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Abstract. Tt is proved that every pair of sufficiently large odd integers can be represented
by a pair of equations, each containing two squares of primes, two cubes of primes, two
fourth powers of primes and 105 powers of 2.
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1. INTRODUCTION AND MAIN RESULT

The Goldbach conjecture is one of the most famous problems and there are many
variations derived from the conjecture. In 1951, Linnik in [6] proved under the
assumption of the Generalized Riemann Hypothesis (GRH) that every large even
integer N can be written as the sum of two primes and finite number of powers of 2,
and later in 1953 he proved this conjecture unconditionally (see [7]), that is

(1.1) N =p1 +po +2" +2Y2 + ... 4 2%,

The explicit value of the number k was first obtained by Liu, Liu and Wang
(see [10]), in which &k = 54000 is acceptable. Afterwards, several researchers im-
proved the value of k£ and in 2002 Heath-Brown and Puchta in [1] showed that
k =13 and under the GRH k = 7. Pintz and Ruzsa in [12] established the uncondi-
tional result which states that k¥ = 8. In 2017, Liu in [9] firstly considered that every
sufficiently large even integer can be written as a sum of two squares of primes, two
cubes of primes, two fourth powers of primes and a bounded number of powers of 2,

(1.2) N =p? +p3+ps+pi+ps +pg+ 2" +... 4 2%
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He obtained k£ = 41. In 2019, Lii in [9] improved the value 41 to 24, and then
Zhao in [14] improved the result k = 24 of Lii to 22. In 2012, Kong in [2] stated
a simultaneous version of the Goldbach-Linnik problem. Kong in [2] proved that the
simultaneous equations

(1.3) Ny =p1+ps+2o 4224 ... 42 Ny=p3+ps+2" +2"24 ... 4 2%

are solvable for every pair of sufficiently large positive even integers Ny, Ny satisfying
Ny > N7 > N for k = 63 in general and k£ = 31 under the GRH. Then the result
was improved by Kong and Liu (see [3]) in 2017, who showed that the simultaneous
equations (1.2) can be solvable for k& = 34 unconditionally and for & = 18 under
the GRH. In this paper, we will consider the simultaneous representation of pairs of
positive integers Ny > N7 > Ns in the form

(1.4) Ny =p? +p2+p3 + 3+ pt +pe+27 2% 4. 42,
No = p? +p3 + s + plo + pl1 + Py + 2 + 2 + ... 4 2%,

where k is a positive integer. Our result is stated as follows.

Theorem 1.1. For k = 105, the equations (1.4) are solvable for every pair of
sufficiently large positive even integers N1 and Ny satisfying No > N1 > No.

The proof of our result employs the Hardy-Littlewood circle method in combina-
tion with some new methods of Lii, see [11].

2. NOTATIONS AND SOME PRELIMINARY LEMMAS

We adopt the notations of [9]. Assume that N is a sufficiently large even integer

and set
(2.1) Ui=+0=n)N;, Vi=nN:i/2)'/%, W, = (nN;/2)"/*,
and
I_ log(N;/log N;)
N log 2 ’

where 7 is a positive constant < 10710, Let

R(Ny, Ny) =) logpi logps ... log p1s
be the weighted number of solutions of (1.1) in (p1,p2,. .. P12, V1, V2, ..., V) With

p1~U, p2~Up, ps~Vi, pa~Vi, ps~Wi, ps~ Wy,
pr~Us, pg~Us, pog~Va, pro~Ve, p11~Wa, pra~Ws,
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4<v; < Lforj=1,2,... k. For this purpose, we introduce

(2:2) flai,U) = Y (logple(p®as),  glai, Vi) = Y (logp)e(p®en),

p~Ui p~Vi

(2.3) h(ai, Wi) = Y (logple(piai), Glai) = > e(2°m),
p~Wi 4<v<L

(2.4) &x == {as € 0,1]: [G(as)] > AL},

where e(z) := exp(2niz) and ¢ = 1,2. By orthogonality, we have

1 1
(2.5)  R(Ni,N2) = / / [P (e, Ur)g* (o, Vi)h? (a1, Wh) f2 (o, Uz)g* (a2, Va)
0 0
x h? (0&2, WQ)Gk(Oél + ag)e(—alNl — OéQNQ) dog das.

Let
Qi = N17/204e
;=

)

p. _ \B/20-2
i =4

)

and define the major arcs M; and minor arcs C(M;) as

1 1
(2.6) M= ) U M,a), COM)= [a, I+ a} \ M;,
1<q<P; 1€ai<q; ¢ ¢
(ai,q:)=1
a; 1
Miai,i: a; € 10,1]: |y — —| < .
(@ir ) { 0.1] qi QiQi}

It follows from 2P; < @; that the major arcs Mj(a1,q1) and Ms(ag, g2) are mutu-
ally disjoint, respectively. Then R(N7, N2) can be written as

1 1
(2.7) RNy, Np) = / / 72 (0, U)g2 (e, ViR (o, W) £ (02, Un)g? (0, Vi)
OéQ,WQ G (0&14‘0&2) ( 0&1N1 —OéQNQ)dOél dOéQ

L)
{/Ml /C(M1 NEA / Ml)\fx}{/Mz /C"(Mz)ﬁg,\ C(MQ)\S,\

x f2(a1,Ur)g? (an, Vi)h? (an, Wh) £ (a2, U2)g* (a2, Va)
X h2(a2, Wg)Gk(Oél + ag)e(—a1 N1 — aaN3) dag das

where Ry (N1, N2) denotes the combination of the sth term in the first bracket and
the tth term in the second bracket. We will establish Theorem 1.1 by estimating the
term Ryt (N1, Na) for all 1 < s,t < 3. We need to show that R(Ny, Na) > 0 for every
pair of sufficiently large even positive integers No > N7 > Ns.
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We need the following lemmas to prove Theorem 1.1. For the Dirichlet character x
and ¢, let

Chie) = 3xe(), Cutaa) i e( D).
h=1 =

where k = 2,3,4. If x1, x2, X3, X4, X5 and g are characters mod ¢, then we write

(2.8) B(n,q; X1, X2, X3, X4 X5, X6)

q

> Cal1,0)C (2, )3, @)Cs (s, 0) O x5, ) Calxos e (=7 ).
a=1
(a,q)=1

B(n,q) = B(n,¢; x°, x", x% x% X%, x°),

A ) =209 ey =3 A(n,g)
=1

©%(q)

Lemma 2.1. We have
meas(€y) < N, )
with E(\) > 17/24 + 1071°, where A = 0.862 654.

Proof. We follow the procedure of Heath-Brown and Puchta and take £ = 1.15
and h = 23 in it, see [1] for more detail. O

Remark 2.1. The algorithm by Pintz and Ruzsa is more efficient than the ar-
gument by Heath-Brown and Puchta. This algorithm has been implemented in full
generality by Languasco and Zaccagnini, hower it only improves the remainder term
and there is no influence on the result of the article, we omit the specific calculations
and one can see Lemma 5 in [5] for further details.

Lemma 2.2. Let M; be as in (2.6). Then for 2 < n < N;, we have

[ 7700, @i Vol s Wile(~aim) da = 35— ®(n)T(n) + ONT/°L 7).
M;

Here &(n) is the singular series, which is defined as (2.8) and satisfies &(n) > 1 for
n =0 (mod 2). Further J(n) is defined as

J(n):= Z (m1m2)_1/2(m3m4)_2/3(m5m6)_3/4

mi+...+meg=n
(Ui /2)2<my,m2<U;
(Vi/2)? <mzma<V;
(Wi /2)?<ms,me<W;
and satisfies V2W? < J(n) < VAWZ.

Proof. This is Lemma 2.1 in [9]. O
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Lemma 2.3. For all integers n = 0 (mod 2), one has &(n) > 1.072 808.

Proof. For details one can see Section 3 in Liu [9]. O

Lemma 2.4. Let f(ay,U;),9(c, Vi), h(a;, W;) be defined by (2.2) and (2.3),
C(M;) by (2.6). Then

iy Ns <<N-1/2_1/16+67 o N <<N;/3—1/42+e.
228Gy M 0 Nl <V, L lo(as, M) < N,

Proof. The proof of the lemma can be found in [9]. Thanks to the enlarged
major arcs in [8], we can get the results of Lemma 2.4 by using Theorem 2 in [4]. O

Lemma 2.5. Let f(w;,U;), g(ai, Vi), h(a;, W;) be defined by (2.2) and (2.3).
Then we obtain that

1
(2.9) / |F2 (0, U2 (e, Wi)| day < WAL,
0
1
(2.10) / |2 (ai, Ui)g* (au, Vi)h? (g, W3)| day < 058814V 2,
0
Proof. For (2.9), it is in Lemma 4.3 in [13] and the proof of (2.10) can be found
in [11]. 0
Lemma 2.6. Let B(N;, k) ={n; > 2: n; = N; —2"1 —2V2— | —2%} with k > 2.
Then for Ny = N =0 (mod 2), we have
> J(n1)J(ng) > (31 — 180n)2V2VEW2W2LE.
nleB(Nl,k)
TZQEB(Nz,k)

n1=n2=0 (mod 2)
Proof. Using Lemma 3.1 in [11], we have

Y. Jm)J(n2) > (B3n— 180 VEVEWEWE Y 1,

n1€B(N1,k) ((v))
na€B(N2,k)
n1=n2=1 (mod 2)

where ((v)) means that vy, vs,. .., v satisfy
1 <o, v <logy(N1/(KL)), 2 + 272 + ...+ 2" = Ny (mod 2).

Then following the argument of Lemma 4.1 in [9], we have

Y 1z(-erLk
(@)

Thus, we get the proof of this lemma. O
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Lemma 2.7. Let f(oy,U;), g(as, Vi), h(a;, W;) be defined by (2.2) and (2.3).
Then we obtain that

(2.11) / |f (e, U3 [2lg (e, Vi) h(ag, Wi)[5/2 dav; < NJT/124°
C(M;)

Proof. The proof of the lemma can be found in [11]. It is based on the Cauchy-
Schwarz inequality and Lemmas 2.4 and 2.5. O

3. PrROOF OF THEOREM 1.1

In this section, we shall give the proof of Theorem 1.1. We begin with the estimate
for Ry1(Ny, N2). Applying Lemmas 2.2, 2.3 and 2.6, and introducing the notation
B(N;, k), we get

(31) R11 (Nl, Ng) = " f2(a1, Ul)gQ(al, Vl)hQ(al, Wl)Gk(al)e(—alNl) dOél

X F2(as,Uz)g? (a2, Va)h? (a2, Wa)GF (az)e(—aaN2) da
Mo

= Y F2 (a1, Ur)g*(ar, Vi)h? (ar, Wh)e(—aini) da
n1€B(Ny,k) 7 M
’anB(Nz,k:)
X [ (2, Uz)g?(ag, Vo) h? (a2, Wa)e(—aansy) da
Mo
1 2
> (o) X S)Sm)(m)J(ns)

22 32
n1€B(N1,k)
TZQEB(NQ,]C)

+ O(NI/GN;/Gkal)

1 2
> (rgr) - (1072808)% - (3n— 1800)* - VEVEWEWELE,

where we used n;/N; = 1+ O(L™1!) for n; € B(N;, k).
Now we turn to give an upper bound for Rj3(Ni,N2). The estimate for
Ro1(N1, No) is similar. By Cauchy’s inequality, we get
|G(Oél + 042)| < G(Zal)G(2a2).
For ao € C(My) \ € and sufficiently large Ny, we have

1G(20:)] < |G(a)| +2 <AL +2 < (1+ o(1))AL.
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Then using the definition of £y, the trivial bound of G(as), Lemmas 2.1, 2.4, 2.5
and 2.7, we have

(3.2)
R12(N1, N2)

= [ e U e, VR e W) £ a2, Un)g? (0, Vi)
M, C(Mg)ﬁf/')\
X hQ(ag, WQ)Gk(Oél =+ ag)e(—alNl — OCQNQ) dog das
< / |f2(0é1, Ul)QQ(Oq, Vi)hQ (0&1, Wl)Gk/Q (20&1)| dOél
My

y / £, U) g% (0, Vi) B2 (a2, W) GF/2(20)| devs
C(M2)NEx

<<L’“/2/ |12 (1, Un)g® (an, Vi)h* (an, Wh) | dan L*? max | f(ag, Us)|
M, azeC(Mz)

4/5 1/5
x ( [ s 0P lg(as, Veyntan, W) 2 da2> ( / 1da2>
C(MQ) 5,\

€ LF 058814 VEWE - (NP7 10H9)2/0  (NJTIRER 175 (N T/ 1
SVPAVEWEWZLE!

Similarly, we get
(3.3) Ro1 (N1, No) < VRVEWEWZLFL,

Next we turn to give an upper bound for Rq5(N1, N3). By Lemma 2.5, using the
trivial bound |G(2a)| < L when o € M; and the bound |G(2¢)| < (14+0(1))AL when
a € C(Ms) \ €y, we have
(3.4)

|R13(N1, N2)| = / / P, U1) g2 (ar, Vi)h2 (aq, W) f2 (a2, Us) g2 (a2, Va)
M, C(MQ)\E)\
X hQ(OéQ, Wg)Gk(al + 0&2)6(—0&1Nl — OéQNQ) dop dos
</ |f2 (a1, Ur)g* (ar, Vi)R? (o1, W1)G*/%(201)| devy
My
<[ Ifan Uz, Vol 0z, W) G2 (203) da
C(M2)\Ex
<Lk/2/ |2 (0, U2)g® (0, Vi)R (a0, W) day
My
1
< L2 [ (02, Ualg? 0z, Va2, W) da
0
< (0.58814)2\F2V2V2W2AW2LE,
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We can obtain the estimate for Rs1(N7, N2) analogously,
(3.5) |R31 (N1, No)| < (0.58814)2\F/2V2V2W2WELE.

We give the estimate for Roa2(N1, N2) by the trivial bound for G(«), Lemmas 2.1, 2.4
and 2.7, and the definition of &},

(3.6) RQQ(Nl,NQ)
-/ / F2(ar, Un)g*an, Vi) (ar, Wh) £2(az, Uz)g? (s, V2)
C(M1)NEN JC(M2)NEX
X hQ(ag, Wg)Gk(al + ag)e(—a1 N1 — agN3) dag das

< / |f2(a17Ul)g2(a17‘/i)hQ(a17W1)Gk/2(2a1)|dal
C(M1)NEA

x / P2 (a2, Un)g? (02, Va) 2 (v, Wa) G2 (2005)| dewy
C(Mz2)NEX

< Lk/Q ,U
o e | f (a1, Un)

4/5 1/5
x < [ 1@ vPlgtan Vightas, W) dal) < / 1da2)
C(Ml) E)\

x LF/? max ag, U
oy [ f(02, U2)]

4/5 1/5
X </ | f (a2, Uz)|?| gz, Va)h(ag, Wa)|?/? da2) </ 1da2)
C(Mz) E)\

_ e c _ _10—10
< LF. (N11/2 1/16+ )2/5 . (N117/12+ )4/5 (N, 17/24-10 )1/5
1/2—1/164¢ 17/12+¢ —17/24—10"10
X (N 2HAOTey2 5 (NI NS (N 1T )i/
<SVEVEWEWELA !

For Ra3(N1, Na), we can similarly get

(3.7) Ras(Ny, Na)

= / / F2(r, Ur)g? (an, Vi)h? (o1, Wh) f?(ag, Uz) g (aa, Va)
C(Ml)ﬂg)\ C(Mz)\f)\
X hQ(ag, WQ)Gk (CU + ag)e(—alNl — agNg) da1 dOéQ

< / (0, Un)g2(an, ViR (a1, W1)GH2(201)| das
C(M1)NEN
X / 1£2 (i, Un)g2(as, Vi) b2 (a2, W) GF/2(20) | devs
C(M2)\Ex
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L*? U
< mgg%l)lf(al, 1)l

4/5 1/5
x(/ |f(a1,U1)|2|g(a1,Vl)h(al,W1)|5/2da1> (/ 1da2>
C(My) Ex

< e [ 12z, U)g? 0, Vo) 2 (0, Wa)|

< Ak/QLk(Nf/;*1/16+€)2/5 . (N117/12+6)4/5 . (Nf17/24*10_10)1/5
x 0.58814 - V2 - W3

<VEVEWIWELE

We can obtain the estimate for Rs 2(N1, N2) analogously,
(3.8) R3a (N1, No) < VRVEWEWZLF L,

In the end, we provide the upper bound for Rs3(N7, Na).
(3.9)
RaaNo) = [ P, g an, Vi)l an W) e, Ua)
C(M1)\Ex J C(M2)\Ex
x g2 (a2, Va)h? (g, W2)GF (a + az)e(—a1 N1 — azN3) dov das

< / 1/2(0n, Un)g? (o, V)2 (o, W) G2 (201 )| den
C(M1)\Ex
<[ 12 (0, U2)g? (a2, Vo) 12 (a2, W) G*/2 (2013)] das
C(M)\E5
1
< (AL)W/ 1£2(an, Un)g2(an, V)2 (o, W1 )| day
0
1
<AL [0, Ua)g? (a2, Vo) (a2, W) da
0
< 0.588 14% - NFVRVEWRWELE.
Combining the above formulas (3.1)—(3.9), we can obtain

R(N1, N2) > R11(N1, N2) — Ri3(Ny, N2) — R31 (N1, Na)
— Ra3(N1, No) + O(VPVZWEWZLF1)
1 2 2 2
> ((m> - (1.072808)2 - (3% — 1807)
—2.0.588142- A¥/2 — .588 142 - Ak)

x (1 —e)VRVEWEWZLF.
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When k > 105, ¢ = 1072 and A = 0.862 654, we have

R(N1,N3) >0

for all sufficiently large even integers N7 and N, satisfying No > N; > N> can
written in the form of (1.4). Thus, Theorem 1.1 follows.

Remark 3.1. One may slightly improve the value 105 to 96 by Theorem 1.3

in [14].
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