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Abstract. Let A = [aij ]m×n be an m×n matrix of zeros and ones. The matrix A is said
to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with
nonzero (1, 1)-entry. We characterize all linear maps perserving the set of n × 1 Ferrers
vectors over the binary Boolean semiring and over the Boolean ring Z2. Also, we have
achieved the number of these linear maps in each case.
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1. Introduction

In the analysis of a biological lattice, (0, 1)-matrices are an essential tool. Some

samples are the hunt predictor patterns, the climate-growth patterns, the pollinator-

plant patterns, see [1]. In this paper, we will characterize the linear maps that

preserve the set of n × 1 Ferrers vectors over the binary Boolean semiring or over

the Boolean ring Z2. Some works on linear preserver problems can be found in [3]

and [4]. The required definitions are listed below.

A semiring is a set S together with two binary operators S(+, ·) satisfying the

following conditions:

(1) additive associativity: for all a, b, c ∈ S, a+ (b+ c) = (a+ b) + c,

(2) additive commutativity: for all a, b ∈ S, a+ b = b+ a,

(3) multiplicative associativity: for all a, b, c ∈ S, a · (b · c) = (a · b) · c,

(4) left and right distributivity: for all a, b, c ∈ S, a · (b + c) = (a · b) + (a · c) and

(b+ c) · a = (b · a) + (c · a).

In other words, a semiring is an algebraic structure similar to a ring, but without

the requirement that each element must have an additive inverse.

A ring R is called a Boolean ring if x2 = x for all x ∈ R.
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Example 1.1. Let X be a nonempty set. Define

A⊕B = A ∪B, A · B = A ∩B ∀A,B ∈ P (X).

Then (P (X),⊕, ·) is a Boolean semiring having ∅ and X as its zero and identity,

respectively. The empty set ∅ is the only additively invertible element of (P (X),⊕, ·).

So, (P (X),⊕, ·) is not a Boolean ring. Also, A⊕A = A for all A ∈ P (X), see [5].

Example 1.2. Let

S = {0} ∪
[1
2
, 1
]

and define

x⊕ 0 = 0⊕ x = x, ∀x ∈ S,

x⊕ y =
1

2
, ∀x, y ∈

[1
2
, 1
]
,

x · y = min{x, y}, ∀x, y ∈ S.

It is easy to show that (S,⊕, ·) is a Boolean semiring with zero 0 and identity 1.

Moreover, 0 is the only additively invertible element of the semiring (S,⊕, ·), see [5].

On {0, 1} there are two semiring structures. The first is the Boolean semiring that

corresponds to 1 + 1 = 1 and we will denote it by B, see [2].

+ 0 1
0 0 1
1 1 1

· 0 1
0 0 0
1 0 1

The second is the Boolean ring Z2 that corresponds to 1 + 1 = 0, see [2].

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

By Mm,n(B) we mean the set of all m × n matrices with entries from B. Let

Bn = Mn,1(B) and let ej ∈ Bn be the vector with exactly one nonzero entry 1 in

the jth position. The vectors ej are called cells. The zero vector of Mn,1(B) is

denoted by On,1.

A function T : Mm,n(B) → Mm,n(B) is said to be a linear operator of Mm,n(B)

if for any A,B ∈ Mm,n(B) and for any α ∈ B, T (A + B) = T (A) + T (B) and

T (αA) = αT (A). Let T : Mm,n(B) → Mm,n(B) be a linear operator. For a set

X ⊆ Mm,n(B), if A ∈ X implies that T (A) ∈ X , we say that T preserves X .

Furthermore, we say that T strongly preserversX if A ∈ X , if and only if T (A) ∈ X .

In [1], Beasley has found the structure of bijective linear maps preserving m × n

Ferrers matrices over the Boolean semiring as follows.
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Theorem 1.3 ( [1]). Let T : Mm,n(B) → Mm,n(B) be a bijective linear operator

that maps the set of all Ferrers matrices in Mm,n(B) to itself. Then either:

(1) T is the identity, or

(2) m = n and T is the transpose operator.

This paper consists of two sections. In the first and second sections we will charac-

terize the structure of linear maps preserving n× 1 Ferrers vectors over the Boolean

semiring B and over the ring Z2, respectively. In this paper we denote the ith row

of a matrix A by ai and the (i, j) entry of a matrix A by aij .

Definition 1.4. An m × n matrix of zeros and ones is said to be a Ferrers

matrix if:

⊲ it has decreasing row sums,

⊲ it is row and column dense, i.e., there are no zeros between two nonzero entries

for every row and every column,

⊲ its (1, 1)-entry is 1.

In other words, A = [aij ] is a Ferrers matrix if and only if aij = 1 implies that

akl = 1 for all k 6 i and l 6 j. For example,

A =



1 1 1

1 1 0

1 0 0




is a 3× 3 Ferrers matrix.

In this paper, we denote a Ferrers vector by v, also we denote the set of n×1 Ferrers

vectors over a set S by (FV S)n. It is observable that (FV S)n = {v(1), . . . , v(n)},

where v(i) = e1 + e2 + . . .+ ei.

Definition 1.5. Let 1 6 i 6 n. A Ferrers vector v = (v1, v2, . . . , vn)
⊤ is said to

be an i-weight Ferrers vector if vi = 1 and vi+1 = 0 (unless i = n).

For example, v = (1, 1, 1, 0, . . . , 0)⊤ is a 3-weight Ferrers vector.

2. Linear preserver of n× 1 Ferrers vectors over B

Definition 2.1. A nonzero row vector v = (v1, v2, . . . , vn)
⊤ is said to be a stair

(of order i), if there exists i (1 6 i 6 n) such that vi = 1 and v1 = . . . = vi−1 = 0

(unless i = 1). The order of a stair v is denoted by s(v). Also the zero row vector is

said to be a stair of order n+ 1.

The following theorem characterizes the structure of linear maps preserving Ferrers

vectors over B.
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Theorem 2.2. Let T : Bn → Bn be a linear map and let A be the representation

matrix of T with respect to {e1, . . . , en}. Then T is a linear preserver of n×1 Ferrers

vectors if and only if for all i = 1, . . . , n, ai is a stair and 1 = s(a1) 6 s(a2) 6 . . . 6

s(an) 6 n+ 1, where ai is the ith row A. In other words, A has the following form:

(2.1)




column k1 column k2 column ks

1
... ∗ ∗ ∗ ∗

row p1 1

1

0
... ∗ ∗ ∗

row p2 1

1

0 0
... ∗ ∗

row p3 1
. . .

1 ∗

0 0 0 0
...

row pt 1 ∗

0 0 0 0 0 0




,

where 1 6 p1 6 . . . 6 pt 6 n and 1 6 k1 6 . . . 6 ks 6 n.

P r o o f. First, we show that any matrix of the above form is the represen-

tation matrix of a linear preserver of n × 1 Ferrers vectors. Suppose that v =

(v1, v2, . . . , vn)
⊤ is any arbitrary Ferrers vector. Since s(a1) = 1 and v1 = 1,

(Av)1 = 1. If (Av)l = 1 for some l (1 6 l 6 n), we show that (Av)i = 1 for all i < l.

By the assumtion, al is a stair of order k (1 6 k 6 n). Since s(al) = k and

(Av)l = 1, we have

1 = (Av)l =

n∑

j=1

Aljvj =

n∑

j=k

Aljvj .

So, there exist some j (k 6 j 6 n) such that alj = 1 and vj = 1. Since j > k and v

is a Ferrers vector, v1 = v2 = . . . = vk = 1. Now, let i 6 l. By the assumption,

s(ai) 6 s(al) = k and hence there exists some m (1 6 m 6 k) such that aim = 1.

Since m 6 k, vm = 1 and these imply that

(Av)i = aimvm +
∑

j=1
j 6=m

naijvj = 1.

So, (Av)1 = . . . = (Av)l = 1 and hence Av is a Ferrers vector. Then T is a linear

preserver of n× 1 Ferrers vectors.
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Conversely, let T be a linear preserver of n× 1 Ferrers vectors. We first show that

s(a1) = 1. Since e1 is a Ferrers vector and T is a linear preserver of n × 1 Ferrers

vectors, T (e1) = Ae1 is a Ferrers vector and hence a11 6= 0. Now, we show that if

p < q, then s(ap) 6 s(aq). Assume if possible that k = s(ap) > m = s(aq). So,

apk = aqm = 1. Consider the Ferrers vector v = (v1, v2, . . . , vn)
⊤ = e1+e2+ . . .+em.

Since m < k, vk = . . . = vn = 0 and hence

(Av)p =

n∑

j=1

apjvj =

n∑

j=k

apjvj = 0.

On the other hand, aqm = vm = 1 and consequently,

(Av)q =

n∑

j=1

aqjvj = aqmvm +

n∑

j=1
j 6=m

aqjvj = 1.

So, (Av)q = 1 and (Av)p = 0. Since p < q, Av is not a Ferrers vector, which is

a contradiction. Therefore,

1 = s(a1) 6 s(a2) 6 . . . 6 s(an),

and the proof is complete. �

We need the following lemma to find the number of linear preservers of n × 1

Ferrers vectors over B.

Lemma 2.3. Let Fn = {f : {1, . . . , n} → {1, . . . , n} : f is nondecreasing}. Then

|Fn| = |{(i1, . . . , in) : 1 6 i1 6 . . . 6 in 6 n}| =
n∑

i1=1

n∑

i2=i1

. . .

n∑

in=in−1

1.

P r o o f. For 1 6 i1 6 i2 6 . . . 6 ik 6 n, let

Fn(i1, . . . , ik) = {f ∈ Fn : f(1) = i1, . . . , f(k) = ik}.

We show that

|Fn(i1, . . . , ik)| =
n∑

ik+1=ik

|Fn(i1, . . . , ik+1)|.

For f ∈ Fn(i1, . . . , ik), let f(k + 1) = ik+1. This implies that

ik+1 ∈ {ik, ik + 1, . . . , n},

and hence

Fn(i1, . . . , ik) =
n⋃

ik+1=ik

Fn(i1, . . . , ik, ik+1).
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So, we have

|Fn(i1, . . . , ik)| =

∣∣∣∣
n⋃

ik+1=ik

Fn(i1, . . . , ik, ik+1)

∣∣∣∣.

Since the sets Fn(i1, . . . , ik, ik), Fn(i1, . . . , ik, ik + 1), . . . ,Fn(i1, . . . , ik, n) are mutu-

ally disjoint, we conclude that

|Fn(i1, . . . , ik)| =
n∑

ik+1=ik

|Fn(i1, . . . , ik, ik+1)|.

On the other hand, we have Fn =
n⋃

i1=1

Fn(i1) and therefore,

|Fn| =
n∑

i1=1

|Fn(i1)| =
n∑

i1=1

n∑

i2=i1

|Fn(i1, i2)| =
n∑

i1=1

n∑

i2=i1

. . .

n∑

in=in−1

|Fn(i1, . . . , in)|.

Since |Fn(i1, . . . , in)| = 1, we conclude that

|Fn| =
n∑

i1=1

n∑

i2=i1

. . .

n∑

in=in−1

1.

�

We denote the set of all linear preservers of n × 1 Ferrers vectors over B

by (LFVB)n.

Theorem 2.4. Let |(LFVB)n| be the cardinal number of (LFVB)n. Then

|(LFVB)n| =
n∑

i1=1

n∑

i2=i1

. . .

n∑

in=in−1

2i1+...+in−1 .

P r o o f. Let T be an arbitrary linear preserver of n × 1 Ferrers vectors over B.

Now consider all possible choices for operator T . We have T ((FVB)n) ⊆ (FVB)n
and hence,

T (v(1)) = v(i1), T (v(2)) = v(i2), . . . , T (v(n)) = v(in)

for some {i1, . . . , in} ⊆ {1, . . . , n}. We show that i1 6 i2 6 . . . 6 in. Let j ∈

{2, . . . , n}. Then

v(j) = v(j − 1) + ej ⇒ T (v(j)) = T (v(j − 1)) + T (ej)(I)

⇒ v(ij) = v(ij−1) + T (ej)

⇒ (v(ij))k = (v(ij−1))k + (T (ej))k ∀ k ∈ {1, . . . , n}.

Since (v(ij−1))k = 1 for all 1 6 k 6 ij−1 and (T (ej))k ∈ {0, 1}, we have (v(ij))k = 1

for all 1 6 k 6 ij−1. This implies that ij−1 6 ij 6 n.
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Now, let N (T (ej)) be the number of all possible choices of T (ej) such that

T (v(j)) = v(ij). For all 1 6 k 6 ij−1 and for all 2 6 j 6 n we have (v(ij))k =

(v(ij−1))k = 1. By the use of equation (I) and noting that 1 + 1 = 1 + 0 = 1, we

obtain that

(T (ej))k = 0 or (T (ej))k = 1.

Then

N (T (ej)) = 2ij−1 ∀ j ∈ {2, . . . , n}.

Let N (T ) be the number of all possible choices for all T (ej) (2 6 j 6 n). Then

N (T ) = 2i1 × . . .× 2in−1 = 2i1+...+in−1 .

Since i1 6 . . . 6 in, by the use of Lemma 2.3, we can conclude that

|(LFVB)n| =
n∑

i1=1

n∑

i2=i1

. . .

n∑

in=in−1

2i1+...+in−1 .

�

Example 2.5. The representation matrix of a linear preserver of 3 × 1 Ferrers

vectors according to Theorem 2.2 has one of the following 172 forms:

T1 =



1 α12 α13

0 1 α23

0 α32 α33


 , {α12, α13, α23, α32, α33} ∈ {0, 1}, n(T1) = 25 = 32,

T2 =



1 α12 α13

0 0 1

0 0 α33


 , {α12, α13, α33} ∈ {0, 1}, n(T2) = 23 = 8,

T3 =



1 α12 α13

0 0 0

0 0 0


 , {α12, α13} ∈ {0, 1}, n(T3) = 22 = 4,

T4 =



1 α12 α13

1 α22 α23

0 α32 α33


 , {α12, α13, α22, α23, α32, α33} ∈ {0, 1}, n(T4) = 26 = 64,

T5 =



1 α12 α13

1 α22 α23

1 α32 α33


 , {α12, α13, α22, α23, α32, α33} ∈ {0, 1}, n(T5) = 26 = 64.
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Also, by the use of Theorem 2.4 we observe that

|(LFVB)3| =
3∑

i1=1

3∑

i2=i1

3∑

i3=i2

2i1+i2 =
3∑

i2=1

3∑

i3=i2

21+i2 +
3∑

i2=2

3∑

i3=i2

22+i2 + 23+3

=

3∑

i3=1

21+1 +

3∑

i3=2

21+2 + 21+3 +

3∑

i3=2

22+2 + 22+3 + 23+3

= 3× 22 + 2× 23 + 24 + 2× 24 + 25 + 26 = 172.

Example 2.6. The MATLAB code for calculating |(LFVB)n| is as follows for

every n:

function S=prj gen(n)

h=fopen(’prog.m’,’w’);

fprintf(h,’function S=prog(n)\n’);

fprintf(h,’S=0;\n’);

for i=1:n

if i==1

ind=’1’;

else

ind=[’i’ num2str(i-1)];

end

fprintf(h,’for i%d=%s:n\n’,i,ind);

end

fprintf(h,’S=S+2̂ (’);

for i=1:n-1

if i∼=n-1

pow=[’i’ num2str(i) ’+’];

else

pow=[’i’ num2str(i)];

end

fprintf(h,pow);

end

fprintf(h,’);\n’);

for i=1:n

fprintf(h,’end \n’);

end

fclose(h);

S=prog(n);
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function S=prog(n)

S=0;

for i1=1:n

for i2=i1:n

for i3=i2:n

for i4=i3:n

for i5=i4:n

for i6=i5:n

for i7=i6:n

for i8=i7:n

for i9=i8:n

for i10=i9:n

for i11=i10:n

for i12=i11:n

S=S+2̂(i1+i2+i3+i4+i5+i6+i7+i8+i9+i10+i11);

end

end

end

end

end

end

end

end

end

end

end

end

clc

clear

for n=2:10

S=prj gen(n);

disp(’ ’)

disp([’n = ’ num2str(n)])

disp([’|LFV’ num2str(n) ’(B)| = ’ num2str(S)])

end
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n |(LFVB)n)|

2 8

3 172

4 12528

5 3412496

6 3604201088

7 14993777471936

8 2.475778594880996 e + 17

9 1.628864745018387 e + 22

10 4.27831114511251 e + 27

3. Linear preserver of n× 1 Ferrers vectors over Z2

In this section, we consider the Boolean ring Z2 = {0, 1} such that 1 + 1 = 0. We

find all linear preservers of n× 1 Ferrers vectors over Z2.

For a matrix A, let a
(k)
i =

k∑
j=1

aij . The following theorem characterizes the struc-

ture of linear operators preserving Ferrers vectors over Z2.

Theorem 3.1. Let T : Z
n
2 → Z

n
2 be a linear operator. Let A = [aij ] be the

representation matrix of T with respect to {e1, . . . , en}. Then T is a linear preserver

of n× 1 Ferrers vectors if and only if the following conditions hold:

(1) a11 = 1 and a12 = . . . = a1n = 0,

(2) for every 1 6 i 6 n− 1 and 1 6 k 6 n, if a
(k)
i = 0, then a

(k)
i+1 = 0.

P r o o f. Let T be a linear preserver of n× 1 Ferrers vectors. We first show that

a11 = 1 and a1j = 0 for all 1 6 j 6 n. By the assumption, there exists 1 6 j1 6 n

such that Av(1) = v(j1), so a11 = 1. Also, there exists 1 6 j2 6 n such that

Av(2) = v(j2), so (Av(2))1 = 1, which implies 1 + a12 = 1 and hence a12 = 0.

By induction we show that a12 = . . . = a1n = 0. Let a12 = . . . = a1n−1 = 0.

For Av(n), there exists 1 6 jn 6 n such that Av(n) = v(jn). Consequently,

1 + 0 + . . .+ 0 + a1n = 1 and so a1n = 0.

Now, we prove that for all 1 6 k 6 n, a
(k)
i = 0 implies that a

(k)
i+1 = 0. Assume if

possible that there exists 1 6 l 6 n such that a
(l)
i = 0 but a

(l)
i+1 6= 0. Consider the

Ferrers vector v(l) = (1, . . . , 1, 0, . . . , 0)⊤. So (Av(l))i = 0, but (Av(l))i+1 = 1 and

this is a contradiction.

Conversely, suppose that a11 = 1 and a12 = . . . = a1n = 0 and a
(k)
i = 0 for all

1 6 k 6 n implies that a
(k)
i+1 = 0. We show that A is a linear preserver of n × 1
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Ferrers vectors on Z2. Let 1 6 k 6 n be arbitrary and suppose that there exists

1 6 i 6 n such that (Av(k))i = 0. We show that (Av(k))i+1 = 0.

Since (Av(k))i = ai1 + ai2 + . . .+ aik = 0, we have aki =
k∑

j=1

aij = 0. Then by the

assumption a
(k)
i = 0, so a

(k)
i+1 = 0. Since aki+1 = (Av(k))i+1, we have (Av(k))i+1 = 0.

Therefore, A is a linear preserver of n× 1 Ferrers vectors on Z2. �

Lemma 3.2. Let |(LFVZ2)n| be the cardinal number of (LFVZ2)n. Then

|(LFVZ2)n| = nn.

P r o o f. Let T be an arbitrary linear preserver of n × 1 Ferrers vectors on Z2.

Now, consider all possible choices for T . We have T ((FVZ2)n) ⊆ (FVZ2)n and hence

T (v(1)) = v(i1), T (v(2)) = v(i2), . . . , T (v(n)) = v(in),

where {i1, i2, . . . , in} ⊆ {1, 2, . . . , n}. Since ej = v(j − 1) + v(j), we have

(3.1) T (ej) = T (v(j − 1)) + T (v(j)).

So, for every 1 6 j 6 n, T (ej) is completely determined by T (v(1)), . . . , T (v(n)).

Thus, for finding a linear preserver T over Z2 we need to know T (v(1)), . . . , T (v(n)).

If T is a linear preserver, then for 1 6 j 6 n there exists 1 6 ij 6 n such that

T (v(j)) = v(ij). Now, by the use of multiplication principle, we have

|(LFVZ2)n| = nn.

�

Example 3.3. For every 1 6 n 6 10 we compare |(LFVZ2)n| and |(LFVB)n| in

the following table:

n |(LFVB)n| |(LFVZ2)n|

2 8

2 8 4

3 172 27

4 12528 256

5 3412496 3125

6 3604201088 46656

7 14993777471936 823543

8 2.475778594880996 e + 17 16777216

9 1.628864745018387 e + 22 387420489

10 4.2731114511251 e + 27 1 e + 10
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