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Abstract. It is proved that every pair of sufficiently large odd integers can be represented
by a pair of equations, each containing two squares of primes, two cubes of primes, two
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1. Introduction and main result

The Goldbach conjecture is one of the most famous problems and there are many

variations derived from the conjecture. In 1951, Linnik in [6] proved under the

assumption of the Generalized Riemann Hypothesis (GRH) that every large even

integer N can be written as the sum of two primes and finite number of powers of 2,

and later in 1953 he proved this conjecture unconditionally (see [7]), that is

(1.1) N = p1 + p2 + 2v1 + 2v2 + . . .+ 2vk .

The explicit value of the number k was first obtained by Liu, Liu and Wang

(see [10]), in which k = 54 000 is acceptable. Afterwards, several researchers im-

proved the value of k and in 2002 Heath-Brown and Puchta in [1] showed that

k = 13 and under the GRH k = 7. Pintz and Ruzsa in [12] established the uncondi-

tional result which states that k = 8. In 2017, Liu in [9] firstly considered that every

sufficiently large even integer can be written as a sum of two squares of primes, two

cubes of primes, two fourth powers of primes and a bounded number of powers of 2,

(1.2) N = p21 + p22 + p33 + p34 + p45 + p46 + 2v1 + . . .+ 2vk .
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He obtained k = 41. In 2019, Lü in [9] improved the value 41 to 24, and then

Zhao in [14] improved the result k = 24 of Lü to 22. In 2012, Kong in [2] stated

a simultaneous version of the Goldbach-Linnik problem. Kong in [2] proved that the

simultaneous equations

(1.3) N1 = p1 + p2 + 2v1 + 2v2 + . . .+ 2vk , N2 = p3 + p4 + 2v1 + 2v2 + . . .+ 2vk

are solvable for every pair of sufficiently large positive even integers N1, N2 satisfying

N2 ≫ N1 > N2 for k = 63 in general and k = 31 under the GRH. Then the result

was improved by Kong and Liu (see [3]) in 2017, who showed that the simultaneous

equations (1.2) can be solvable for k = 34 unconditionally and for k = 18 under

the GRH. In this paper, we will consider the simultaneous representation of pairs of

positive integers N2 ≫ N1 > N2 in the form

(1.4) N1 = p21 + p22 + p33 + p34 + p45 + p46 + 2v1 + 2v2 + . . .+ 2vk ,

N2 = p27 + p28 + p39 + p310 + p411 + p412 + 2v1 + 2v2 + . . .+ 2vk ,

where k is a positive integer. Our result is stated as follows.

Theorem 1.1. For k = 105, the equations (1.4) are solvable for every pair of

sufficiently large positive even integers N1 and N2 satisfying N2 ≫ N1 > N2.

The proof of our result employs the Hardy-Littlewood circle method in combina-

tion with some new methods of Lü, see [11].

2. Notations and some preliminary lemmas

We adopt the notations of [9]. Assume that N is a sufficiently large even integer

and set

(2.1) Ui =
√

(1 − η)Ni, Vi = (ηNi/2)
1/3, Wi = (ηNi/2)

1/4,

and

L =
log(Ni/ logNi)

log 2
,

where η is a positive constant < 10−10. Let

R(N1, N2) =
∑

log p1 log p2 . . . log p12

be the weighted number of solutions of (1.1) in (p1, p2, . . . p12, v1, v2, . . . , vk) with

p1 ∼ U1, p2 ∼ U1, p3 ∼ V1, p4 ∼ V1, p5 ∼ W1, p6 ∼ W1,

p7 ∼ U2, p8 ∼ U2, p9 ∼ V2, p10 ∼ V2, p11 ∼ W2, p12 ∼ W2,
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4 6 vj 6 L for j = 1, 2, . . . , k. For this purpose, we introduce

f(αi, Ui) =
∑

p∼Ui

(log p)e(p2αi), g(αi, Vi) =
∑

p∼Vi

(log p)e(p3αi),(2.2)

h(αi,Wi) =
∑

p∼Wi

(log p)e(p4αi), G(αi) =
∑

46v6L

e(2vαi),(2.3)

Eλ := {αi ∈ [0, 1] : |G(αi)| > λL},(2.4)

where e(x) := exp(2πix) and i = 1, 2. By orthogonality, we have

(2.5) R(N1, N2) =

∫ 1

0

∫ 1

0

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)g

2(α2, V2)

× h2(α2,W2)G
k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2.

Let

Pi = N
3/20−2ε
i , Qi = N

17/20+ε
i

and define the major arcs Mi and minor arcs C(Mi) as

(2.6) Mi :=
⋃

16q6Pi

⋃

16ai6qi
(ai,qi)=1

M(ai, qi), C(Mi) =
[ 1

Qi
, 1 +

1

Qi

]

\Mi,

Mi(ai, qi) =
{

αi ∈ [0, 1] :
∣

∣

∣
αi −

ai
qi

∣

∣

∣
6

1

qiQi

}

.

It follows from 2Pi 6 Qi that the major arcs M1(a1, q1) and M2(a2, q2) are mutu-

ally disjoint, respectively. Then R(N1, N2) can be written as

(2.7) R(N1, N2) =

∫ 1

0

∫ 1

0

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)g

2(α2, V2)

× h2(α2,W2)G
k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

=

{
∫

M1

+

∫

C(M1)∩Eλ

+

∫

C(M1)\Eλ

}{
∫

M2

+

∫

C(M2)∩Eλ

+

∫

C(M2)\Eλ

}

× f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)g

2(α2, V2)

× h2(α2,W2)G
k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

:=
3

∑

s=1

3
∑

s=1

Rst(N1, N2),

where Rst(N1, N2) denotes the combination of the sth term in the first bracket and

the tth term in the second bracket. We will establish Theorem 1.1 by estimating the

term Rst(N1, N2) for all 1 6 s, t 6 3. We need to show that R(N1, N2) > 0 for every

pair of sufficiently large even positive integers N2 > N1 > N2.
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We need the following lemmas to prove Theorem 1.1. For the Dirichlet character χ

and q, let

Ck(χ, a) =

q
∑

h=1

χ(h)e
(ahk

q

)

, Ck(q, a) =

q
∑

a=1
(m,q)=1

e
(amk

q

)

,

where k = 2, 3, 4. If χ1, χ2, χ3, χ4, χ5 and χ6 are characters mod q, then we write

B(n, q;χ1, χ2, χ3, χ4, χ5, χ6)(2.8)

:=

q
∑

a=1
(a,q)=1

C2(χ1, a)C2(χ2, a)C3(χ3, a)C3(χ4, a)C4(χ5, a)C4(χ6, a)e
(

−
an

q

)

,

B(n, q) = B(n, q;χ0, χ0, χ0, χ0, χ0, χ0),

A(n, q) =
B(n, q)

ϕ6(q)
, S(n) =

∞
∑

q=1

A(n, q).

Lemma 2.1. We have

meas(Eλ) ≪ N
−E(λ)
i

with E(λ) > 17/24 + 10−10, where λ = 0.862 654.

P r o o f. We follow the procedure of Heath-Brown and Puchta and take ξ = 1.15

and h = 23 in it, see [1] for more detail. �

Remark 2.1. The algorithm by Pintz and Ruzsa is more efficient than the ar-

gument by Heath-Brown and Puchta. This algorithm has been implemented in full

generality by Languasco and Zaccagnini, hower it only improves the remainder term

and there is no influence on the result of the article, we omit the specific calculations

and one can see Lemma 5 in [5] for further details.

Lemma 2.2. Let Mi be as in (2.6). Then for 2 6 n 6 Ni, we have
∫

Mi

f2(αi, Ui)g
2(αi, Vi)h

2(αi,Wi)e(−αin) dα =
1

22 · 32 · 42
S(n)J(n)+O(N

7/6
i L−1).

Here S(n) is the singular series, which is defined as (2.8) and satisfies S(n) ≫ 1 for

n ≡ 0 (mod 2). Further J(n) is defined as

J(n) :=
∑

m1+...+m6=n
(Ui/2)

2<m1,m26Ui

(Vi/2)
2<m3,m46Vi

(Wi/2)
2<m5,m66Wi

(m1m2)
−1/2(m3m4)

−2/3(m5m6)
−3/4

and satisfies V 2
i W

2
i ≪ J(n) ≪ V 2

i W
2
i .

P r o o f. This is Lemma 2.1 in [9]. �
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Lemma 2.3. For all integers n ≡ 0 (mod 2), one has S(n) > 1.072 808.

P r o o f. For details one can see Section 3 in Liu [9]. �

Lemma 2.4. Let f(αi, Ui), g(αi, Vi), h(αi,Wi) be defined by (2.2) and (2.3),

C(Mi) by (2.6). Then

max
α∈C(Mi)

|f(αi, Ni)| ≪ N
1/2−1/16+ε
i , max

α∈C(Mi)
|g(αi, Ni)| ≪ N

1/3−1/42+ε
i .

P r o o f. The proof of the lemma can be found in [9]. Thanks to the enlarged

major arcs in [8], we can get the results of Lemma 2.4 by using Theorem 2 in [4]. �

Lemma 2.5. Let f(αi, Ui), g(αi, Vi), h(αi,Wi) be defined by (2.2) and (2.3).

Then we obtain that
∫ 1

0

|f2(αi, Ui)h
2(αi,Wi)| dαi 6 W 4

i L
C ,(2.9)

∫ 1

0

|f2(αi, Ui)g
2(αi, Vi)h

2(αi,Wi)| dαi 6 0.58814V 2
i W

2
i .(2.10)

P r o o f. For (2.9), it is in Lemma 4.3 in [13] and the proof of (2.10) can be found

in [11]. �

Lemma 2.6. Let B(Ni, k) = {ni > 2: ni = Ni−2v1 −2v2 − . . .−2vk} with k > 2.

Then for N1 ≡ N2 ≡ 0 (mod 2), we have
∑

n1∈B(N1,k)
n2∈B(N2,k)

n1≡n2≡0 (mod 2)

J(n1)J(n2) > (3π − 180η)2V 2
1 V

2
2 W

2
1W

2
2L

k.

P r o o f. Using Lemma 3.1 in [11], we have
∑

n1∈B(N1,k)
n2∈B(N2,k)

n1≡n2≡1 (mod 2)

J(n1)J(n2) > (3π − 180η)2V 2
1 V

2
2 W

2
1W

2
2

∑

((v))

1,

where ((v)) means that v1, v2, . . . , vk satisfy

1 6 v1, . . . , vk 6 log2(N1/(kL)), 2
v1 + 2v2 + . . .+ 2vk ≡ N1 (mod 2).

Then following the argument of Lemma 4.1 in [9], we have
∑

((v))

1 > (1 − ε)Lk.

Thus, we get the proof of this lemma. �
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Lemma 2.7. Let f(αi, Ui), g(αi, Vi), h(αi,Wi) be defined by (2.2) and (2.3).

Then we obtain that

(2.11)

∫

C(Mi)

|f(αi, Ui)|
2|g(αi, Vi)h(αi,Wi)|

5/2 dαi 6 N
17/12+ε
i .

P r o o f. The proof of the lemma can be found in [11]. It is based on the Cauchy-

Schwarz inequality and Lemmas 2.4 and 2.5. �

3. Proof of Theorem 1.1

In this section, we shall give the proof of Theorem 1.1. We begin with the estimate

for R11(N1, N2). Applying Lemmas 2.2, 2.3 and 2.6, and introducing the notation

B(Ni, k), we get

(3.1) R11(N1, N2)=

∫

M1

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)G
k(α1)e(−α1N1) dα1

×

∫

M2

f2(α2, U2)g
2(α2, V2)h

2(α2,W2)G
k(α2)e(−α2N2) dα2

=
∑

n1∈B(N1,k)
n2∈B(N2,k)

∫

M1

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)e(−α1n1) dα1

×

∫

M2

f2(α2, U2)g
2(α2, V2)h

2(α2,W2)e(−α2n2) dα2

>

( 1

22 · 32 · 42

)2 ∑

n1∈B(N1,k)
n2∈B(N2,k)

S(n1)S(n2)J(n1)J(n2)

+O(N
7/6
1 N

7/6
2 Lk−1)

>

( 1

22 · 32 · 42

)2

· (1.072 808)2 · (3π − 180η)2 · V 2
1 V

2
2 W

2
1W

2
2L

k,

where we used ni/Ni = 1 +O(L−1) for ni ∈ B(Ni, k).

Now we turn to give an upper bound for R12(N1, N2). The estimate for

R21(N1, N2) is similar. By Cauchy’s inequality, we get

|G(α1 + α2)| 6
√

G(2α1)G(2α2).

For α ∈ C(M2) \ Eλ and sufficiently large N1, we have

|G(2αi)| 6 |G(αi)|+ 2 6 λL + 2 6 (1 + o(1))λL.
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Then using the definition of Eλ, the trivial bound of G(α2), Lemmas 2.1, 2.4, 2.5

and 2.7, we have

(3.2)

R12(N1, N2)

=

∫

M1

∫

C(M2)∩Eλ

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)g

2(α2, V2)

× h2(α2,W2)G
k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

≪

∫

M1

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)G
k/2(2α1)| dα1

×

∫

C(M2)∩Eλ

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)G
k/2(2α2)| dα2

≪ Lk/2

∫

M1

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)| dα1L
k/2 max

α2∈C(M2)
|f(α2, U2)|

×

(
∫

C(M2)

|f(α2, U2)|
2|g(α2, V2)h(α2,W2)|

5/2 dα2

)4/5(∫

Eλ

1 dα2

)1/5

≪ Lk · 0.588 14 · V 2
1 W

2
1 · (N

1/2−1/16+ε
2 )2/5 · (N

17/12+ε
2 )4/5 · (N

−17/24−10−10

2 )1/5

6 V 2
1 V

2
2 W

2
1W

2
2L

k−1.

Similarly, we get

(3.3) R21(N1, N2) 6 V 2
1 V

2
2 W

2
1W

2
2L

k−1.

Next we turn to give an upper bound for R13(N1, N2). By Lemma 2.5, using the

trivial bound |G(2α)| 6 L when α ∈ M1 and the bound |G(2α)| 6 (1+o(1))λL when

α ∈ C(M2) \ Eλ, we have

(3.4)

|R13(N1, N2)| =

∫

M1

∫

C(M2)\Eλ

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)g

2(α2, V2)

× h2(α2,W2)G
k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

6

∫

M1

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)G
k/2(2α1)| dα1

×

∫

C(M2)\Eλ

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)G
k/2(2α2)| dα2

6 Lk/2

∫

M1

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)| dα1

× (λL)k/2
∫ 1

0

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)| dα2

6 (0.588 14)2λk/2V 2
1 V

2
2 W

2
1W

2
2L

k.
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We can obtain the estimate for R31(N1, N2) analogously,

(3.5) |R31(N1, N2)| 6 (0.588 14)2λk/2V 2
1 V

2
2 W

2
1W

2
2L

k.

We give the estimate for R22(N1, N2) by the trivial bound for G(α), Lemmas 2.1, 2.4

and 2.7, and the definition of Eλ,

(3.6) R22(N1, N2)

=

∫

C(M1)∩Eλ

∫

C(M2)∩Eλ

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)g

2(α2, V2)

× h2(α2,W2)G
k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

≪

∫

C(M1)∩Eλ

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)G
k/2(2α1)| dα1

×

∫

C(M2)∩Eλ

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)G
k/2(2α2)| dα1

≪ Lk/2 max
α1∈C(M1)

|f(α1, U1)|

×

(
∫

C(M1)

|f(α1, U1)|
2|g(α1, V1)h(α1,W1)|

5/2 dα1

)4/5(∫

Eλ

1 dα2

)1/5

× Lk/2 max
α2∈C(M2)

|f(α2, U2)|

×

(
∫

C(M2)

|f(α2, U2)|
2|g(α2, V2)h(α2,W2)|

5/2 dα2

)4/5(∫

Eλ

1 dα2

)1/5

≪ Lk · (N
1/2−1/16+ε
1 )2/5 · (N

17/12+ε
1 )4/5 · (N

−17/24−10−10

1 )1/5

× (N
1/2−1/16+ε
2 )2/5 · (N

17/12+ε
2 )4/5 · (N

−17/24−10−10

2 )1/5

6 V 2
1 V

2
2 W

2
1W

2
2L

k−1.

For R23(N1, N2), we can similarly get

R23(N1, N2)(3.7)

=

∫

C(M1)∩Eλ

∫

C(M2)\Eλ

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)g

2(α2, V2)

× h2(α2,W2)G
k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

≪

∫

C(M1)∩Eλ

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)G
k/2(2α1)| dα1

×

∫

C(M2)\Eλ

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)G
k/2(2α2)| dα2
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≪ Lk/2 max
α1∈C(M1)

|f(α1, U1)|

×

(
∫

C(M1)

|f(α1, U1)|
2|g(α1, V1)h(α1,W1)|

5/2 dα1

)4/5(∫

Eλ

1 dα2

)1/5

× (λL)k/2
∫ 1

0

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)| dα2

6 λk/2Lk(N
1/2−1/16+ε
1 )2/5 · (N

17/12+ε
1 )4/5 · (N

−17/24−10−10

1 )1/5

× 0.588 14 · V 2
2 ·W 2

2

6 V 2
1 V

2
2 W

2
1W

2
2L

k−1.

We can obtain the estimate for R3,2(N1, N2) analogously,

(3.8) R32(N1, N2) 6 V 2
1 V

2
2 W

2
1W

2
2L

k−1.

In the end, we provide the upper bound for R33(N1, N2).

(3.9)

R33(N1, N2) =

∫

C(M1)\Eλ

∫

C(M2)\Eλ

f2(α1, U1)g
2(α1, V1)h

2(α1,W1)f
2(α2, U2)

× g2(α2, V2)h
2(α2,W2)G

k(α1 + α2)e(−α1N1 − α2N2) dα1 dα2

≪

∫

C(M1)\Eλ

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)G
k/2(2α1)| dα1

×

∫

C(M2)\Eλ

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)G
k/2(2α2)| dα2

≪ (λL)k/2
∫ 1

0

|f2(α1, U1)g
2(α1, V1)h

2(α1,W1)| dα1

× (λL)k/2
∫ 1

0

|f2(α2, U2)g
2(α2, V2)h

2(α2,W2)| dα2

6 0.588 142 · λkV 2
1 V

2
2 W

2
1W

2
2L

k.

Combining the above formulas (3.1)–(3.9), we can obtain

R(N1, N2) > R11(N1, N2)−R13(N1, N2)−R31(N1, N2)

−R33(N1, N2) +O(V 2
1 V

2
2 W

2
1W

2
2L

k−1)

>
(( 1

22 · 32 · 42

)2

· (1.072 808)2 · (3π − 180η)2

− 2 · 0.588 142 · λk/2 − 0.588 142 · λk
)

× (1− ε)V 2
1 V

2
2 W

2
1W

2
2L

k.
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When k > 105, ε = 10−20 and λ = 0.862 654, we have

R(N1, N2) > 0

for all sufficiently large even integers N1 and N2 satisfying N2 ≫ N1 > N2 can

written in the form of (1.4). Thus, Theorem 1.1 follows.

Remark 3.1. One may slightly improve the value 105 to 96 by Theorem 1.3

in [14].
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