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Abstract. We prove that in the homogeneous Besov-type space the set of bounded func-
tions constitutes a unital quasi-Banach algebra for the pointwise product. The same result
holds for the homogeneous Triebel-Lizorkin-type space.
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1. INTRODUCTION AND THE MAIN RESULT

For the homogeneous Besov space BS 4(R™) and Triebel-Lizorkin space F;(I(R”),
which are defined such that || f|lz, = HfHF = 0 if and only if f is a polyno-
mial on R™, the subspaces of bounded functlons denoted by B; ,(R") and F; ,(R"),
respectively, have played an important role for the composition operators on inhomo-
geneous Besov and Triebel-Lizorkin spaces B, ,(R™) and F;  (R™), respectively, see,
e.g., [3], [4], [7], [9]- In these references they have been characterized, in particular:

Proposition 1.1. For s > 0, B, (R") (or F; ,(R")) is a unital quasi-Banach
algebra for the pointwise product.

In this context, we want to extend this proposition to homogeneous Besov-type
spaces BS '7(R™) and Triebel-Lizorkin-type spaces Flqu (R™). We then introduce the
spaces

Bya(R") = (Leo N By ) (R™)
and similarly F57(R") in the F;775(R”)-case, see Subsection 2.3 below. We de-
note by A57(R") either By 7(R™) or Fy7(R™) and by &;7(R") either B, 7(R")
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or .7 (R™), if no confusion can arise. We use the abbreviations B-case and F-case
to indicate in what space we work. Then we prove the following main result:

Theorem 1.1. Let 7 > 0,0 < p, ¢ < o0 (p < o0 in F-case) and s > (n/p —n)4.
Then &7 (R™) is a unital quasi-Banach algebra for the pointwise product. Moreover,
the inequality

I fgl

holds for all f, g in £57(R™).

< e[l flleollgl

£ esr +llgllocllfllesr)

For the proof we need some preparation, in particular an estimate of the Nikolskij-
type in A;:Z(R"), then we give a result in this direction, see Theorem 3.2 below. On
the other hand, another result in this paper is the link between A;:g(ﬂ%”) and their
inhomogeneous counterparts A;7(R"), see Theorem 3.1 below (A;7(R™) denotes
either the Besov-type space B, 7 (R") or the Triebel-Lizorkin-type space F;:7 (R")).

Also, one can extend the investigations on &7 (R™) using difference operators, it

will be presented in future work.

Notation 1.1. All function spaces occurring in this work are defined on the
Euclidean space R™, then we omit it in notations. As usual, N denotes the set of
natural numbers and Ny := N U {0}. If s € R, then [s] denotes its integer part.
If w = (u1,...,u,) € R", we put E(u) := ([u1],...,[un]) € Z". If a € R, then
a4+ := max(a,0). The symbol < indicates a continuous embedding. If 0 < p < oo,
we denote by |||, the quasi-norm in L,. For f € Ly, the Fourier transform and the
inverse are defined by

FFE) = f(€) = / e f(r)de and Ff(x) = (20) " f(—a).

n

We denote by Cyp the Banach space of bounded and uniformly continuous func-
tions on R™ endowed with the supremum norm. We denote by P, the set of all
polynomials in R™. The symbol S, is used for the set of functions ¢ € S (the
Schwartz space) such that (u, @) = 0 for all u € Py, its topological dual is denoted
by S... If f € &, then [f]s denotes its equivalence class modulo Ps,. The mapping
which takes any [f]oo to the restriction of f to So, turns out to be an isomorphism
from &’ /Py onto S, , for this reason, S/ is the so-called “space of distributions
modulo polynomials”. For k € Z and € /™ we denote by Py, the dyadic cube of
all x € R™ such that n; < 2%2; < +1 (I =1,...,n). The constants c,ci,... are
strictly positive, depend only on the fixed parameters as n, s, p, ..., their values may
change from a line to another.

Finally, in all the paper the parameters s, p, g, 7 satisfy: s € R, p € ]0,00] in
B-case, p € ]0,00[ in F-case, q €]0,00] and 7 > 0, unless otherwise stated.
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This work is organized as follows. In Section 2, we recall definitions and some
properties of both A>7, A;g and &7. In Section 3, we state our additional results
(see Theorems 3.1-3.2). The last sectlon is devoted to the proofs.

2. PRELIMINARIES

2.1. The Littlewood-Paley setting. To introduce the Littlewood-Paley setting,
we choose, once and for all, a standard cut-off function p. More precisely, we assume
that o is a radial C* function satisfying 0 < o < 1, o(§) =1 for [¢] < 1, o(§) = 0 for
€] > 2. We put () := 0(£) — 0(2€). Then v is supported by the compact annulus
1 < |¢] < 2 and the following identities hold:

SNy =1, €#£0, o27F)+Y 127 =1, kel

JEZ i>k

Let us define the convolution operators (S;) and (Q;) by S/'j?(g) = 0(2796)f(¢)
and éj\f(f) = ~(279€)f(€). Tt is clear that S; and @; are defined on &’. The
operators (Q; are also defined on S since Q;f = 0 if and only if f is a polynomial
on R™, then we make use of the following convention:

if f e S, weset Q;f :=Qjg for all g such that [g]oc = f.

The operators S; and @; take values in the space of analytical functions of expo-
nential type, see the Paley-Wiener theorem. The families (S;) and (Q;) constitute
bounded subsets of the normed space £(L,) for any 1 < p < oo due to Young
inequality. Also, we have the following lemma, a classical consequence of Taylor’s
formula, see, e.g., [8], Proposition 2.5:

Lemma 2.1.
(i) If f € S, then ||Q;f|l, = O(277N) as j — oo for all N € N.
(ii) If f € Sx, then ||Q;fll, = O(2'N) and ||S;f|l, = O(27V) as j — —oc for all
N € Np.

The Littlewood-Paley decompositions of a tempered distribution are described in
the following statement, which is an immediate consequence of Lemma 2.1.

Proposition 2.1.

(i) For every f € Sx (or f € S.), it holds that f = Zij in S (or S,
respectively). g€l

(ii) For every f € S (or f € §') and every k € Z, it holds that f = Spf+ > Q,f

in S (or §', respectively). J>k
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2.2. The Besov and Triebel-Lizorkin spaces. We first define the classical
Besov and Triebel-Lizorkin spaces and their homogeneous counterparts.

Definition 2.1. (i) The Besov space B, , is the set of f € &’ such that

/]

) 1/q
i = U0l + (@ QA1) <.

Jjz1

(ii) The Triebel-Lizorkin space F; , is the set of f € S’ such that

/]

< 0.
p

4 1/q
i, i= Isufll 4 (S rlan)
i>1

(iii) The homogeneous Besov space B; o s the set of f € S/ such that

. 1/q
b, = (Seir)) <o

JjEZ

/]

(iv) The homogeneous Triebel-Lizorkin space Fpﬁq is the set of f € S such that

) 1/q
I11s,, = | (S @)
JEZ

With usual modifications made when, in the B-case, p = co or ¢ = oo and, in the

< 0.
P

F'-case, ¢ = oc.

Then we define the Besov-type and Triebel-Lizorkin-type spaces and their homo-
geneous counterparts.

Definition 2.2. (i) The Besov-type space B, 7 is the set of f € S’ such that

/1

1/q
B 1= Sup sup 2k"7< Z (238||ij||Lp(pm))q> < oo (here Qg := Sp).
keZ nezr

JZky

(ii) The Triebel-Lizorkin-type space F};; is the set of f € S’ such that

(> <2fS|ij|>Q)1/q

jzk4

/]

< oo (here Qg := Sp).

F57 = Sup sup oknt
k Lp(Pr,n)

€z neln

iii) The homogeneous Besov-type space B57 is the set of f € S’ such that
p.q e}

1/q
1557 5= sup sup 27 (21 QS im,)7) <
’ €

7 neln =
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(iv) The homogeneous Triebel-Lizorkin-type space Flqu is the set of f € S/,
such that

gknT < 00.

Lp(Pkm)

/1

(EXW@MWYM

jzk

g7 += Sup sup
’ keZ neln
With usual modifications made when, in the B-case, p = co or ¢ = oo and, in the
F'-case, ¢ = oc.

All these spaces are independent of the choice of the function p, see, e.g., [2],
[10]-[13] and [15]. Now, in what follows, we will denote for simplicity by A; ei-
s s A s : oY} s s,0 __ s
ther B,  or I, and by A} either B) or F; . We note that A>) = Aj  and

o
A;q = Agﬁq. We also note that

(2.1) S A8

$,T ! As As,T ’
o Apg = S and S — A Apt = Soo-

P,q’

As further embeddings, we have the following two statements.

Proposition 2.2. The following properties hold:

1 S5 ) S5 ’ ’

(i) Bp;nin(pﬂ) I Y Bp,ITHaX(nq) and Apg, = ApG, (01 < g2)-
(i) Apg = BXXTP = P

(iii) A7 < Cup if s+n7—n/p>0.

Proof. For (i)—(ii) we refer to [15], Propositions 2.1, 2.6. In the B-case, (iii)
follows by the well-known property of Holder spaces Bf)o’oo for t > 0, see, e.g., [11],

Theorem 2.2.4/1; in the F-case, we have ;7 — BT — Cyp.- O
) p,max(p,q)

Proposition 2.3. The following properties hold:
(1) B;::nin(p,q) — Fili’g — B;Z:Tmax(p,q) and A;igl - A;’vgz (ql < q2)
(ii) Let s1 > s2, 0 < p1 < pa < 0 (p2 < o0 in F-case) and 0 < r < oo. If

_ _ _ .81,7' -327' -817' -8277'
$1 —n/p1 = s2 —n/pa, then BpbT — Bp2Tand Fbr — 2T

Proof. For (ii) we refer to [14], Proposition 3.3. O

In order to connect with the modified Lebesgue-type space Lj of functions f
such that

[flley == sup [P]77||fllL,p) < oo
1(P)>1

where the supremum is taken over all dyadic cubes P with side length I[(P) > 1,
we recall that L; — S§"if 1 < p < oo and Lg = L,. Thus, we give a relation
between A?7 and this space and refer to [15], Proposition 2.7.

Proposition 2.4. If s > (n/p —n)4, then it holds Ay7 — L7.
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2.3. Definition of the algebra space.

Definition 2.3. The space &;7 is the set of f € Lo such that [f]o € A;g

equipped with the quasi-norm || fllgsr := [ flloo + [[[f]ooll 4z -

The following statement is an immediate consequence of the second chain of em-
beddings given in (2.1).

Proposition 2.5. The space £,; is quasi-Banach and the continuous embeddings
Soo = &7 — S’ hold.

3. FURTHER RESULTS

The following two theorems are of self-contained interest, since the first one gives
us a tool for passing from AJ7 to A;g which is not completely referenced in the
literature, see, e.g., [5], Lemma 2.7, Remark 2.8, the second one is Nikolskij-type
inequalities for AZ:Z'

Theorem 3.1.
(i) Assume that either s > (n/p —n)y or s >n/p—mnt and 7 > 1/p. If f € AS7,
then it holds [f]e € A} .
(ii) Ifs > (n/p—n)y, then AyT = {f € L]: [flw € A, }. Moreover, the expression
[f1lz; + [flocll 4z is an equivalent quasi-norm in Aj7.

Theorem 3.2. Let s > (n/p —n); and b > 0. Let (u;) be a sequence in &'
such that

> 1y is supported by the ball |£] < b27,

. 1/q
> A :=sup sup 2’””(2 (2]8HU]‘HLP(Pk 7]))‘1) < oo in the B-case,
kez nezn >k '

< oo Iin the F'-case.
Lp(Pkm)

(5 @) |

Jjzk

> A :=sup sup 2F"7
keZ nelr

Then the series y u; converges in S\ and satisfies H > uj‘
jez jez
constant ¢ depends only on n, s, T, p, ¢ and b.

< cA, where the

AS,T
p,q
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4. PROOFS

Proof of Theorem 1.1.  We first assume that Theorem 3.2 is indeed valid;
a straightforward consequence of this theorem is the following assertion.

Lemma 4.1. Let s > (n/p—n)4 and m € Z. For all f € Lo, and all g € AZ:Z
we put
T (f29) = Y _(Sj-m[)(Q;9)-
jEZ

Then 7, Is a continuous bilinear application from Lo X Ap7 to AJ7.

We turn to the proof of Theorem 1.1 which is similar to that in Theorem 3.26
of [7], we only check some properties needed here. Recall that in this reference the
case p,q > 1 is treated which can be extended without difficulty to any p,q > 0. Let
us take f, g in £;:7. By the Abel transform

ST (S N@) + Y (Sk0)(Qurrf) = (S55)(S39) — (3155 -10)
k=—j k=—j

holds for all j > 0. By Lemma 2.1, Sk f(z)| < || f]loo and |Skg(z)| < ¢||g|lco (for all
x € R™ and all k € Z), and we have (cf. [7], page 253)

m (S-;f)(5-j-19) =0in S, and  lim (5;£)(S;g) = fg in S'.

li
j—o0

Then we get mo(f, [9]oo) + 71(9, [floo) = [fg]oo in S-,. Now, by applying Lemma 4.1,
we obtain the desired result. d
Proof of Theorem 3.1.  Step 1: Proof of (i) in the B-case. Let us consider

. 1/q
J € Byyg and set Uy, := 2’””(2 (2‘]S|‘ij||Lp(kan))q> where k € Z and n € Z".

Clearly we have gk

1/q
Uk,n g 2‘k‘n7— ( Z (2]S|ij|Lp(Pkm))q>

i1k
] 1/q
2 (5 @0 iy )
Jjz—lkl
1/q 1/q
< sup 2T <Z . ) + sup 277 (Z .. > ,
1>0 = 1<0 =
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then we can write

1/q
a0 el < s s 27 (S 1Q )

k>0nein >k

1/q
+sup sup 2°"7 <Z(2”|ij|Lp<Pk,n>)q) :

k<0 nezn eyt

It is clear that the second term is bounded by | f|[ps7. For the third one, since
0
k<0, wesplit > into Y + Y and use the equality Y. ...= > ..., then

>k j=k j>0 §j>0 >k

_ 1/q
(4.2) gk (Z<2JS||ij||Lp<pk,n>>q) <

>0

We reduced the estimation to the term

0 ' 1/q
(4.3) sup sup 277 (Z<2JS|ij|L,,<pk,,,>)Q) .

k<0 nezn =

Substep 1.1: The case s > (n/p—n)y. lf © € Py, and y € R™, we have x —y €
o
U Py n—EB(2+y)+w, Where w, € Z™ independent of y, an easy proof. Then
r=1

on

(1.49) 1C = 9Py < €N 0Py sty o)

r=1

for all y € R™; this follows from the statement

(4.5) if a,b> 0 then a” + b” < max(1,2'7P)(a + b)P.

> If p > 1, then by using (4.4), we get

(4.6) 1Qi fllz,(pe.) < QJ”/R F @I =o)L,y dy
<2 F Yl flloy < 27| flle; VR <O.

As By7 < L7 since s > 0 (see Proposition 2.4), we deduce that the expression
given in (4.3) is bounded by c| f| g7
> If 0 < p < 1, we apply the following lemma.

Lemma 4.2. We put d := min(1,p). Then there exists a constant ¢ > 0 such that
the inequality ||Q; f|| as7 < cmax(1, 2n(1=1/d))| f| a7 holds for all f € A%7 and all
jEe”L.
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We now turn to the estimate (4.3) in which the factor after the text “sup sup”

_ 1/q k<0 nezr
is bounded by (X2 (27°Q;fll;)?) " since 25711Q; |1, p,.,) < Qs iy By this
J<0
lemma we have Q) f € By7, then the continuous embedding By; < L; yields the

) 1/q
bound c1[|f| g7 ( > 23(3+"_”/p)‘1) which is itself majorized by ca|f| ps:7 since
T <0 b
(4.7) s+n——>0.
p

Substep 1.2: The case s > n/p—n7 and 7 > 1/p. By applying Proposition 2.2 (iii),
it suffices in the above argument to estimate (4.3) using

( .8) HQ]fH o(Pion) < ||7:_1’y||1HfHC (/ dx)
4 L Py .y

<1272 flloo < 2277 f]

BT vk <O.
Then, we obtain the bound c|| f||gs 7. Indeed, it suffices to observe that
0
gknq(t—1/p) Z 2750 < Z 9i(s+tnT—n/p)q
j=k J<O0

Step 2: Proof of (i) in the F-case. Let f € F; 7. We proceed exactly as
in (4.1), (4.2) and (4.3) we arrive at

(20:(2j5|62jf|)">1/q

j=k

(4.9) sup sup 27
k<0 nezn

Lp(Pkm)

Substep 2.1: The case s > (n/p —n);. We consider the following two cases:
if p > ¢, we use the Minkowski inequality, if p < ¢, we use the elementary estimate

1/d
Zaj<(2a?> , a;20,0<d<1
J

J

0
with d := p/q and a; := (27°|Q, f|)? in the sum Y. Then in all cases, we obtain

j=k

aw) | (g(?lejfl)")Uq

0 . 1/r
< ( (275||ij||Lp(Pk,n))T>
Lyp(Pr,n) =k

J

where r := min(p, q).
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> If p > 1, the assumption s > 0 and (4.6) yield that (4.10) is bounded by ¢/ f||z;.

Then, we finish by using F)>7 — L.

> If 0 < p < 1, combining the estimate (4.10) with the expression (4.9) we obtain the

1/r
bound (Z (QJSHij”LT) ) . Then as above, we continue by using F;>; < Lj,

(ie. HQJfHLT cll@Q;if|

Fg7) and Lemma 4.2 because of the assumption (4.7).

Substep 2.2: The case s > n/p —n7 and 7 > 1/p. This case can be treated as in

Substep 1.2 using (4.8) with F;.7 instead of B, 7, and (4.10).

p,q’

Step 8: Proof of (ii). By (i) and Proposition 2.4 we have the embedding in one
direction. To prove the converse, let f € L7 be such that [f]e € Ag”;. We put for

the sake of brevity,

1/q
By, = 2kn7 ( > (2J'S|ij|Lp(Pw)Q) in the B-case,

Jzky

(2 <2J‘S|ij|>Q)1/q

Jzky

F := 2knT in the F-case.

Lp(Pkm)

If £ > 1 we have By, < H[f]ooHB;:g and Fj, < ||[f]oo|\FMT Thus, we assume that k
and we have:

1/q
(4.11) By, :2’“"7<|Sof||(£p(13k,,,) +Z)
TS
) 1/q
<2 nT(|SOf||Lp(Pkm) + (Z) )
j=1

< @[S0 f 1, (poy + IS 1oo||B;;;),

(IS 9+ )

j=1
2 N1S0 1l (i) + 111l

where we used Y ... < > ... since k < 0.
i>1 >k

(4.12) = ohnT

p(Pkm)

's,r)'
FZ),LI !

> The case p > 1: We proceed as in (4.6) by changing @Q; by So, we obtain

(4.13) 108 l12,p0) < 27N flly V<O
> The case p < 1: As Sof = f— > Q;f, cf. Proposition 2.1, we get
j>1
@1 sl <207 (Wl + [ o] ).
j=1 Lp(Pr,n)

1290
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Clearly || fllz,(p,.) < 02*k"7|\f|\L; for all £ < 0. However, for the last factor in (4.14)
we first see the B-case. We have

1/p
<|(Ziaur)
Ly (Pr,n) j=1

but 27°(1Q; fll L, (p..) < 27F7|[f ]oo||Bw for all j > 1 since k < 0. Hence, we obtain
the bound

>.Qif

J=1

1/p
- (Z1@itm,,)
Lp(PkJI)

i>1

2= kn-r”

1/p
oz (X 277) <™ g

j=1

. 1/q
In the same way we prove the F-case, i.e., as 27°|Q; f| < (EQlSq|Qlf|q) for all
. . 1>k
j = 1 since k < 0, we have

>.Qif

j>1

< 2—km—|| (Zz ]9) <2 km—H[ ]
Lp(Pr,n) =1

Consequently, from (4.13)—(4.14) we get

(4.15) 150 ll2,(Pey < 2757 (1l + [1[f]e]

Now, inserting (4.15) into (4.11) and (4.12) in the B- and F'-case, respectively, we
obtain the bound c([| ||z + [|[f]o ] A;’;)’ Finally, taking into account the case when
k > 1 the result follows. O

Proof of Lemma 4.2.  We first put v; := v(277:) and w := min(1,p,q) for
brevity. Clearly ;Q;f = 01if |j—{| > 2. Thus, the Fourier transform of the function
y = F~1(v;)(y)Quf (x — y) has its support in the ball |¢] < (227 + 32!) < 227 (since
|7 =1 < 1). Then, by the Bernstein inequality (see, e.g., [12], Remark 1.3.2/1) we get

. 1/w
(4.16) |Ql@jf<x>|<czf”<l/w1>[/ |f1<vj>(y>@lf<x—y>|%y] .

n

> We consider the B-case. By the Minkowski inequality w.r.t. Ly (P n; Lw(R™)), it
holds

1/w
(41D 1QQ e, < 2"V | [ 171G )l ]
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We put k;:=max(k, 1) and, again by the Minkowski inequality w.r.t.l;(Z; L, (R™)),
we obtain
(4.18)

1/q
(Z <2ZS||Qszf|Lp<pk,n>>Q)

1>k

w/q 1/w
<c21"<1/w—1>[/R |f-1vj<y>|w(2<2“|@zf<-—y>||Lp<pk,n>>Q) dy] |

1>k

In the right-hand side of (4.18) we use (4.4) with @;f instead of f and as

1/w
(1.19) g0 ([ Fimay) =1
then, by taking conveniently supremum, we obtain
1/q
(1.20) (Z @ 10Q Iy, < 2l
1>k

We now treat the term [|SoQ;f|z,(p, ,); here & < 0. We put d := min(1,p).
We have SoQ;f = 0 if 7 > 2, and the Fourier transform of the function
y — F 1) (y)Sof(z — y) is supported by the ball || < 3. Hence, as above
in (4.16)—(4.17) we obtain

1/d
19005 leycey < | [ 17501108 = DI cpp 0]

where ¢; := 3"1/4=D¢. We again use (4.4) with Sy f instead of f, and take into
account that the estimate [|So fl|z, (p, ) < 2777/ f|
and all k£ < 0, then using the equality (4.19) with d instead of w, we obtain

Bg:7 holds true for all p € 2"

4.21 SoQiflln.p y < e2mU=tdo=knmy el .o V<1, Vi <O0.
J »(Pr,n) p.q

Since Y. (2"%[|QiQ; flL,(py.))? is bounded by

I>ky
1S0Qsf 1% (b, ) + D2 1QuQ; fllL,(py))? i k<O
>1

and

Z(le||Qlef||Lp(Pk,n))q if k> 1,

1>k

then by dividing each term of the resulting inequality by 27*"7  using (4.20)
and (4.21) and taking supremum, the result follows.
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> We briefly show the F-case using the same notations. So, we proceed as in (4.16)
and (4.18) by applying twice the Minkowski inequality, and we obtain

1/q
H (Z(zlﬂ@w)q)
1>k,

<amtmn| [ r )

Lp(Pkm)

w 1/w
dy} .
Lp(Pkm)

(S et - y>|>q)1/q

1>k

Then, we use (4.4) with (E (21Quf (- — y)|)q)1/q instead of f(- —y) and we

1>k
continue as in B-case. The study of SoQ; f on L,(Py,) if k < 0 is exactly similar

to the above, which gives us an estimate similar to (4.21) with B,7 replaced
by F.7. The result follows.

O
Proof of Theorem 3.2. Step 1: Convergence in S/ . We begin by proving the
estimate
(4.22) sup |u;(22/b)| < 21/PTINIAL Yie 7, Yw e 7™

TEP;
To do this, we use the following lemma, which is proved in [6], page 782, (2.11), see
also [15], proof of Proposition 2.6.

Lemma 4.3. There exists a constant ¢ > 0 such that the inequality

sup |g(x)] < 2P sup ||gllL,p,,) Yi€Z Ywel"
TEP; nezn

holds for all g € 8" with suppg C {&: |¢| < 2771},
Applying this lemma with g(z) := u;(22/b) and using an easy proof

([2/b]+1)™
€ Pj,=2z/be U P; pon/p) 4w, wr € 1",
r=0

we get
([2/6]+1)" 1/p
2O < (07X W5l ) <50 sl
—~ vezn
Hence, it holds
(4.23) sup |uj(2x/b)| < ¢27™/P sup lujllz, P,y Vi€Z, Ywel".
TEP; velzr '
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On the other hand, for all 5,1 € Z such that j > [, it holds that

1/q
420l <2070 2 (Al ) <2
k>l

in the B-case, and

< 2—js—lnTA
LP(PI,U)

(4.25)  lugllz,(p,) < 2775707 x 207

1/q
(Z 2ksq|7utk|q>

k>l

in the F-case. Next in (4.23), inserting (4.24) in B-case ((4.25) in F-case) with j = I,
we obtain the desired estimate, i.e., (4.22).

We now turn to the convergence. Let f € So. Due to supp 4, there exists an
integer r, depending only on b, such that S;4,(u;) = u;, hence (u;, f) = (u;, Sjxrf)
for all j € Z. We continue by writing E {uj, /)l = I + I, where I; :== > ... and

Iy :=> ... J<0
7=0
> Estimate of I. By changing variables and by writing [, = > f P, We get
wezn

GVZ X [ s (5)] o

J<0wez™

By Lemma 2.1, we choose an integer N satisfying ||Sj4, f|1 = O(2/") for j < 0 and
N > s+ nt —n/p, thus by (4.22) it holds

<y 20 S [ s (2

§<0 wezn Pj w

< CQAZ 2j(”/p_s_”7)/ |Sjr f(2)] da < 03AZ I (N+n/p=s=n7) < ¢, A.
[Rﬂ

J<0 ' Jj<0
> Estimate of Iy. We first apply (4.24)—(4.25) with [ = 0 (i.e., j > 0) to obtain
45l 2, Py < 2770 A

On the other hand, let us introduce a parameter d (at our further disposal) such
that 0 < d <pif 0 < p < 1landd:=1if p> 1, thus by the Bernstein inequality and
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Hélder inequality with exponent 1/u := 1/d — 1/p, we obtain

(4.26)
1/d
I <oy 2mt/ah) </ |uj(x)5j+rf(x)|ddx>
>0 R
d/p d/uq1/d
<oy 200 S ([ uara) ([ isies@la)
j=0 wezn Y Fo.w Po,w
d/u~\1/d
<SS ([ s pwran) )
§=0 wezr N Po.w

We observe that if z € Py, then 1 + |w| < ¢(1 + |z|) with ¢ := ¢(n) > 0; by using
the inequality 1+ || < (1 + |y|)(1 + |« — y|) and choosing d so that u > 1, i.e.,

(4.27) ]%<d<p<1 and d=1ifp>1,

we can apply the Minkowski inequality w.r.t. L, (FPo.; L1(R™)) and obtain

1/u
([ iss@ras) <aaho)(
Po,w Po,w

< 201 4 [w]) N [ [ a7 o)

R™

x < [ asle—apisa- y>|“dx)1/u} dy

< 20Ut (1 4 IUJD_N/ (1+ [y)NF o274 y)| dy,

Rn

1/u
(Ul 15 )]

where we used f € So; the number N € N is at our disposal. Trivially we have
(recall that j > 0)

2“”)”/ (1 + ly)™MF o2 y) | dy < / (L+27" )V IF o(2)]dz < ¢,
[Rn

Rn

recall that r := r(b). Hence,

1/u
([ Iss@ras)  <cun™
Po,w
Since the assumption s > (n/p — n)4, choose d such that
n
(4.28) stn—= >0,
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choose also N such that Nd > n+1 (ie., Y (1+ |w|)™™¢ < o0), then from (4.26)
wEZ7L

IQ < ClAZ 2—j(s+n—n/d) g CQA.
=20
Thus, from (4.27)—(4.28) we must find a number d such that

we get

11 1
d=1 if p>1 and —<—<min(1+f,1+—> if0<p<l.
p d n P

Step 2: Proof of the estimate H > u]‘ < cA. We put u = ) uj € S, due
jez Jjez
to the preceding step. Owing to supp 4;, there exists an integer m, depending only

on b, such that Qi (u;) = 01if j < k+m (m is the nearest integer to —log,(2b)). We
continue by separating the case p > 1 from that of p < 1.

Substep 2.1: Case p > 1. We treat the F-case since the B-case is similar to that
given in [1], pages 358-360. We introduce ¢; > max(p,q). For j > k + m we have

1/@1
Quuy (@) < 2—”( S 2l$q1|QkW($)|ql) ,

I>k+m
then it holds

1/111 )
(4.29) Qul< (X iQur) 3 2

I>k+m j>ktm
. 1/111
<ot ¥ Q)
i>k+m

for all z € R™ and all k € Z. Using the Holder inequality with 1/p’ :=1— 1/p, we
obtain

(430) Qe < Y /P fuy () [25" F (2 (& — )] dy

U}EZ"

1/p’
<Z||uj||Lp<p,,,u,>(/P 25 L (24 (& — )P dy) .
1w

welm

We now take x € P, then if y € P, ,, we obtain
L+ w—nl <2vV2n(1+ 2z —y|) <2vV2n(1 + 2"z —y|) with k>,

which implies, for all N € N,

1/p’
(4.31) (/ |2k F=Ly (2K (2 — )P dy) < 2P (1w —q) N, k=L
Py

,w
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We choose N :=n + 1. Consequently (4.30) becomes

(4.82) |Qrws(x)| < 2P PN gl py ) (1w = p) =D
/LUEZ"L

for all j € Z, all (k,l) € 7% such that k >, ally € 7" and all z € P,,.
On the other hand, as the two annuli 327 < [¢] < 227 and $2F < |¢] < 32°

are disjoint if |j — k| > 2, thus > Qku( ) is locally finite for all £ € R™ \ {0}.
kez
Consequently, the sum Y Qru(z) contains at most three non-vanishing terms; then,
kez
ke AG 7 with Card A = 3 (Card means cardinality), where the set A is constituted

by consecutive elements, say A := {J,J + 1,J + 2}. Hence, from (4.29) we obtain

q/a
(4.33) > 2"Quu(x)|* <c > ( > 2 Qpuy( )|q1) Vo € R™

k>l k2L keN Nj>k+m

Choosing [ := J and inserting (4.32) into (4.33) with « € Pj,, then, using the
estimate 0 < 2kn—7n/p" < 22ntJn/p L e A and the Minkowski inequality w.r.t.
lg (Z;11(Z7)) (recall that g1 > p > 1), the right-hand side of (4.33) is bounded by
(4.34)

J+2 ' a79/n
a2 S Y 20 (sl ey (o=l )|
k=J “j>k+m wezr

J+2

) /a1
< Cl2an/pZ{Z < Z (2js|uj|L,,(PJ,w))ql> (14 |w—n|)~ (n+1}

k=J twezn Nj>k+m

Q/Q1
e sup (5 Pl ) (3 (ko a) )

veln

q

q

i>J+m wezn
/1
Jgn/p | 5q 1491
<™ sup (52 2 sl
vel J>T+m

where c1, c2, c3 are independent of z, n and J. On the other hand, by the elementary
inequality

[27my) < 27Ty < [27y) + 27 +2, x€Py,, l=1,....n

we obtain
([27’L]+1)7L
(4.35) P;, C U Piim B@mv)+w,
r=0
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where w, € Z". Then, from the last term in (4.34) we find that

(2m+n" @
IEI RS DIEC (I DI [0 PRI
jzJ+m izJ+m r=0

(271"

<ca Z Z 2”‘““HujHqup(pH,,hE@m,,Hw,,)
r=0  j>J4+m

([27”]-‘,-1)" 1/(]1 @
<o E ’< E 9isa |uj|q1) ’
r=0 i>J+m Ly(Prim, E@mv)tw,)

where we used the Minkowski inequality w.r.t. Iy, (Z; Lp(Pim, B2mv)+w,)). By the
embedding 1,(Z) < 14, (Z), the last inequality is bounded by

([2m]+1)" l/q @
o 3 ’< 3 2J8q|uj|q> < (27T A
r=0 j=>J+m Ly(Pyym,B@mv)+w,)

Hence, from (4.33) and (4.34) we get

1/q
(4.36) <Z 2ksq|Qku(x)|q> <In/P=In A e e Py,
k>J

Now, by dividing both sides of this inequality by 27777 and by calculating the
L,(Pyj,) norm; as J is arbitrary one obtains the desired result.

Substep 2.2: Case p < 1. We follow Step 1/Estimate of I3, also use the notations
of the preceding substep. We observe that the support of the Fourier transform of
the function y — 2% u;(y)F~1v(2%(z — y)) is the ball [¢] < (b + 327™)27 (recall
that j > k + m, cf. the third sentence in Step 2). We introduce two parameters d
and v such that 0 < d < p and 1/u:=1/d — 1/p, then by the Bernstein and Hélder
inequalities we get

1/d
(437)  |Quus(a)| < /A [ | ek - y>>|ddy}

n

] d/p
< c2in(1/d-1) { Z (/P | (y)|P dy)
1

weln yw
Py

for all I € Z. We proceed as in (4.31) by taking z € P,,, and N € N, then

d/uq1l/d
25 F 1 (24 — )| dy> }

,w

1/u
(/ |2k”f‘17(2k(x—y))|“dy> <e2n (1 4 lw—n)N, k>,
Py

sw
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the constant c is independent of k, [ and x. Inserting this inequality into (4.37) and
using the Minkowski inequality w.r.t. [1,4(Z;11(Z")), we obtain
(4.38)

Qru(@)| < > 1Quuy(x)|  (recall that k > 1)

j>k+m
1/d
< 3 2jn(1/d1)[z g2 o w)(1+|w_n|)zvd}
>ltm wezn ’
d\1/d
< cZn(kl/u)< Z [ Z 2jn(1/d1)||Uj||Lp(P,,,u,)(1+|W—77|)N] )
wezn Yi>itm

for all z € By ,,. Next, using the inclusion (4.35) applied to P, ,,, and choosing d such
that s +n —n/d > 0, which is possible since s > n/p — n, and the fact that

(2™]+1)" 1/p  (2"]+D)"
|uj|Lp(Pz,w)<( > |uj|ip(pHm,E(QMHW)) <e Y Ml P s
r=0 r=0

where ¢ := 2(2"1+1D"(1/p=1) (this follows from (4.5)), it holds that

([2"'L]+1)"L
I T D Sl Ll (D DU Y DvS—.Y
Jj>l+m j>l+m r=0
< CQQilnTA Z 2j(n/d7nfs) < 632l(n/d7n757nT)A7

j>lH+m

where we used (4.24) in the B-case and (4.25) in the F-case, with [ + m instead
of [ (i.e., = I+ m). Inserting this estimate into (4.38) and choosing N such that

Nd>=n+1 (ie, > (1+|w—n[)~N < o0), one has
wezn

(4.39) |Qru(z)| < 2kt n/p=n=s=n) g > re P,

Now since we treat the B-case, we have

& 1/q l ) 1/q
<Z2 SQ|Qku(x)||%p(le)> <e2” (n+s+n‘r)A< Z 2 (n+s)q> .

k>l k>lkeA

Choosing [ := J (the integer J is defined by k € A = {J, J+1, J+2}, cf. Substep 2.1),
it follows
k Ha J
(22 8q|QkU(x)||%p(PJ,,,)> S 27 A
k>J

Now, by dividing both sides of this inequality by 27/"" and by the arbitrariness of .J
one obtains the desired result. In the F-case, from (4.39) we choose again [ := .J and
proceed as in (4.36). The proof is complete. O
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