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1. Introduction and the main result

For the homogeneous Besov space Ḃs
p,q(R

n) and Triebel-Lizorkin space Ḟ s
p,q(R

n),

which are defined such that ‖f‖Ḃs
p,q

= ‖f‖Ḟ s
p,q

= 0 if and only if f is a polyno-

mial on Rn, the subspaces of bounded functions, denoted by Bs
p,q(R

n) and Fs
p,q(R

n),

respectively, have played an important role for the composition operators on inhomo-

geneous Besov and Triebel-Lizorkin spaces Bs
p,q(R

n) and F s
p,q(R

n), respectively, see,

e.g., [3], [4], [7], [9]. In these references they have been characterized, in particular:

Proposition 1.1. For s > 0, Bs
p,q(R

n) (or Fs
p,q(R

n)) is a unital quasi-Banach

algebra for the pointwise product.

In this context, we want to extend this proposition to homogeneous Besov-type

spaces Ḃs,τ
p,q (R

n) and Triebel-Lizorkin-type spaces Ḟ s,τ
p,q (R

n). We then introduce the

spaces

Bs,τ
p,q(R

n) = (L∞ ∩ Ḃs,τ
p,q )(R

n)

and similarly Fs,τ
p,q (R

n) in the Ḟ s,τ
p,q (R

n)-case, see Subsection 2.3 below. We de-

note by Ȧs,τ
p,q(R

n) either Ḃs,τ
p,q (R

n) or Ḟ s,τ
p,q (R

n) and by Es,τ
p,q (R

n) either Bs,τ
p,q(R

n)
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or Fs,τ
p,q (R

n), if no confusion can arise. We use the abbreviations B-case and F -case

to indicate in what space we work. Then we prove the following main result:

Theorem 1.1. Let τ > 0, 0 < p, q 6 ∞ (p < ∞ in F -case) and s > (n/p− n)+.

Then Es,τ
p,q (R

n) is a unital quasi-Banach algebra for the pointwise product. Moreover,

the inequality

‖fg‖Es,τ
p,q

6 c(‖f‖∞‖g‖Es,τ
p,q

+ ‖g‖∞‖f‖Es,τ
p,q

)

holds for all f , g in Es,τ
p,q (R

n).

For the proof we need some preparation, in particular an estimate of the Nikoľskij-

type in Ȧs,τ
p,q(R

n), then we give a result in this direction, see Theorem 3.2 below. On

the other hand, another result in this paper is the link between Ȧs,τ
p,q(R

n) and their

inhomogeneous counterparts As,τ
p,q(R

n), see Theorem 3.1 below (As,τ
p,q(R

n) denotes

either the Besov-type space Bs,τ
p,q (R

n) or the Triebel-Lizorkin-type space F s,τ
p,q (R

n)).

Also, one can extend the investigations on Es,τ
p,q (R

n) using difference operators, it

will be presented in future work.

Notation 1.1. All function spaces occurring in this work are defined on the

Euclidean space Rn, then we omit it in notations. As usual, N denotes the set of
natural numbers and N0 := N ∪ {0}. If s ∈ R, then [s] denotes its integer part.

If u := (u1, . . . , un) ∈ Rn, we put E(u) := ([u1], . . . , [un]) ∈ Zn. If a ∈ R, then
a+ := max(a, 0). The symbol →֒ indicates a continuous embedding. If 0 < p 6 ∞,
we denote by ‖·‖p the quasi-norm in Lp. For f ∈ L1, the Fourier transform and the

inverse are defined by

Ff(ξ) = f̂(ξ) :=

∫

Rn

e−ix·ξf(x) dx and F−1f(x) := (2π)−nf̂(−x).

We denote by Cub the Banach space of bounded and uniformly continuous func-

tions on Rn endowed with the supremum norm. We denote by P∞ the set of all

polynomials in Rn. The symbol S∞ is used for the set of functions ϕ ∈ S (the
Schwartz space) such that 〈u, ϕ〉 = 0 for all u ∈ P∞, its topological dual is denoted

by S ′
∞. If f ∈ S ′, then [f ]∞ denotes its equivalence class modulo P∞. The mapping

which takes any [f ]∞ to the restriction of f to S∞ turns out to be an isomorphism

from S ′/P∞ onto S ′
∞, for this reason, S ′

∞ is the so-called “space of distributions

modulo polynomials”. For k ∈ Z and η ∈ Zn we denote by Pk,η the dyadic cube of

all x ∈ Rn such that ηl 6 2kxl < ηl + 1 (l = 1, . . . , n). The constants c, c1, . . . are

strictly positive, depend only on the fixed parameters as n, s, p, . . ., their values may

change from a line to another.

Finally, in all the paper the parameters s, p, q, τ satisfy: s ∈ R, p ∈ ]0,∞] in

B-case, p ∈ ]0,∞[ in F -case, q ∈]0,∞] and τ > 0, unless otherwise stated.
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This work is organized as follows. In Section 2, we recall definitions and some

properties of both As,τ
p,q , Ȧ

s,τ
p,q and Es,τ

p,q . In Section 3, we state our additional results

(see Theorems 3.1–3.2). The last section is devoted to the proofs.

2. Preliminaries

2.1. The Littlewood-Paley setting. To introduce the Littlewood-Paley setting,

we choose, once and for all, a standard cut-off function ̺. More precisely, we assume

that ̺ is a radial C∞ function satisfying 0 6 ̺ 6 1, ̺(ξ) = 1 for |ξ| 6 1, ̺(ξ) = 0 for

|ξ| > 3
2 . We put γ(ξ) := ̺(ξ)− ̺(2ξ). Then γ is supported by the compact annulus

1
2 6 |ξ| 6 3

2 and the following identities hold:

∑

j∈Z

γ(2jξ) = 1, ξ 6= 0, ̺(2−kξ) +
∑

j>k

γ(2−jξ) = 1, k ∈ Z.

Let us define the convolution operators (Sj) and (Qj) by Ŝjf(ξ) := ̺(2−jξ)f̂(ξ)

and Q̂jf(ξ) := γ(2−jξ)f̂(ξ). It is clear that Sj and Qj are defined on S ′. The

operators Qj are also defined on S ′
∞ since Qjf = 0 if and only if f is a polynomial

on Rn, then we make use of the following convention:

if f ∈ S ′
∞ we set Qjf := Qjg for all g such that [g]∞ = f .

The operators Sj and Qj take values in the space of analytical functions of expo-

nential type, see the Paley-Wiener theorem. The families (Sj) and (Qj) constitute

bounded subsets of the normed space L(Lp) for any 1 6 p 6 ∞ due to Young

inequality. Also, we have the following lemma, a classical consequence of Taylor’s

formula, see, e.g., [8], Proposition 2.5:

Lemma 2.1.

(i) If f ∈ S, then ‖Qjf‖p = O(2−jN ) as j → ∞ for all N ∈ N0.

(ii) If f ∈ S∞, then ‖Qjf‖p = O(2jN ) and ‖Sjf‖p = O(2jN ) as j → −∞ for all

N ∈ N0.

The Littlewood-Paley decompositions of a tempered distribution are described in

the following statement, which is an immediate consequence of Lemma 2.1.

Proposition 2.1.

(i) For every f ∈ S∞ (or f ∈ S ′
∞), it holds that f =

∑
j∈Z

Qjf in S∞ (or S ′
∞,

respectively).

(ii) For every f ∈ S (or f ∈ S ′) and every k ∈ Z, it holds that f = Skf +
∑
j>k

Qjf

in S (or S ′, respectively).
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2.2. The Besov and Triebel-Lizorkin spaces. We first define the classical

Besov and Triebel-Lizorkin spaces and their homogeneous counterparts.

Definition 2.1. (i) The Besov space Bs
p,q is the set of f ∈ S ′ such that

‖f‖Bs
p,q

:= ‖S0f‖p +
(∑

j>1

(2js‖Qjf‖p)q
)1/q

< ∞.

(ii) The Triebel-Lizorkin space F s
p,q is the set of f ∈ S ′ such that

‖f‖F s
p,q

:= ‖S0f‖p +
∥∥∥∥
(∑

j>1

(2js|Qjf |)q
)1/q∥∥∥∥

p

< ∞.

(iii) The homogeneous Besov space Ḃs
p,q is the set of f ∈ S ′

∞ such that

‖f‖Ḃs
p,q

:=

(∑

j∈Z

(2js‖Qjf‖p)q
)1/q

< ∞.

(iv) The homogeneous Triebel-Lizorkin space Ḟ s
p,q is the set of f ∈ S ′

∞ such that

‖f‖Ḟ s
p,q

:=

∥∥∥∥
(∑

j∈Z

(2js|Qjf |)q
)1/q∥∥∥∥

p

< ∞.

With usual modifications made when, in the B-case, p = ∞ or q = ∞ and, in the
F -case, q = ∞.

Then we define the Besov-type and Triebel-Lizorkin-type spaces and their homo-

geneous counterparts.

Definition 2.2. (i) The Besov-type space Bs,τ
p,q is the set of f ∈ S ′ such that

‖f‖Bs,τ
p,q

:= sup
k∈Z

sup
η∈Zn

2knτ
( ∑

j>k+

(2js‖Qjf‖Lp(Pk,η))
q

)1/q

< ∞ (here Q0 := S0).

(ii) The Triebel-Lizorkin-type space F s,τ
p,q is the set of f ∈ S ′ such that

‖f‖F s,τ
p,q

:= sup
k∈Z

sup
η∈Zn

2knτ
∥∥∥∥
( ∑

j>k+

(2js|Qjf |)q
)1/q∥∥∥∥

Lp(Pk,η)

< ∞ (here Q0 := S0).

(iii) The homogeneous Besov-type space Ḃs,τ
p,q is the set of f ∈ S ′

∞ such that

‖f‖Ḃs,τ
p,q

:= sup
k∈Z

sup
η∈Zn

2knτ
(∑

j>k

(2js‖Qjf‖Lp(Pk,η))
q

)1/q

< ∞.
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(iv) The homogeneous Triebel-Lizorkin-type space Ḟ s,τ
p,q is the set of f ∈ S ′

∞

such that

‖f‖Ḟ s,τ
p,q

:= sup
k∈Z

sup
η∈Zn

2knτ
∥∥∥∥
(∑

j>k

(2js|Qjf |)q
)1/q∥∥∥∥

Lp(Pk,η)

< ∞.

With usual modifications made when, in the B-case, p = ∞ or q = ∞ and, in the
F -case, q = ∞.

All these spaces are independent of the choice of the function ̺, see, e.g., [2],

[10]–[13] and [15]. Now, in what follows, we will denote for simplicity by As
p,q ei-

ther Bs
p,q or F

s
p,q and by Ȧs

p,q either Ḃ
s
p,q or Ḟ

s
p,q. We note that A

s,0
p,q = As

p,q and

Ȧs,0
p,q = Ȧs

p,q. We also note that

(2.1) S →֒ As
p,q, As,τ

p,q →֒ S ′ and S∞ →֒ Ȧs
p,q, Ȧs,τ

p,q →֒ S ′
∞.

As further embeddings, we have the following two statements.

Proposition 2.2. The following properties hold:

(i) Bs,τ
p,min(p,q) →֒ F s,τ

p,q →֒ Bs,τ
p,max(p,q) and As,τ

p,q1 →֒ As,τ
p,q2 (q1 6 q2).

(ii) As,τ
p,q →֒ B

s+nτ−n/p
∞,∞ = F

s+nτ−n/p
∞,∞ .

(iii) As,τ
p,q →֒ Cub if s+ nτ − n/p > 0.

P r o o f. For (i)–(ii) we refer to [15], Propositions 2.1, 2.6. In the B-case, (iii)

follows by the well-known property of Hölder spaces Bt
∞,∞ for t > 0, see, e.g., [11],

Theorem 2.2.4/1; in the F -case, we have F s,τ
p,q →֒ Bs,τ

p,max(p,q) →֒ Cub. �

Proposition 2.3. The following properties hold:

(i) Ḃs,τ
p,min(p,q) →֒ Ḟ s,τ

p,q →֒ Ḃs,τ
p,max(p,q) and Ȧs,τ

p,q1 →֒ Ȧs,τ
p,q2 (q1 6 q2).

(ii) Let s1 > s2, 0 < p1 < p2 6 ∞ (p2 < ∞ in F -case) and 0 < r 6 ∞. If
s1 − n/p1 = s2 − n/p2, then Ḃs1,τ

p1,q →֒ Ḃs2,τ
p2,q and Ḟ s1,τ

p1,q →֒ Ḟ s2,τ
p2,r .

P r o o f. For (ii) we refer to [14], Proposition 3.3. �

In order to connect with the modified Lebesgue-type space Lτ
p of functions f

such that

‖f‖Lτ
p
:= sup

l(P )>1

|P |−τ‖f‖Lp(P ) < ∞

where the supremum is taken over all dyadic cubes P with side length l(P ) > 1,

we recall that Lτ
p →֒ S ′ if 1 6 p 6 ∞ and L0

p = Lp. Thus, we give a relation

between As,τ
p,q and this space and refer to [15], Proposition 2.7.

Proposition 2.4. If s > (n/p− n)+, then it holds A
s,τ
p,q →֒ Lτ

p.
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2.3. Definition of the algebra space.

Definition 2.3. The space Es,τ
p,q is the set of f ∈ L∞ such that [f ]∞ ∈ Ȧs,τ

p,q

equipped with the quasi-norm ‖f‖Es,τ
p,q

:= ‖f‖∞ + ‖[f ]∞‖Ȧs,τ
p,q
.

The following statement is an immediate consequence of the second chain of em-

beddings given in (2.1).

Proposition 2.5. The space Es,τ
p,q is quasi-Banach and the continuous embeddings

S∞ →֒ Es,τ
p,q →֒ S ′ hold.

3. Further results

The following two theorems are of self-contained interest, since the first one gives

us a tool for passing from As,τ
p,q to Ȧs,τ

p,q which is not completely referenced in the

literature, see, e.g., [5], Lemma 2.7, Remark 2.8, the second one is Nikoľskij-type

inequalities for Ȧs,τ
p,q .

Theorem 3.1.

(i) Assume that either s > (n/p− n)+ or s > n/p− nτ and τ > 1/p. If f ∈ As,τ
p,q ,

then it holds [f ]∞ ∈ Ȧs,τ
p,q .

(ii) If s > (n/p−n)+, then A
s,τ
p,q = {f ∈ Lτ

p : [f ]∞ ∈ Ȧs,τ
p,q}. Moreover, the expression

‖f‖Lτ
p
+ ‖[f ]∞‖Ȧs,τ

p,q
is an equivalent quasi-norm in As,τ

p,q .

Theorem 3.2. Let s > (n/p − n)+ and b > 0. Let (uj) be a sequence in S ′

such that

⊲ ûj is supported by the ball |ξ| 6 b2j,

⊲ A := sup
k∈Z

sup
η∈Zn

2knτ
(∑
j>k

(2js‖uj‖Lp(Pk,η))
q
)1/q

< ∞ in the B-case,

⊲ A := sup
k∈Z

sup
η∈Zn

2knτ
∥∥∥
(∑
j>k

(2js|uj |)q
)1/q∥∥∥

Lp(Pk,η)
< ∞ in the F -case.

Then the series
∑
j∈Z

uj converges in S ′
∞ and satisfies

∥∥∥
∑
j∈Z

uj

∥∥∥
Ȧs,τ

p,q

6 cA, where the

constant c depends only on n, s, τ , p, q and b.
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4. Proofs

P r o o f of Theorem 1.1. We first assume that Theorem 3.2 is indeed valid;

a straightforward consequence of this theorem is the following assertion.

Lemma 4.1. Let s > (n/p − n)+ and m ∈ Z. For all f ∈ L∞ and all g ∈ Ȧs,τ
p,q

we put

πm(f, g) :=
∑

j∈Z

(Sj−mf)(Qjg).

Then πm is a continuous bilinear application from L∞ × Ȧs,τ
p,q to Ȧ

s,τ
p,q .

We turn to the proof of Theorem 1.1 which is similar to that in Theorem 3.26

of [7], we only check some properties needed here. Recall that in this reference the

case p, q > 1 is treated which can be extended without difficulty to any p, q > 0. Let

us take f , g in Es,τ
p,q . By the Abel transform

j∑

k=−j

(Skf)(Qkg) +

j−1∑

k=−j

(Skg)(Qk+1f) = (Sjf)(Sjg)− (S−jf)(S−j−1g)

holds for all j > 0. By Lemma 2.1, |Skf(x)| 6 c‖f‖∞ and |Skg(x)| 6 c‖g‖∞ (for all
x ∈ Rn and all k ∈ Z), and we have (cf. [7], page 253)

lim
j→∞

(S−jf)(S−j−1g) = 0 in S ′
∞ and lim

j→∞
(Sjf)(Sjg) = fg in S ′.

Then we get π0(f, [g]∞)+π1(g, [f ]∞) = [fg]∞ in S ′
∞. Now, by applying Lemma 4.1,

we obtain the desired result. �

P r o o f of Theorem 3.1. Step 1 : Proof of (i) in the B-case. Let us consider

f ∈ Bs,τ
p,q and set Uk,η := 2knτ

(∑
j>k

(2js‖Qjf‖Lp(Pk,η))
q
)1/q

where k ∈ Z and η ∈ Zn.

Clearly we have

Uk,η 6 2|k|nτ
(∑

j>|k|

(2js‖Qjf‖Lp(P|k|,η))
q

)1/q

+ 2−|k|nτ

( ∑

j>−|k|

(2js‖Qjf‖Lp(P−|k|,η))
q

)1/q

6 sup
l>0

2lnτ
(∑

j>l

. . .

)1/q

+ sup
l60

2lnτ
(∑

j>l

. . .

)1/q

,
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then we can write

(4.1) ‖[f ]∞‖Ḃs,τ
p,q

6 sup
k>0

sup
η∈Zn

2knτ
(∑

j>k

(2js‖Qjf‖Lp(Pk,η))
q

)1/q

+ sup
k60

sup
η∈Zn

2knτ
(∑

j>k

(2js‖Qjf‖Lp(Pk,η))
q

)1/q

.

It is clear that the second term is bounded by ‖f‖Bs,τ
p,q
. For the third one, since

k 6 0, we split
∑
j>k

into
0∑

j=k

+
∑
j>0

and use the equality
∑
j>0

. . . =
∑

j>k+

. . ., then

(4.2) 2knτ
(∑

j>0

(2js‖Qjf‖Lp(Pk,η))
q

)1/q

6 ‖f‖Bs,τ
p,q

.

We reduced the estimation to the term

(4.3) sup
k60

sup
η∈Zn

2knτ
( 0∑

j=k

(2js‖Qjf‖Lp(Pk,η))
q

)1/q

.

Substep 1.1 : The case s > (n/p− n)+. If x ∈ Pk,η and y ∈ Rn, we have x − y ∈
2n⋃
r=1

Pk,η−E(2ky)+wr
where wr ∈ Zn independent of y, an easy proof. Then

(4.4) ‖f(· − y)‖Lp(Pk,η) 6 c

2n∑

r=1

‖f‖Lp(Pk,η−E(2ky)+wr
)

for all y ∈ Rn; this follows from the statement

(4.5) if a, b > 0 then ap + bp 6 max(1, 21−p)(a+ b)p.

⊲ If p > 1, then by using (4.4), we get

(4.6) ‖Qjf‖Lp(Pk,η) 6 2jn
∫

Rn

|F−1γ(2jy)|‖f(· − y)‖Lp(Pk,η) dy

6 c12
−knτ‖F−1γ‖1‖f‖Lτ

p
6 c22

−knτ‖f‖Lτ
p

∀ k 6 0.

As Bs,τ
p,q →֒ Lτ

p since s > 0 (see Proposition 2.4), we deduce that the expression

given in (4.3) is bounded by c‖f‖Bs,τ
p,q
.

⊲ If 0 < p < 1, we apply the following lemma.

Lemma 4.2. We put d := min(1, p). Then there exists a constant c > 0 such that

the inequality ‖Qjf‖As,τ
p,q

6 cmax(1, 2jn(1−1/d))‖f‖As,τ
p,q
holds for all f ∈ As,τ

p,q and all

j ∈ Z.

1288



We now turn to the estimate (4.3) in which the factor after the text “sup
k60

sup
η∈Zn

”

is bounded by
(∑
j60

(2js‖Qjf‖Lτ
p
)q
)1/q

since 2knτ‖Qjf‖Lp(Pk,η) 6 ‖Qjf‖Lτ
p
. By this

lemma we have Qjf ∈ Bs,τ
p,q , then the continuous embedding Bs,τ

p,q →֒ Lτ
p yields the

bound c1‖f‖Bs,τ
p,q

(∑
j60

2j(s+n−n/p)q
)1/q

which is itself majorized by c2‖f‖Bs,τ
p,q
since

(4.7) s+ n− n

p
> 0.

Substep 1.2 : The case s > n/p−nτ and τ > 1/p. By applying Proposition 2.2 (iii),

it suffices in the above argument to estimate (4.3) using

(4.8) ‖Qjf‖Lp(Pk,η) 6 ‖F−1γ‖1‖f‖∞
(∫

Pk,η

dx

)1/p

6 c12
−nk/p‖f‖∞ 6 c22

−nk/p‖f‖Bs,τ
p,q

∀ k 6 0.

Then, we obtain the bound c‖f‖Bs,τ
p,q
. Indeed, it suffices to observe that

2knq(τ−1/p)
0∑

j=k

2jsq 6
∑

j60

2j(s+nτ−n/p)q < ∞.

Step 2 : Proof of (i) in the F -case. Let f ∈ F s,τ
p,q . We proceed exactly as

in (4.1), (4.2) and (4.3) we arrive at

(4.9) sup
k60

sup
η∈Zn

2knτ
∥∥∥∥
( 0∑

j=k

(2js|Qjf |)q
)1/q∥∥∥∥

Lp(Pk,η)

.

Substep 2.1 : The case s > (n/p − n)+. We consider the following two cases:

if p > q, we use the Minkowski inequality, if p < q, we use the elementary estimate

∑

j

aj 6

(∑

j

adj

)1/d

, aj > 0, 0 < d 6 1

with d := p/q and aj := (2js|Qjf |)q in the sum
0∑

j=k

. Then in all cases, we obtain

(4.10)

∥∥∥∥
( 0∑

j=k

(2js|Qjf |)q
)1/q∥∥∥∥

Lp(Pk,η)

6

( 0∑

j=k

(2js‖Qjf‖Lp(Pk,η))
r

)1/r

where r := min(p, q).
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⊲ If p > 1, the assumption s > 0 and (4.6) yield that (4.10) is bounded by c‖f‖Lτ
p
.

Then, we finish by using F s,τ
p,q →֒ Lτ

p.

⊲ If 0 < p < 1, combining the estimate (4.10) with the expression (4.9) we obtain the

bound
(∑
j60

(2js‖Qjf‖Lτ
p
)r
)1/r
. Then as above, we continue by using F s,τ

p,q →֒ Lτ
p

(i.e., ‖Qjf‖Lτ
p
6 c‖Qjf‖F s,τ

p,q
) and Lemma 4.2 because of the assumption (4.7).

Substep 2.2 : The case s > n/p− nτ and τ > 1/p. This case can be treated as in

Substep 1.2 using (4.8) with F s,τ
p,q instead of B

s,τ
p,q , and (4.10).

Step 3 : Proof of (ii). By (i) and Proposition 2.4 we have the embedding in one

direction. To prove the converse, let f ∈ Lτ
p be such that [f ]∞ ∈ Ȧs,τ

p,q . We put for

the sake of brevity,

Bk := 2knτ
( ∑

j>k+

(2js‖Qjf‖Lp(Pk,η))
q

)1/q

in the B-case,

Fk := 2knτ
∥∥∥∥
( ∑

j>k+

(2js|Qjf |)q
)1/q∥∥∥∥

Lp(Pk,η)

in the F -case.

If k > 1 we have Bk 6 ‖[f ]∞‖Ḃs,τ
p,q
and Fk 6 ‖[f ]∞‖Ḟ s,τ

p,q
. Thus, we assume that k 6 0

and we have:

Bk = 2knτ
(
‖S0f‖qLp(Pk,η)

+
∑

j>1

. . .

)1/q

(4.11)

6 c2knτ
(
‖S0f‖Lp(Pk,η) +

(∑

j>1

. . .

)1/q)

6 c(2knτ‖S0f‖Lp(Pk,η) + ‖[f ]∞‖Ḃs,τ
p,q

),

Fk = 2knτ
∥∥∥∥
(
|S0f |q +

∑

j>1

. . .

)1/q∥∥∥∥
Lp(Pk,η)

(4.12)

6 c(2knτ‖S0f‖Lp(Pk,η) + ‖[f ]∞‖Ḟ s,τ
p,q

);

where we used
∑
j>1

. . . 6
∑
j>k

. . . since k 6 0.

⊲ The case p > 1: We proceed as in (4.6) by changing Qj by S0, we obtain

(4.13) ‖S0f‖Lp(Pk,η) 6 c2−knτ‖f‖Lτ
p

∀ k 6 0.

⊲ The case p < 1: As S0f = f − ∑
j>1

Qjf , cf. Proposition 2.1, we get

(4.14) ‖S0f‖Lp(Pk,η) 6 21/p−1

(
‖f‖Lp(Pk,η) +

∥∥∥∥
∑

j>1

Qjf

∥∥∥∥
Lp(Pk,η)

)
.
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Clearly ‖f‖Lp(Pk,η) 6 c2−knτ‖f‖Lτ
p
for all k 6 0. However, for the last factor in (4.14)

we first see the B-case. We have

∥∥∥∥
∑

j>1

Qjf

∥∥∥∥
Lp(Pk,η)

6

∥∥∥∥
(∑

j>1

|Qjf |p
)1/p∥∥∥∥

Lp(Pk,η)

=

(∑

j>1

‖Qjf‖pLp(Pk,η)

)1/p

,

but 2js‖Qjf‖Lp(Pk,η) 6 2−knτ‖[f ]∞‖Ḃs,τ
p,q
for all j > 1 since k 6 0. Hence, we obtain

the bound

2−knτ‖[f ]∞‖Ḃs,τ
p,q

(∑

j>1

2−jsp

)1/p

6 c2−knτ‖[f ]∞‖Ḃs,τ
p,q

.

In the same way we prove the F -case, i.e., as 2js|Qjf | 6
(∑
l>k

2lsq|Qlf |q
)1/q

for all

j > 1 since k 6 0, we have

∥∥∥∥
∑

j>1

Qjf

∥∥∥∥
Lp(Pk,η)

6 2−knτ‖[f ]∞‖Ḟ s,τ
p,q

(∑

j>1

2−js

)
6 c2−knτ‖[f ]∞‖Ḟ s,τ

p,q
.

Consequently, from (4.13)–(4.14) we get

(4.15) ‖S0f‖Lp(Pk,η) 6 c2−knτ (‖f‖Lτ
p
+ ‖[f ]∞‖Ȧs,τ

p,q
) ∀ k 6 0.

Now, inserting (4.15) into (4.11) and (4.12) in the B- and F -case, respectively, we

obtain the bound c(‖f‖Lτ
p
+ ‖[f ]∞‖Ȧs,τ

p,q
). Finally, taking into account the case when

k > 1 the result follows. �

P r o o f of Lemma 4.2. We first put γj := γ(2−j ·) and w := min(1, p, q) for

brevity. Clearly QlQjf ≡ 0 if |j− l| > 2. Thus, the Fourier transform of the function

y 7→ F−1(γj)(y)Qlf(x− y) has its support in the ball |ξ| 6 (322
j + 3

22
l) 6 9

22
j (since

|j− l| 6 1). Then, by the Bernstein inequality (see, e.g., [12], Remark 1.3.2/1) we get

(4.16) |QlQjf(x)| 6 c2jn(1/w−1)

[∫

Rn

|F−1(γj)(y)Qlf(x− y)|w dy

]1/w
.

⊲ We consider the B-case. By the Minkowski inequality w.r.t. Lp(Pk,η ;Lw(Rn)), it

holds

(4.17) ‖QlQjf‖Lp(Pk,η) 6 c2jn(1/w−1)

[∫

Rn

|F−1γj(y)|w‖Qlf(·− y)‖wLp(Pk,η)
dy

]1/w
.
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We put k1:=max(k, 1) and, again by the Minkowski inequality w.r.t. lq(Z;Lw(Rn)),

we obtain

(4.18)(∑

l>k1

(2ls‖QlQjf‖Lp(Pk,η))
q

)1/q

6 c2jn(1/w−1)

[∫

Rn

|F−1γj(y)|w
(∑

l>k1

(2ls‖Qlf(· − y)‖Lp(Pk,η))
q

)w/q

dy

]1/w
.

In the right-hand side of (4.18) we use (4.4) with Qlf instead of f and as

(4.19) 2jn(1/w−1)

(∫

Rn

|F−1γj(y)|w dy

)1/w

= ‖F−1γ‖w,

then, by taking conveniently supremum, we obtain

(4.20)

(∑

l>k1

(2ls‖QlQjf‖Lp(Pk,η))
q

)1/q

6 c2−knτ‖f‖Bs,τ
p,q

.

We now treat the term ‖S0Qjf‖Lp(Pk,η); here k 6 0. We put d := min(1, p).

We have S0Qjf ≡ 0 if j > 2, and the Fourier transform of the function

y 7→ F−1(γj)(y)S0f(x − y) is supported by the ball |ξ| 6 3. Hence, as above

in (4.16)–(4.17) we obtain

‖S0Qjf‖Lp(Pk,η) 6 c1

[∫

Rn

|F−1γj(y)|d‖S0f(· − y)‖dLp(Pk,η)
dy

]1/d
,

where c1 := 3n(1/d−1)c. We again use (4.4) with S0f instead of f , and take into

account that the estimate ‖S0f‖Lp(Pk,µ) 6 c2−knτ‖f‖Bs,τ
p,q
holds true for all µ ∈ Zn

and all k 6 0, then using the equality (4.19) with d instead of w, we obtain

(4.21) ‖S0Qjf‖Lp(Pk,η) 6 c2jn(1−1/d)2−knτ‖f‖Bs,τ
p,q

∀ j 6 1, ∀ k 6 0.

Since
∑

l>k+

(2ls‖QlQjf‖Lp(Pk,η))
q is bounded by

‖S0Qjf‖qLp(Pk,η)
+
∑

l>1

(2ls‖QlQjf‖Lp(Pk,η))
q if k 6 0

and ∑

l>k

(2ls‖QlQjf‖Lp(Pk,η))
q if k > 1,

then by dividing each term of the resulting inequality by 2−knτ , using (4.20)

and (4.21) and taking supremum, the result follows.
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⊲ We briefly show the F -case using the same notations. So, we proceed as in (4.16)

and (4.18) by applying twice the Minkowski inequality, and we obtain

∥∥∥∥
(∑

l>k1

(2ls|QlQjf |)q
)1/q∥∥∥∥

Lp(Pk,η)

6 c2jn(1/w−1)

[∫

Rn

|F−1γj(y)|w
∥∥∥∥
(∑

l>k1

(2ls|Qlf(· − y)|)q
)1/q∥∥∥∥

w

Lp(Pk,η)

dy

]1/w
.

Then, we use (4.4) with
( ∑
l>k1

(2ls|Qlf(· − y)|)q
)1/q

instead of f(· − y) and we

continue as in B-case. The study of S0Qjf on Lp(Pk,η) if k 6 0 is exactly similar

to the above, which gives us an estimate similar to (4.21) with Bs,τ
p,q replaced

by F s,τ
p,q . The result follows.

�

P r o o f of Theorem 3.2. Step 1 : Convergence in S ′
∞. We begin by proving the

estimate

(4.22) sup
x∈Pj,w

|uj(2x/b)| 6 c2j(n/p−s−nτ)A, ∀ j ∈ Z, ∀w ∈ Zn.

To do this, we use the following lemma, which is proved in [6], page 782, (2.11), see

also [15], proof of Proposition 2.6.

Lemma 4.3. There exists a constant c > 0 such that the inequality

sup
x∈Pj,w

|g(x)| 6 c2jn/p sup
η∈Zn

‖g‖Lp(Pj,η) ∀ j ∈ Z, ∀w ∈ Zn

holds for all g ∈ S ′ with supp ĝ ⊂ {ξ : |ξ| 6 2j+1}.

Applying this lemma with g(x) := uj(2x/b) and using an easy proof

x ∈ Pj,η ⇒ 2x/b ∈
([2/b]+1)n⋃

r=0

Pj,E(2η/b)+wr
, wr ∈ Zn,

we get

‖uj(2(·)/b)‖Lp(Pj,η)6

(
(2/b)−n

([2/b]+1)n∑

r=0

‖uj‖pLp(Pj,E(2η/b)+wr )

)1/p

6 c sup
ν∈Zn

‖uj‖Lp(Pj,ν).

Hence, it holds

(4.23) sup
x∈Pj,w

|uj(2x/b)| 6 c2jn/p sup
ν∈Zn

‖uj‖Lp(Pj,ν) ∀ j ∈ Z, ∀w ∈ Zn.
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On the other hand, for all j, l ∈ Z such that j > l, it holds that

(4.24) ‖uj‖Lp(Pl,ν) 6 2−js−lnτ × 2lnτ
(∑

k>l

2ksq‖uk‖qLp(Pl,ν)

)1/q

6 2−js−lnτA

in the B-case, and

(4.25) ‖uj‖Lp(Pl,ν) 6 2−js−lnτ × 2lnτ
∥∥∥∥
(∑

k>l

2ksq|uk|q
)1/q∥∥∥∥

Lp(Pl,ν)

6 2−js−lnτA

in the F -case. Next in (4.23), inserting (4.24) in B-case ((4.25) in F -case) with j = l,

we obtain the desired estimate, i.e., (4.22).

We now turn to the convergence. Let f ∈ S∞. Due to supp ûj , there exists an

integer r, depending only on b, such that Sj+r(uj) = uj, hence 〈uj , f〉 = 〈uj , Sj+rf〉
for all j ∈ Z. We continue by writing

∑
j∈Z

|〈uj, f〉| = I1 + I2 where I1 :=
∑
j<0

. . . and

I2 :=
∑
j>0

. . .

⊲ Estimate of I1. By changing variables and by writing
∫
Rn =

∑
w∈Zn

∫
Pj,w
, we get

I1 6

(2
b

)n ∑

j<0

∑

w∈Zn

∫

Pj,w

∣∣∣uj

(2x
b

)∣∣∣
∣∣∣Sj+rf

(2x
b

)∣∣∣dx.

By Lemma 2.1, we choose an integer N satisfying ‖Sj+rf‖1 = O(2jN ) for j < 0 and

N > s+ nτ − n/p, thus by (4.22) it holds

I1 6 c1A
∑

j<0

2j(n/p−s−nτ)
∑

w∈Zn

∫

Pj,w

∣∣∣Sj+rf
(2x

b

)∣∣∣dx

6 c2A
∑

j<0

2j(n/p−s−nτ)

∫

Rn

|Sj+rf(x)| dx 6 c3A
∑

j<0

2j(N+n/p−s−nτ)
6 c4A.

⊲ Estimate of I2. We first apply (4.24)–(4.25) with l = 0 (i.e., j > 0) to obtain

‖uj‖Lp(P0,w) 6 2−jsA.

On the other hand, let us introduce a parameter d (at our further disposal) such

that 0 < d < p if 0 < p 6 1 and d := 1 if p > 1, thus by the Bernstein inequality and
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Hölder inequality with exponent 1/u := 1/d− 1/p, we obtain

(4.26)

I2 6 c1
∑

j>0

2jn(1/d−1)

(∫

Rn

|uj(x)Sj+rf(x)|d dx
)1/d

6 c2
∑

j>0

2jn(1/d−1)

[ ∑

w∈Zn

(∫

P0,w

|uj(x)|p dx
)d/p(∫

P0,w

|Sj+rf(x)|u dx
)d/u]1/d

6 c2A
∑

j>0

2j(−s−n+n/d)

( ∑

w∈Zn

(∫

P0,w

|Sj+rf(x)|u dx
)d/u)1/d

.

We observe that if x ∈ P0,w, then 1 + |w| 6 c(1 + |x|) with c := c(n) > 0; by using

the inequality 1 + |x| 6 (1 + |y|)(1 + |x− y|) and choosing d so that u > 1, i.e.,

(4.27)
p

p+ 1
< d < p 6 1 and d = 1 if p > 1,

we can apply the Minkowski inequality w.r.t. Lu(P0,w;L1(Rn)) and obtain

(∫

P0,w

|Sj+rf(x)|u dx
)1/u

6 c1(1 + |w|)−N

(∫

P0,w

(1 + |x|)Nu|Sj+rf(x)|u dx
)1/u

6 c12
(j+r)n(1 + |w|)−N

[∫

Rn

(1 + |y|)N |F−1̺(2j+ry)|

×
(∫

Rn

(1 + |x− y|)Nu|f(x− y)|u dx
)1/u]

dy

6 c22
(j+r)n(1 + |w|)−N

∫

Rn

(1 + |y|)N |F−1̺(2j+ry)| dy,

where we used f ∈ S∞; the number N ∈ N is at our disposal. Trivially we have
(recall that j > 0)

2(j+r)n

∫

Rn

(1 + |y|)N |F−1̺(2j+ry)| dy 6

∫

Rn

(1 + 2−r|z|)N |F−1̺(z)| dz 6 c,

recall that r := r(b). Hence,

(∫

P0,w

|Sj+rf(x)|u dx
)1/u

6 c(1 + |w|)−N .

Since the assumption s > (n/p− n)+, choose d such that

(4.28) s+ n− n

d
> 0,
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choose also N such that Nd > n+ 1 (i.e.,
∑

w∈Zn

(1 + |w|)−Nd < ∞), then from (4.26)
we get

I2 6 c1A
∑

j>0

2−j(s+n−n/d) 6 c2A.

Thus, from (4.27)–(4.28) we must find a number d such that

d = 1 if p > 1 and
1

p
<

1

d
< min

(
1 +

s

n
, 1 +

1

p

)
if 0 < p 6 1.

Step 2 : Proof of the estimate
∥∥∥
∑
j∈Z

uj

∥∥∥
Ȧs,τ

p,q

6 cA. We put u :=
∑
j∈Z

uj ∈ S ′
∞ due

to the preceding step. Owing to supp ûj , there exists an integer m, depending only

on b, such that Qk(uj) ≡ 0 if j 6 k+m (m is the nearest integer to − log2(2b)). We

continue by separating the case p > 1 from that of p < 1.

Substep 2.1 : Case p > 1. We treat the F -case since the B-case is similar to that

given in [1], pages 358–360. We introduce q1 > max(p, q). For j > k +m we have

|Qkuj(x)| 6 2−js

( ∑

l>k+m

2lsq1 |Qkul(x)|q1
)1/q1

,

then it holds

(4.29) |Qku(x)| 6
( ∑

l>k+m

2lsq1 |Qkul(x)|q1
)1/q1 ∑

j>k+m

2−js

6 c2−ks

( ∑

j>k+m

2jsq1 |Qkuj(x)|q1
)1/q1

for all x ∈ Rn and all k ∈ Z. Using the Hölder inequality with 1/p′ := 1 − 1/p, we

obtain

(4.30) |Qkuj(x)| 6
∑

w∈Zn

∫

Pl,w

|uj(y)||2knF−1γ(2k(x− y))| dy

6
∑

w∈Zn

‖uj‖Lp(Pl,w)

(∫

Pl,w

|2knF−1γ(2k(x− y))|p′

dy

)1/p′

.

We now take x ∈ Pl,η, then if y ∈ Pl,w we obtain

1 + |w − η| 6 2
√
2n(1 + 2l|x− y|) 6 2

√
2n(1 + 2k|x− y|) with k > l,

which implies, for all N ∈ N,

(4.31)

(∫

Pl,w

|2knF−1γ(2k(x− y))|p′

dy

)1/p′

6 c2kn−ln/p′

(1 + |w − η|)−N , k > l.
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We choose N := n+ 1. Consequently (4.30) becomes

(4.32) |Qkuj(x)| 6 c2kn−ln/p′ ∑

w∈Zn

‖uj‖Lp(Pl,w)(1 + |w − η|)−(n+1)

for all j ∈ Z, all (k, l) ∈ Z2 such that k > l, all η ∈ Zn and all x ∈ Pl,η.

On the other hand, as the two annuli 1
22

j 6 |ξ| 6 3
22

j and 1
22

k 6 |ξ| 6 3
22

k

are disjoint if |j − k| > 2, thus
∑
k∈Z

Q̂ku(ξ) is locally finite for all ξ ∈ Rn \ {0}.

Consequently, the sum
∑
k∈Z

Qku(x) contains at most three non-vanishing terms; then,

k ∈ Λ $ Z with CardΛ = 3 (Card means cardinality), where the set Λ is constituted

by consecutive elements, say Λ := {J, J + 1, J + 2}. Hence, from (4.29) we obtain

(4.33)
∑

k>l

2ksq|Qku(x)|q 6 c
∑

k>l,k∈Λ

( ∑

j>k+m

2jsq1 |Qkuj(x)|q1
)q/q1

∀x ∈ Rn.

Choosing l := J and inserting (4.32) into (4.33) with x ∈ PJ,η, then, using the

estimate 0 6 2kn−Jn/p′

6 22n+Jn/p, k ∈ Λ and the Minkowski inequality w.r.t.

lq1(Z; l1(Z
n)) (recall that q1 > p > 1), the right-hand side of (4.33) is bounded by

(4.34)

c12
Jqn/p

J+2∑

k=J

[ ∑

j>k+m

2jsq1
( ∑

w∈Zn

‖uj‖Lp(PJ,w)(1 + |w − η|)−(n+1)

)q1]q/q1

6 c12
Jqn/p

J+2∑

k=J

[ ∑

w∈Zn

( ∑

j>k+m

(2js‖uj‖Lp(PJ,w))
q1

)1/q1

(1 + |w − η|)−(n+1)

]q

6 c22
Jqn/p sup

ν∈Zn

( ∑

j>J+m

2jsq1‖uj‖q1Lp(PJ,ν)

)q/q1( ∑

w∈Zn

(1 + |w − η|)−(n+1)

)q

6 c32
Jqn/p sup

ν∈Zn

( ∑

j>J+m

2jsq1‖uj‖q1Lp(PJ,ν)

)q/q1

where c1, c2, c3 are independent of x, η and J . On the other hand, by the elementary

inequality

[2mνl] 6 2J+mxl < [2mνl] + [2m] + 2, x ∈ PJ,ν , l = 1, . . . , n

we obtain

(4.35) PJ,ν ⊂
([2m]+1)n⋃

r=0

PJ+m,E(2mν)+wr
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where wr ∈ Zn. Then, from the last term in (4.34) we find that

∑

j>J+m

2jsq1‖uj‖q1Lp(PJ,ν)
6

∑

j>J+m

2jsq1
(([2m]+1)n∑

r=0

‖uj‖Lp(PJ+m,E(2mν)+wr )

)q1

6 c1

([2m]+1)n∑

r=0

∑

j>J+m

2jsq1‖uj‖q1Lp(PJ+m,E(2mν)+wr )

6 c1

([2m]+1)n∑

r=0

∥∥∥∥
( ∑

j>J+m

2jsq1 |uj|q1
)1/q1∥∥∥∥

q1

Lp(PJ+m,E(2mν)+wr )

,

where we used the Minkowski inequality w.r.t. lq1(Z;Lp(PJ+m,E(2mν)+wr
)). By the

embedding lq(Z) →֒ lq1(Z), the last inequality is bounded by

c2

([2m]+1)n∑

r=0

∥∥∥∥
( ∑

j>J+m

2jsq |uj|q
)1/q∥∥∥∥

q1

Lp(PJ+m,E(2mν)+wr )

6 c3(2
−JnτA)q1 .

Hence, from (4.33) and (4.34) we get

(4.36)

(∑

k>J

2ksq|Qku(x)|q
)1/q

6 c2Jn/p−JnτA ∀x ∈ PJ,η.

Now, by dividing both sides of this inequality by 2−Jnτ and by calculating the

Lp(PJ,η) norm; as J is arbitrary one obtains the desired result.

Substep 2.2 : Case p < 1. We follow Step 1/Estimate of I2, also use the notations

of the preceding substep. We observe that the support of the Fourier transform of

the function y 7→ 2knuj(y)F−1γ(2k(x − y)) is the ball |ξ| 6 (b + 3
22

−m)2j (recall

that j > k + m, cf. the third sentence in Step 2). We introduce two parameters d

and u such that 0 < d < p and 1/u := 1/d− 1/p, then by the Bernstein and Hölder

inequalities we get

(4.37) |Qkuj(x)| 6 c2jn(1/d−1)

[∫

Rn

|2knuj(y)F−1γ(2k(x− y))|d dy
]1/d

6 c2jn(1/d−1)

[ ∑

w∈Zn

(∫

Pl,w

|uj(y)|p dy
)d/p

×
(∫

Pl,w

|2knF−1γ(2k(x− y))|u dy
)d/u]1/d

for all l ∈ Z. We proceed as in (4.31) by taking x ∈ Pl,η and N ∈ N, then

(∫

Pl,w

|2knF−1γ(2k(x− y))|u dy
)1/u

6 c2n(k−l/u)(1 + |w − η|)−N , k > l,
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the constant c is independent of k, l and x. Inserting this inequality into (4.37) and

using the Minkowski inequality w.r.t. l1/d(Z; l1(Zn)), we obtain

(4.38)

|Qku(x)| 6
∑

j>k+m

|Qkuj(x)| (recall that k > l)

6 c2n(k−l/u)
∑

j>l+m

2jn(1/d−1)

[ ∑

w∈Zn

‖uj‖dLp(Pl,w)(1 + |w − η|)−Nd

]1/d

6 c2n(k−l/u)

( ∑

w∈Zn

[ ∑

j>l+m

2jn(1/d−1)‖uj‖Lp(Pl,w)(1 + |w − η|)−N

]d)1/d

for all x ∈ Pl,η. Next, using the inclusion (4.35) applied to Pl,w, and choosing d such

that s+ n− n/d > 0, which is possible since s > n/p− n, and the fact that

‖uj‖Lp(Pl,w)6

(([2m]+1)n∑

r=0

‖uj‖pLp(Pl+m,E(2mw)+wr )

)1/p

6 c

([2m]+1)n∑

r=0

‖uj‖Lp(Pl+m,E(2mw)+wr )

where c := 2([2
m]+1)n(1/p−1) (this follows from (4.5)), it holds that

∑

j>l+m

2jn(1/d−1)‖uj‖Lp(Pl,w) 6 c1
∑

j>l+m

2jn(1/d−1)

(([2m]+1)n∑

r=0

‖uj‖Lp(Pl+m,E(2mw)+wr )

)

6 c22
−lnτA

∑

j>l+m

2j(n/d−n−s) 6 c32
l(n/d−n−s−nτ)A,

where we used (4.24) in the B-case and (4.25) in the F -case, with l + m instead

of l (i.e., j > l +m). Inserting this estimate into (4.38) and choosing N such that

Nd > n+ 1 (i.e.,
∑

w∈Zn

(1 + |w − η|)−Nd < ∞), one has

(4.39) |Qku(x)| 6 c2kn+l(n/p−n−s−nτ)A, k > l, x ∈ Pl,η.

Now since we treat the B-case, we have

(∑

k>l

2ksq‖Qku(x)‖qLp(Pl,η)

)1/q

6 c2−l(n+s+nτ)A

( ∑

k>l,k∈Λ

2k(n+s)q

)1/q

.

Choosing l := J (the integer J is defined by k ∈ Λ = {J, J+1, J+2}, cf. Substep 2.1),
it follows (∑

k>J

2ksq‖Qku(x)‖qLp(PJ,η)

)1/q

6 c2−JnτA.

Now, by dividing both sides of this inequality by 2−Jnτ and by the arbitrariness of J

one obtains the desired result. In the F -case, from (4.39) we choose again l := J and

proceed as in (4.36). The proof is complete. �
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