}))_k = 1$ for all $1 \leq k \leq i_{j-1}$ and $(T(e_j))_k \in \{0, 1\}$, we have $(v(i_j))_k = 1$ for all $1 \leq k \leq i_{j-1}$. This implies that $i_{j-1} \leq i_j \leq n$.

Now, let $\mathcal{N}(T(e_j))$ be the number of all possible choices of $T(e_j)$ such that $T(v(j)) = v(i_j)$. For all $1 \leq k \leq i_{j-1}$ and for all $2 \leq j \leq n$ we have $(v(i_j))_k = (v(i_{j-1}))_k = 1$. By the use of equation (I) and noting that $1 + 1 = 1 + 0 = 1$, we obtain that

$$(T(e_j))_k = 0 \quad \text{or} \quad (T(e_j))_k = 1.$$

Then

$$\mathcal{N}(T(e_j)) = 2^{i_{j-1}} \quad \forall j \in \{2, \dots, n\}.$$

Let $\mathcal{N}(T)$ be the number of all possible choices for all $T(e_j)$ ($2 \leq j \leq n$). Then

$$\mathcal{N}(T) = 2^{i_1} \times \dots \times 2^{i_{n-1}} = 2^{i_1 + \dots + i_{n-1}}.$$

Since $i_1 \leq \dots \leq i_n$, by the use of Lemma 2.3, we can conclude that

$$|(\text{LFV}\mathcal{B})_n| = \sum_{i_1=1}^n \sum_{i_2=i_1}^n \dots \sum_{i_n=i_{n-1}}^n 2^{i_1 + \dots + i_{n-1}}.$$

□

Example 2.5. The representation matrix of a linear preserver of 3×1 Ferrers vectors according to Theorem 2.2 has one of the following 172 forms:

$$\begin{aligned} T_1 &= \begin{bmatrix} 1 & \alpha_{12} & \alpha_{13} \\ 0 & 1 & \alpha_{23} \\ 0 & \alpha_{32} & \alpha_{33} \end{bmatrix}, \quad \{\alpha_{12}, \alpha_{13}, \alpha_{23}, \alpha_{32}, \alpha_{33}\} \in \{0, 1\}, \quad n(T_1) = 2^5 = 32, \\ T_2 &= \begin{bmatrix} 1 & \alpha_{12} & \alpha_{13} \\ 0 & 0 & 1 \\ 0 & 0 & \alpha_{33} \end{bmatrix}, \quad \{\alpha_{12}, \alpha_{13}, \alpha_{33}\} \in \{0, 1\}, \quad n(T_2) = 2^3 = 8, \\ T_3 &= \begin{bmatrix} 1 & \alpha_{12} & \alpha_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \{\alpha_{12}, \alpha_{13}\} \in \{0, 1\}, \quad n(T_3) = 2^2 = 4, \\ T_4 &= \begin{bmatrix} 1 & \alpha_{12} & \alpha_{13} \\ 1 & \alpha_{22} & \alpha_{23} \\ 0 & \alpha_{32} & \alpha_{33} \end{bmatrix}, \quad \{\alpha_{12}, \alpha_{13}, \alpha_{22}, \alpha_{23}, \alpha_{32}, \alpha_{33}\} \in \{0, 1\}, \quad n(T_4) = 2^6 = 64, \\ T_5 &= \begin{bmatrix} 1 & \alpha_{12} & \alpha_{13} \\ 1 & \alpha_{22} & \alpha_{23} \\ 1 & \alpha_{32} & \alpha_{33} \end{bmatrix}, \quad \{\alpha_{12}, \alpha_{13}, \alpha_{22}, \alpha_{23}, \alpha_{32}, \alpha_{33}\} \in \{0, 1\}, \quad n(T_5) = 2^6 = 64. \end{aligned}$$

Also, by the use of Theorem 2.4 we observe that

$$\begin{aligned}
 |(\text{LFV}\mathcal{B})_3| &= \sum_{i_1=1}^3 \sum_{i_2=i_1}^3 \sum_{i_3=i_2}^3 2^{i_1+i_2} = \sum_{i_2=1}^3 \sum_{i_3=i_2}^3 2^{1+i_2} + \sum_{i_2=2}^3 \sum_{i_3=i_2}^3 2^{2+i_2} + 2^{3+3} \\
 &= \sum_{i_3=1}^3 2^{1+1} + \sum_{i_3=2}^3 2^{1+2} + 2^{1+3} + \sum_{i_3=2}^3 2^{2+2} + 2^{2+3} + 2^{3+3} \\
 &= 3 \times 2^2 + 2 \times 2^3 + 2^4 + 2 \times 2^4 + 2^5 + 2^6 = 172.
 \end{aligned}$$

Example 2.6. The MATLAB code for calculating $|(\text{LFV}\mathcal{B})_n|$ is as follows for every n :

```

function S=prj_gen(n)
h=fopen('prog.m','w');
fprintf(h,'function S=prog(n)\n');
fprintf(h,'S=0;\n');
for i=1:n
    if i==1
        ind='1';
    else
        ind=['i' num2str(i-1)];
    end
    fprintf(h,'for i%d=%s:n\n',i,ind);
end
fprintf(h,'S=S+2^(');
for i=1:n-1
    if i~=n-1
        pow=['i' num2str(i) '+'];
    else
        pow=['i' num2str(i)];
    end
    fprintf(h,pow);
end
fprintf(h,');\n');
for i=1:n
    fprintf(h,'end \n');
end
fclose(h);
S=prog(n);

```

```

function S=prog(n)
S=0;
for i1=1:n
    for i2=i1:n
        for i3=i2:n
            for i4=i3:n
                for i5=i4:n
                    for i6=i5:n
                        for i7=i6:n
                            for i8=i7:n
                                for i9=i8:n
                                    for i10=i9:n
                                        for i11=i10:n
                                            for i12=i11:n
                                                S=S+2^(i1+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11);
                                            end
                                        end
                                    end
                                end
                            end
                        end
                    end
                end
            end
        end
    end
end
clc
clear
for n=2:10
S=prj_gen(n);
disp(' ')
disp(['n = ' num2str(n)])
disp(['|LFV| ' num2str(n) ' (B)| = ' num2str(S)])
end

```

n	$ (\text{LFV}\mathcal{B})_n $
2	8
3	172
4	12528
5	3412496
6	3604201088
7	14993777471936
8	2.475778594880996 e + 17
9	1.628864745018387 e + 22
10	4.27831114511251 e + 27

3. LINEAR PRESERVER OF $n \times 1$ FERRERS VECTORS OVER \mathbb{Z}_2

In this section, we consider the Boolean ring $\mathbb{Z}_2 = \{0, 1\}$ such that $1 + 1 = 0$. We find all linear preservers of $n \times 1$ Ferrers vectors over \mathbb{Z}_2 .

For a matrix A , let $a_i^{(k)} = \sum_{j=1}^k a_{ij}$. The following theorem characterizes the structure of linear operators preserving Ferrers vectors over \mathbb{Z}_2 .

Theorem 3.1. *Let $T: \mathbb{Z}_2^n \rightarrow \mathbb{Z}_2^n$ be a linear operator. Let $A = [a_{ij}]$ be the representation matrix of T with respect to $\{e_1, \dots, e_n\}$. Then T is a linear preserver of $n \times 1$ Ferrers vectors if and only if the following conditions hold:*

- (1) $a_{11} = 1$ and $a_{12} = \dots = a_{1n} = 0$,
- (2) for every $1 \leq i \leq n-1$ and $1 \leq k \leq n$, if $a_i^{(k)} = 0$, then $a_{i+1}^{(k)} = 0$.

P r o o f. Let T be a linear preserver of $n \times 1$ Ferrers vectors. We first show that $a_{11} = 1$ and $a_{1j} = 0$ for all $1 \leq j \leq n$. By the assumption, there exists $1 \leq j_1 \leq n$ such that $Av(1) = v(j_1)$, so $a_{11} = 1$. Also, there exists $1 \leq j_2 \leq n$ such that $Av(2) = v(j_2)$, so $(Av(2))_1 = 1$, which implies $1 + a_{12} = 1$ and hence $a_{12} = 0$.

By induction we show that $a_{12} = \dots = a_{1n} = 0$. Let $a_{12} = \dots = a_{1n-1} = 0$. For $Av(n)$, there exists $1 \leq j_n \leq n$ such that $Av(n) = v(j_n)$. Consequently, $1 + 0 + \dots + 0 + a_{1n} = 1$ and so $a_{1n} = 0$.

Now, we prove that for all $1 \leq k \leq n$, $a_i^{(k)} = 0$ implies that $a_{i+1}^{(k)} = 0$. Assume if possible that there exists $1 \leq l \leq n$ such that $a_i^{(l)} = 0$ but $a_{i+1}^{(l)} \neq 0$. Consider the Ferrers vector $v(l) = (1, \dots, 1, 0, \dots, 0)^\top$. So $(Av(l))_i = 0$, but $(Av(l))_{i+1} = 1$ and this is a contradiction.

Conversely, suppose that $a_{11} = 1$ and $a_{12} = \dots = a_{1n} = 0$ and $a_i^{(k)} = 0$ for all $1 \leq k \leq n$ implies that $a_{i+1}^{(k)} = 0$. We show that A is a linear preserver of $n \times 1$

Ferrers vectors on \mathbb{Z}_2 . Let $1 \leq k \leq n$ be arbitrary and suppose that there exists $1 \leq i \leq n$ such that $(Av(k))_i = 0$. We show that $(Av(k))_{i+1} = 0$.

Since $(Av(k))_i = a_{i1} + a_{i2} + \dots + a_{ik} = 0$, we have $a_i^k = \sum_{j=1}^k a_{ij} = 0$. Then by the assumption $a_i^{(k)} = 0$, so $a_{i+1}^{(k)} = 0$. Since $a_{i+1}^k = (Av(k))_{i+1}$, we have $(Av(k))_{i+1} = 0$. Therefore, A is a linear preserver of $n \times 1$ Ferrers vectors on \mathbb{Z}_2 . \square

Lemma 3.2. *Let $|(\text{LFV}\mathbb{Z}_2)_n|$ be the cardinal number of $(\text{LFV}\mathbb{Z}_2)_n$. Then*

$$|(\text{LFV}\mathbb{Z}_2)_n| = n^n.$$

P r o o f. Let T be an arbitrary linear preserver of $n \times 1$ Ferrers vectors on \mathbb{Z}_2 . Now, consider all possible choices for T . We have $T((\text{FV}\mathbb{Z}_2)_n) \subseteq (\text{FV}\mathbb{Z}_2)_n$ and hence

$$T(v(1)) = v(i_1), \quad T(v(2)) = v(i_2), \dots, \quad T(v(n)) = v(i_n),$$

where $\{i_1, i_2, \dots, i_n\} \subseteq \{1, 2, \dots, n\}$. Since $e_j = v(j-1) + v(j)$, we have

$$(3.1) \quad T(e_j) = T(v(j-1)) + T(v(j)).$$

So, for every $1 \leq j \leq n$, $T(e_j)$ is completely determined by $T(v(1)), \dots, T(v(n))$. Thus, for finding a linear preserver T over \mathbb{Z}_2 we need to know $T(v(1)), \dots, T(v(n))$. If T is a linear preserver, then for $1 \leq j \leq n$ there exists $1 \leq i_j \leq n$ such that $T(v(j)) = v(i_j)$. Now, by the use of multiplication principle, we have

$$|(\text{LFV}\mathbb{Z}_2)_n| = n^n.$$

\square

Example 3.3. For every $1 \leq n \leq 10$ we compare $|(\text{LFV}\mathbb{Z}_2)_n|$ and $|(\text{LFV}\mathcal{B})_n|$ in the following table:

n	$ (\text{LFV}\mathcal{B})_n $	$ (\text{LFV}\mathbb{Z}_2)_n $
2	8	
2	8	4
3	172	27
4	12528	256
5	3412496	3125
6	3604201088	46656
7	14993777471936	823543
8	2.475778594880996 e + 17	16777216
9	1.628864745018387 e + 22	387420489
10	4.2731114511251 e + 27	1 e + 10

References

- [1] *L. B. Beasley*: (0, 1)-matrices, discrepancy and preservers. *Czech. Math. J.* **69** (2019), 1123–1131. [zbl](#) [MR](#) [doi](#)
- [2] *W. Kuich, A. Salomaa*: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science 5. Springer, Berlin, 1986. [zbl](#) [MR](#) [doi](#)
- [3] *S. M. Motlaghian, A. Armandnejad, F. J. Hall*: Linear preservers of row-dense matrices. *Czech. Math. J.* **66** (2016), 847–858. [zbl](#) [MR](#) [doi](#)
- [4] *S. M. Motlaghian, A. Armandnejad, F. J. Hall*: Strong linear preservers of dense matrices. *Bull. Iran. Math. Soc.* **44** (2018), 969–976. [zbl](#) [MR](#) [doi](#)
- [5] *N. Sirasuntorn, S. Sombatboriboon, N. Udomsub*: Inversion of matrices over Boolean semirings. *Thai J. Math.* **7** (2009), 105–113. [zbl](#) [MR](#)

Authors' addresses: Leila Fazlpar, Department of Mathematics, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, Iran, e-mail: fazlparleila@gmail.com; Ali Armandnejad (corresponding author), Department of Pure Mathematics, Shahid Bahonar University of Kerman, Bahman Blvd 22, Kerman, Iran, and Department of Mathematics, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan, Iran, e-mail: armandnejad@uk.ac.ir, armandnejad@vru.ac.ir.