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Abstract. Let R be a fusion ring and RC := R⊗Z C be the corresponding fusion algebra.
We first show that the algebra RC has only one left (right, two-sided) cell and the corre-
sponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, RC

admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron
homomorphism FPdim. Moreover, as an example, we explicitly determine the special mod-
ule of the interpolated fusion algebra R(PSL(2, q)) := r(PSL(2, q))⊗ZC up to isomorphism,
where r(PSL(2, q)) is the interpolated fusion ring with even q > 2.
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1. Introduction

Kazhdan and Lusztig in [6] defined the left, right and two-sided cells of Cox-

eter groups to study representations of Coxeter groups and Hecke algebras. Then

in [13], Mazorchuk and Miemietz defined, constructed and described right cell

2-representations of finitary 2-categories. Kildetoft and Mazorchuk found that on

the level of the Grothendieck group, a cell 2-representation is a based module over

a finite dimensional positively based algebra, and so they gave the definitions of left,

right and two-sided cells and the corresponding cell modules over arbitrary finite

dimensional positively based algebras. Furthermore, by using Frobenius-Perron the-

orem, they defined the special modules over any finite dimensional positively based

algebras. At last, in some sense, they classified the special modules for arbitrary

finite dimensional positively based algebras up to isomorphism, see [7], Section 9.
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However, for a finite dimensional positively based algebra, the module structures of

its special modules are not clear. For the works of cell modules of concrete positively

based algebras, one can refer [1] or [9].

In [2], Chapter 3, Etingof et al. introduced the concepts of Z+-rings, unital Z+-

rings and based rings, etc. Let R be a fusion ring with basis X = {Xi : 1 6 i 6 n},

and 1 = X1 ∈ X . Then the complexified algebra RC = R ⊗Z C is a positively based

algebra with positive basis X = {Xi : 1 6 i 6 n}. For a matrix with nonnegative

entries, Frobenius-Perron theorem shows that this matrix has a maximal nonnegative

eigenvalue. In this sense, one can define a group homomorphism FPdim: R → C

as follows. For any Xi ∈ X , let FPdim(Xi) be the maximal nonnegative eigenvalue

of the matrix corresponding to the left multiplication by Xi. Etingof et al. showed

that FPdim is also a ring homomorphism, and gave many properties of FPdim. This

provides an accessible way to study special module of RC.

The family of finite simple groups of Lie type PSL(2, q), with q prime-power,

admits a generic character table depending on whether q is even, q ≡ 1 (mod 4)

or q ≡ −1 (mod 4), see [10], Section 3. In [10], by using the Schur orthogonality

relations, Liu et al. computed the fusion rules of interpolated fusion ring r(PSL(2, q)).

In particular, if q is prime-power, the interpolated fusion ring r(PSL(2, q)) is nothing

but the Grothendieck ring of Rep(PSL(2, q)).

In this paper, we use the properties of FPdim to explicitly classify the cell, cell

module and special module (up to isomorphism) of the fusion algebra RC. As an

example, we study the special module of R(PSL(2, q)), where q > 2 is even. This

paper is organized as follows. In Section 2, we recall the definitions of fusion rings

and Frobenius-Perron theorem. In Section 3, we review the concepts of positively

based algebras, cell modules and special modules. In Section 4, we prove Lemma 4.1,

which states that the fusion algebra RC has only one left (right, two-sided) cell and

the corresponding cell module. And Corollary 4.2 and Theorem 4.3 show that RC

only has a unique special module up to isomorphism, which is 1-dimensional, and

FPdim: R → C defined in Definition 3.3.3 of [2] is exactly the special representa-

tion of RC. Moreover, we state the relations between the Casimir number and the

Perron-Frobenius element for a fusion algebra, see Lemma 4.4 and Corollary 4.5. In

Section 5, we first compute the Casimir number of r(PSL(2, q)) for even q > 2, see

Lemma 5.2 and Corollary 5.5. Then, we use Casimir number to explicitly determine

the special module of R(PSL(2, q)), see Theorems 5.7 and 5.8.

1302



2. Fusion rings

In this section, we first recall the definitions of fusion rings, Frobenius-Perron the-

orem, Frobenius-Perron dimension (FPdim), related results and properties of FPdim

and the concepts of Casimir element c(1) of a fusion ring. Moreover, we introduce

the interpolated fusion ring r(PSL(2, q)), where q > 2 is even.

Let R be a ring with Z+-basis X = {Xi : 1 6 i 6 n}, that is for any 1 6 i, j 6 n,

XiXj =
∑

16k6n

Nk
ijXk,

where Nk
ij ∈ Z+.

Definition 2.1. A ring R with Z+-basis X = {Xi : 1 6 i 6 n} is called a fusion

ring (see [2]) if the followings hold:

(1) X1 = 1 ∈ X .

(2) There exists a map i 7→ i∗ of the index set {1, 2, . . . , n} such that the induced

map ∗ : R → R,

x =
∑

16i6n

kiXi 7→ x∗ =
∑

16i6n

kiXi∗ , ki ∈ Z,

is an anti-involution of the ring R.

(3) There exists a group homomorphism defined by

τ(Xi) =

{
1, i = 1,

0, otherwise,

such that

τ(XiXj) = δij∗ ,

where δij∗ is the Kronecker symbol.

Lemma 2.2. Each fusion ring R is transitive, that is, for any W,Z ∈ X there

exist Y1, Y2 ∈ X such that WY1 and Y2W contain Z with nonzero coefficient.

P r o o f. It follows from [2], Definition 3.3.1, Exercise 3.3.2. �

Now, we are ready to recall Frobenius-Perron theorem, see [2], [3], [4], [5], [14]. It

is a crucial tool in the definitions of special modules, FPdim of a fusion ring and its

basis elements.

Theorem 2.3 (Frobenius-Perron). Let M ∈ Matk×k(R>0). Then there is a non-

negative real number λ such that:

(1) The number λ is an eigenvalue of M .

(2) Any other eigenvalue µ ∈ C satisfies |µ| 6 λ.
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Let M ∈ Matk×k(R>0). Then there is a positive real number λ such that:

(3) The number λ is an eigenvalue of M .

(4) Any other eigenvalue µ ∈ C of M satisfies |µ| < λ.

(5) The eigenvalue λ has algebraic (and hence also geometric) multiplicity 1.

(6) There is a v ∈ R
k
>0 such that Mv = λv. There is also a v̂ ∈ R

k
>0 such that

v̂M = λv̂T (v̂T is the transpose of v̂).

(7) Any w ∈ R
k
>0 which is an eigenvector of M (with some eigenvalue) is a scalar

multiple of v, and similarly for v̂.

The eigenvalue λ is called the Perron-Frobenius eigenvalue of M , denoted by

FPdim(M). In particular, if M has strictly positive entries, then the eigenvector v

of the Perron-Frobenius eigenvalue FPdim(M) is called the Perron-Frobenius eigen-

vector. In this case, it follows from Theorem 2.3 (5) and (7) that FPdim(M) is unique

(the algebraic multiplicity is 1), and the Perron-Frobenius eigenvector is unique up

to a positive scalar.

By Frobenius-Perron theorem, one can define the FPdim of a fusion ring and

its basis elements. Let R be a fusion ring with Z+-basis X = {Xi : 1 6 i 6 n}.

Define NXi
to be the matrix given by the left multiplication of Xi with respect to

a basis X1, X2, . . . , Xn. That is,

(2.1) Xi(X1, X2, . . . , Xn) = (X1, X2, . . . , Xn)NXi
.

Definition 2.4. The maximal real eigenvalue λi of NXi
is called the FPdim of

the basis element Xi, denoted by FPdim(Xi) = λi, i.e., FPdim(Xi) = FPdim(NXi
)

(the Perron-Frobenius eigenvalue ofNXi
). The FPdim of the fusion ring R is defined

by FPdim(R) =
n∑

i=1

FPdim(Xi)
2.

In fact, FPdim: R → C is a ring homomorphism. Furthermore, we have the follow-

ing properties and results of RC and FPdim, see [2], Propositions 3.3.4, 3.3.6, 3.3.11.

Lemma 2.5. Let R be a fusion ring with Z+-basis X = {Xi : 1 6 i 6 n} and

FPdim: R → C be defined as above. Then the following statements hold.

(1) The number FPdim(Xi) is an algebraic integer and FPdim(Xi) > 1.

(2) There exists a unique, up to scaling, nonzero element c ∈ RC such that Wc =

FPdim(W )c for all W ∈ R. Moreover, cY = FPdim(Y )c for all Y ∈ R.

(3) An element c ∈ R⊗Z R as in (2) will be called a regular element of R.

(4) The element r =
n∑

i=1

FPdim(Xi)Xi is a regular element of R.
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Throughout the following, we write X∗
i for Xi∗ (see Definition 2.1) simply. Recall

that the matrix NXi
is determined by the left multiplication of Xi given in (2.1).

We call a basis element Xi self-dual if X
∗
i = Xi. Equivalently, Xi is self-dual if and

only if the matrix NXi
is symmetric, if and only if the unit element 1 is contained

in the decomposition formulas of X2
i , which corresponds to the fact that in a fusion

category the unit object is a direct summand of the tensor product of an object with

its dual.

The Casimir operator c (see [11], Section 3.1) of the fusion ring R is a map from R

to its center Z(R) defined by

c(x) =
n∑

i=1

XixX
∗
i ∀x ∈ R.

Definition 2.6. Let R be a fusion ring with pair of dual bases {Xi : 1 6 i 6 n}

and {X∗
i : 1 6 i 6 n}. Then the element c(1) =

n∑
i=1

XiX
∗
i is called the Casimir

element of R.

Lemma 2.7. Let R be a fusion ring with Z+-basis {Xi : 1 6 i 6 n}. Then

FPdim(R) is the Perron-Frobenius eigenvalue of the matrix [c(1)] determined by the

left multiplication of Casimir element c(1).

P r o o f. It follows from [2], Propositions 3.3.6 (1), 3.3.9 that FPdim: R → C is

a ring homomorphism and FPdim(X) = FPdim(X∗). Notice that c(1) =
n∑

i=1

XiX
∗
i .

Then

FPdim([c(1)]) = FPdim(c(1)) = FPdim

( n∑

i=1

XiX
∗
i

)

=

n∑

i=1

FPdim(XiX
∗
i ) =

n∑

i=1

FPdim(Xi)FPdim(X∗
i )

=
n∑

i=1

FPdim(Xi)
2 = FPdim(R).

This completes the proof. �

In the following, we introduce the interpolated fusion ring r(PSL(2, q)), where

q > 2 is even. When q > 4, the interpolated fusion ring r(PSL(2, q)) has q + 1

basis elements {x1,1, xq−1,c, xq,1, xq+1,c′ : c ∈ {1, 2, . . . , q/2}, c′ ∈ {1, 2, . . . , q/2−1}},

where xd,c, d ∈ {1, q − 1, q, q + 1}, (or xd,c′) is the cth (or c′th) basis element of

FPdim d, and x1,1 is the unit element. Moreover, FPdim(r(PSL(2, q))) = q(q2 − 1).

In the following, for any even q > 4, we always denote the sets {1, 2, . . . , q/2} and

{1, 2, . . . , q/2− 1} by Iq and Jq, respectively.
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Definition 2.8. The interpolated fusion ring r(PSL(2, q)) has q + 1 basis ele-

ments {x1,1, xq−1,c, xq,1, xq+1,c′ : c ∈ Iq, c
′ ∈ Jq}, and the fusion rules of r(PSL(2, q))

are given by (see [10], Section 4.1):

xq−1,c1xq−1,c2 = δc1,c2x1,1 +
∑

c3∈Iq
c1+c2+c3 6=q+1

and 2max(c1,c2,c3)

xq−1,c3 + (1− δc1,c2)xq,1 +
∑

c′∈Jq

xq+1,c′ ,

xq−1,c1xq,1 =
∑

c2∈Iq

(1− δc1,c2)xq−1,c2 + xq,1 +
∑

c′∈Jq

xq+1,c′ ,

xq−1,c1xq+1,c2 =
∑

c∈Iq

xq−1,c + xq,1 +
∑

c′∈Jq

xq+1,c′ ,

xq,1xq,1 = x1,1 +
∑

c∈Iq

xq−1,c + xq,1 +
∑

c′∈Jq

xq+1,c′ ,

xq,1xq+1,c1 =
∑

c∈Iq

xq−1,c + xq,1 +
∑

c′∈Jq

(1 + δc1,c2)xq+1,c′ ,

xq+1,c1xq+1,c2 = δc1,c2x1,1 +
∑

c∈Iq

xq−1,c + (1 + δc1,c2)xq,1

+
∑

c3∈Jq

c1+c2+c3 6=q−1
and 2max(c1,c2,c3)

xq+1,c3 + 2
∑

c4∈Jq

c1+c2+c4=q−1
or 2max(c1,c2,c4)

xq+1,c4 .

In particular, when q = 2, r(PSL(2, 2)) has 3 basis elements x1,1, x1,2 and x2,1, and

the fusion rules are determined by

x2
1,2 = x1,1, x1,2x2,1 = x2,1, x2

2,1 = x1,1 + x1,2 + x2,1.

By the fusion rules of r(PSL(2, q)) (even q > 2) given above, we have the following.

Lemma 2.9. The basis elements {x1,1, xq−1,c, xq,1, xq+1,c′ : c ∈ Iq, c
′ ∈ Jq} of

r(PSL(2, q)) are self-dual, where q > 4 is even. For q = 2, the basis elements

{x1,1, x1,2, x2,1} of r(PSL(2, 2)) are self-dual.

3. Cell and special structures of positively based algebras

In this section, we recall the definitions of positively based algebras, cell modules

and special modules in the sense of Kildetoft-Mazorchuk, see [7].

Let A be an algebra over C with basis B = {bi : i ∈ I}. Here we always assume

that 1 ∈ B. The basis B is called positive if all structure constants of A with respect
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to B are nonnegative real numbers. That is, for all i, j ∈ I,

bibj =
∑

k∈I

rkijbk,

where rkij ∈ R>0 for all i, j, k. An algebra with fixed positive basis is called a pos-

itively based algebra (see [7], Subsection 2.1). It is obvious that for a fusion ring R

with Z+-basis X = {Xi : 1 6 i 6 n}, the fusion algebra RC is a positively based

algebra with positive basis X = {Xi : 1 6 i 6 n}.

Let A be a positively based algebra with positive basis B = {bi : i ∈ I}. Define

the multioperation ⋆ : I × I → 2I for any i, j ∈ I,

i ⋆ j := {k : rkij > 0},

where bibj =
∑
k∈I

rkijbk. Thus, (I, ⋆) turns into a multisemigroup, see [8], Subsec-

tion 3.7. For i, j ∈ I, we set i 6L j if there exists an s ∈ I such that j ∈ s ⋆ i. It is

easy to see that 6L is a partial preorder on I. We write i ∼L j if i 6L j and j 6L i.

Then ∼L becomes an equivalence relation on I. The equivalence classes for ∼L are

called left cells. Furthermore, the preorder 6L also induces a genuine partial order

on the set of all left cells in I, denoted also by 6L without ambiguity. Similarly,

using multiplication by s on the right, one can define the right preorder 6R, the cor-

responding equivalence relation ∼R and the right cells. Moreover, one can define the

two-sided preorder 6J , the corresponding equivalence relation ∼J and the two-sided

cells, using multiplication by s on the left and by t on the right. We write i <L j if

i 6L j and i ≁L j, and similarly for i <R j and i <J j.

Definition 3.1. A two-sided cell J is called idempotent if there exist i, j, k ∈ J

such that k ∈ i ⋆ j.

Let A be a positively based algebra with positive basis B = {bi : i ∈ I}. Let L

be a left cell in I and L be the union of all left cells L′ in I with L 6L L′. Define

L := L \ L. Consider the C-submodule ML of A spanned by all bj , j ∈ L, and the

C-submodule NL of ML spanned by all bj , j ∈ L. Kildetoft and Mazorchuk proved

that both ML and NL are A-submodules of the regular left module AA, see [7],

Proposition 1. The left cell module of A associated to L is defined as the quotient

module CL = ML/NL. When L = ∅, we regard NL = 0 and CL = ML. Similarly,

one can define right cell modules and two-sided cell modules.

Lemma 3.2. Let A be a positively based algebra with positive basis B = {bi :

i ∈ I}. Then the left cell module CL = AA if and only if L = I, see [1], Lemma 2.1.

Let A be a finite dimensional C-algebra and V be a finite dimensional A-module

with fixed basis v = {v1, v2, . . . , vn}. Then the pair (V,v) is called a based A-module.
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An element a ∈ A is said to be a Perron-Frobenius element for a based A-module

(V,v) if all entries of the matrix of the action of a on V with respect to this basis v

are positive real numbers.

Given a Perron-Frobenius element a ∈ A for a based module (V,v), let λ be

the Perron-Frobenius eigenvalue of the linear operator a on V . Then we have the

following.

Definition 3.3. A simple A-subquotient L of V is called a special subquotient

with respect to a if λ is an eigenvalue of a acting on L.

Remark 3.4. Given a Perron-Frobenius element a ∈ A for a based A-module

(V,v), there is a unique, up to isomorphism, special subquotient L of V with respect

to a, see [7], Corollary 3.

Let A be a positively based C-algebra with positive basis B = {bi : i ∈ I}. Given

a left cell L in I, consider the corresponding left cell module CL defined as above.

Denote by BL the standard basis of CL given by the image of the elements bi, where

i ∈ L. Set c ∈ R
I
>0 = {ci ∈ R>0 : i ∈ I}, and

(3.1) a(c) =
∑

i∈I

cibi ∈ A.

Kildetoft and Mazorchuk showed that the element a(c) is a Perron-Frobenius element

for the based module (CL, BL), see [7], Lemma 4. Thus, for each left cell L and

each c ∈ R
I
>0, one can consider the corresponding special subquotient LL,c of CL. It

follows from [7], Theorem 5 that for a fixed left cell and any c, c′ ∈ R
I
>0, LL,c

∼= LL,c′ .

Since LL,c is independent of c, we write LL for LL,c simply. Furthermore, Theorem 6

of [7] implies that LL
∼= LL′ if two left cells L and L′ belong to the same two-sided cell.

Let (A,B) be a positively based algebra and (V,v) a based A-module. We will say

that (V,v) is positively based if for any bi ∈ B and any vs ∈ v, the element bi · vs is

a linear combination of elements in v with nonnegative real coefficients. For example,

the left regular A-module AA is positively based with respect to the basis B. For

vs, vt ∈ v, we write vs → vt if there exists a bi ∈ B such that the coefficient at vt
in bi · vs is nonzero. The relation → is, clearly, reflexive and transitive. A based

A-module (V,v) will be called transitive if → is the full relation. For example, for

each left cell L, (CL, BL) is a transitive A-module. For a transitive A-module (V,v),

we have the following, see [7], Section 9.4, Corollary 23.

Definition 3.5. A simple A-module is called special if it is isomorphic to a spe-

cial subquotient for a transitive A-module.

Lemma 3.6. There is a one-to-one correspondence between the set of isomor-

phism classes of special A-modules and the set of idempotent two-sided cells for A.
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In particular, if A is semi-simple, then we have the following, see [7], Proposi-

tion 13.

Lemma 3.7. Let A be a semi-simple positively based algebra. Then the following

statements hold.

(1) Each two-sided cell for A is idempotent.

(2) Let L be a left cell and J a two-sided cell containing L. Then the dimension

of LL equals the number of left cells in J .

4. Special module for fusion algebra

Let R be a fusion ring with Z+-basis X = {Xi : 1 6 i 6 n}, where X1 = 1. In this

section, we first classify the special module up to isomorphism of the complexified

fusion algebra RC. We then state the relations between the Casimir element c(1)

and Perron-Frobenius element for a fusion algebra.

Lemma 4.1. The fusion algebra RC has unique left, right and two-sided cell n.

P r o o f. We first show that RC only has one left cell n. On one hand, for any

i ∈ n, Xi = XiX1, i.e., i ∈ i⋆1, and so 1 6L i. On the other hand, X∗
i Xi = X1+ . . .,

i.e., 1 ∈ i∗ ⋆ i, and hence i 6L 1. Thus, we prove that 1 ∼L i for any i ∈ n, that

is, the unique left cell L = n. Similarly, one can prove that RC has a unique right,

two-sided cell n. �

Corollary 4.2. The fusion algebra RC has only one left cell module RC
RC (the

regular left module) and only one special module up to isomorphism. Furthermore,

the special module is of dimension 1.

P r o o f. By Lemmas 3.2 and 4.1, one can immediately know that RC has only one

left cell module RC
RC. It follows from [2], Corollary 3.3.7 or [12], 1.2 (a) that RC is

semi-simple. Hence, by Lemma 3.7 (1), the two-sided cell J = n is idempotent, and

so by Lemma 3.6, RC has only one special cell module up to isomorphism. Moreover,

Lemma 3.7 (2) shows that the dimension of this special module is 1. Thus, the proof

is finished. �

Recall that for the based module (RC
RC, Xn), any c ∈ R

n

>0, a(c) =
n∑

i=1

ciXi is

a Perron-Frobenius element for (RC
RC, Xn). Then we have the following.

Theorem 4.3. Cr is a special module of RC, where r =
n∑

i=1

FPdim(Xi)Xi is

the regular element given in Lemma 2.5. Moreover, FPdim: R → C defined in

Lemma 2.5 is exactly the unique special representation up to isomorphism.
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P r o o f. By (3.1), we know that cn :=
n∑

i=1

Xi is a Perron-Frobenius element for

(RC
RC, Xn). Furthermore, it follows from Lemma 2.5 (2) that cn ·r = FPdim(cn)r =

FPdim([cn])r. Now, in order to prove that Cr is a special module of RC, it remains to

show that Cr is a simple RC-module. By Lemma 2.5 (2) again, Xi · r = FPdim(Xi)r

for any i ∈ n, which shows that Cr is indeed a module over RC. Hence, Cr is a special

subquotient of (RC
RC, Xn), and FPdim: R → C is the unique special representation

of RC up to isomorphism. �

The following results state the relations between the Casimir element and the

Perron-Frobenius element for a fusion algebra.

Lemma 4.4. The Casimir element c(1) of R is a Perron-Frobenius element for

the left cell module (RC
RC, Xn) if and only if [c(1)] has strictly positive entries.

P r o o f. It follows from a straightforward verification. �

Corollary 4.5. If the coefficient of each basis element in c(1) is not 0, then c(1)

is a Perron-Frobenius element for (RC
RC, Xn).

P r o o f. It follows from the transitivity of a fusion ring, see Lemma 2.2. �

5. Special module for R(PSL(2, q))

In this section, for the case of interpolated fusion algebra R(PSL(2, q)), we set

the Casimir number c(1)q as the Perron-Frobenius element to explicitly determine

the special module of R(PSL(2, q)) up to isomorphism. For simplicity, we write

rq := r(PSL(2, q)) and Rq := R(PSL(2, q)).

From Section 2 we know that for each even q > 4, Rq is a positively based algebra

with positive basis U := {x1,1, xq−1,c, xq,1, xq+1,c′ : c ∈ Iq, c
′ ∈ Jq}. In this case,

denote the set {(1, 1), (q − 1, c), (q, 1), (q + 1, c′) : c ∈ Iq, c
′ ∈ Jq} by q. When q = 2,

we write 2 = {(1, 1), (1, 2), (2, 1)}. Then by Lemma 4.1, we have the following result.

Corollary 5.1. For each even q > 2, the fusion algebra Rq has only one left cell q,

and a unique left cell module Rq
Rq.

Next, we will compute the Casimir element c(1)q of rq and prove that c(1)q is

a Perron-Frobenius element for (Rq
Rq, Uq) for each even q > 2.

Lemma 5.2. When q = 2, c(1)2 = 3x1,1 + x1,2 + x2,1.

P r o o f. It follows from a straightforward computation. �
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Throughout the following, unless otherwise stated, assume that q > 4 is even. We

first give two lemmas, which will be useful in the study of the Casimir element c(1)q
and the special module of Rq.

Lemma 5.3. The following statements hold:

(1)
∑

c1∈Iq

x2
q−1,c1 = 1

2qx1,1 + (12q − 1)
∑
c∈Iq

xq−1,c +
1
2q

∑
c′∈Jq

xq+1,c′ ;

(2) x2
q,1 = x1,1 +

∑
c∈Iq

xq−1,c + xq,1 +
∑

c′∈Jq

xq+1,c′ ;

(3)
∑

c2∈Jq

x2
q+1,c2 = (12q− 1)x1,1 +(12q− 1)

∑
c∈Iq

xq−1,c +(q− 2)xq,1 +
1
2q

∑
c′∈Jq

xq+1,c′ .

P r o o f. The relation (2) follows from a straightforward computation. We

prove (1) and (3). For any c1 ∈ Iq we have

x2
q−1,c1 = x1,1 +

∑

c∈Iq

xq−1,c −
∑

c3∈{q+1−2c1,2c1}

xq−1,c3 +
∑

c′∈Jq

xq+1,c′ .

Hence,

(5.1)
∑

c1∈Iq

x2
q−1,c1 =

q

2
x1,1+

q

2

∑

c∈Iq

xq−1,c−
∑

c3∈{q+1−2c1,2c1}
c1∈Iq

xq−1,c3 +
q

2

∑

c′∈Jq

xq+1,c′ .

It is easy to check that
⋃

c1∈Iq

{q + 1− 2c1, 2c1} = {1, 2, . . . , q}. Since c3 ∈ Iq,

∑

c3∈{q+1−2c1,2c1}
c1∈Iq

xq−1,c3 =
∑

c∈Iq

xq−1,c.

Thus, (5.1) becomes

∑

c1∈Iq

x2
q−1,c1 =

q

2
x1,1 +

(q
2
− 1

) ∑

c∈Iq

xq−1,c +
q

2

∑

c′∈Jq

xq+1,c′ .

This shows (1). For any c2 ∈ Jq we have

x2
q+1,c2 = x1,1 +

∑

c∈Iq

xq−1,c + 2xq,1 +
∑

c′∈Jq

xq+1,c′ +
∑

c4∈{q−1−2c2,2c2}

xq+1,c4 .

Similarly to (5.1), we have

(5.2)
∑

c2∈Jq

x2
q+1,c2 =

(q
2
− 1

)
x1,1 +

(q
2
− 1

) ∑

c∈Iq

xq−1,c + (q − 2)xq,1

+
(q
2
− 1

) ∑

c′∈Jq

xq+1,c′ +
∑

c4∈{q−1−2c2,2c2}
c2∈Jq

xq+1,c4 .
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It is not difficult to check that
⋃

c2∈Jq

{q − 1 − 2c2, 2c2} = {1, 2, . . . , q − 2}. Since

c4 ∈ Jq, ∑

c4∈{q−1−2c2,2c2}
c2∈Jq

xq+1,c4 =
∑

c′∈Jq

xq+1,c′ .

Hence, (5.2) becomes
∑

c2∈Jq

x2
q+1,c2 =

(q
2
− 1

)
x1,1 +

( q
2
− 1

) ∑

c∈Iq

xq−1,c + (q − 2)xq,1 +
q

2

∑

c′∈Jq

xq+1,c′ .

This shows (3). �

Lemma 5.4. The following statements hold:

(1) For any c1 ∈ Iq,

xq−1,c1

∑

c∈Iq

xq−1,c = x1,1 +
(q
2
− 1

)
xq−1,c1 +

(q
2
− 2

) ∑

c2∈Iq\{c1}

xq−1,c2

+
(q
2
− 1

)
xq,1 +

q

2

∑

c′∈Jq

xq+1,c′ .

(2) For any c3 ∈ Jq,

xq+1,c3

∑

c′∈Jq

xq+1,c′ = x1,1 +
( q
2
− 1

) ∑

c∈Iq

xq−1,c +
q

2
xq,1 +

q

2
xq+1,c3

+
(q
2
+ 1

) ∑

c4∈Jq\{c3}

xq+1,c4 .

P r o o f. For any c1, c5 ∈ Iq we have

xq−1,c1xq−1,c5 = δc1,c5x1,1 +
∑

c∈Iq

xq−1,c −
∑

c6∈Iq
c1+c5+c6=q+1

or 2max(c1,c5,c6)

xq−1,c6

+ (1− δc1,c5)xq,1 +
∑

c′∈Jq

xq+1,c′ .

Then

xq−1,c1

∑

c5∈Iq

xq−1,c5 = x1,1 +
q

2

∑

c∈Iq

xq−1,c −
∑

c5∈Iq

∑

c6∈Iq
c1+c5+c6=q+1

or 2max(c1,c5,c6)

xq−1,c6

+
(q
2
− 1

)
xq,1 +

q

2

∑

c′∈Jq

xq+1,c′ .

We need to consider c1 + c5 + c6 = q + 1 or c1 + c5 + c6 = 2max(c1, c5, c6) when c5
runs through Iq.
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⊲ c1 + c5 + c6 = q + 1 ⇒ c6 = q + 1 − c1 − c5: It is easy to see that when c5 = 1
2q,

1
2q − 1, . . . , 1

2q − c1 + 1,

(5.3) c6 =
q

2
− c1 + 1,

q

2
− c1 + 2, . . . ,

q

2
,

and in the case when c5 < 1
2q − c1 + 1, we have q + 1− c1 − c5 > 1

2q.

⊲ If c1 + c5 + c6 = 2max(c1, c5, c6) = 2max(c1, c5), then c6 = |c1 − c5|: When

c5 = c1 − 1, c1 − 2, . . . , 1,

(5.4) c6 = 1, 2, . . . , c1 − 1.

In the case when c5 = c1 + 1, c1 + 2, . . . , 12q,

(5.5) c6 = 1, 2, . . . ,
q

2
− c1,

and if c5 = c1, |c1 − c5| = 0.

⊲ If c1+c5+c6 = 2max(c1, c5, c6) = 2c6, then c6 = c1+c5: When c5 =1, 2, . . . , 1
2q−c1,

(5.6) c6 = c1 + 1, c1 + 2, . . . ,
q

2
.

In the case when 1
2q − 1 < c5 6 1

2q, we have
1
2q < c1 + c5 6 1

2q + c1.

Thus, when c5 runs over Iq, (5.3) and (5.5) show that

c6 = 1, 2, . . . ,
q

2
,

and (5.4), (5.6) imply that

c6 = 1, 2, . . . , c1 − 1, c1 + 1, . . .
q

2
.

Summarizing the discussion above, we have

∑

c5∈Iq

∑

c6∈Iq
c1+c5+c6=q+1

or 2max(c1,c5,c6)

xq−1,c6 = xq−1,c1 + 2
∑

c2∈Iq\{c1}

xq−1,c2 .

Hence,

xq−1,c1

∑

c∈Iq

xq−1,c = x1,1 +
(q
2
− 1

)
xq−1,c1 +

(q
2
− 2

) ∑

c2∈Iq\{c1}

xq−1,c2

+
(q
2
− 1

)
xq,1 +

q

2

∑

c′∈Jq

xq+1,c′ .

Thus, (1) follows. Similarly, one can prove (2). �
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By the discussion above, we have the following.

Corollary 5.5. We have

c(1)q = (q + 1)x1,1 + (q − 1)
∑

c∈Iq

xq−1,c + (q − 1)xq,1 + (q + 1)
∑

c′∈Jq

xq+1,c′ .

P r o o f. It follows from a straightforward verification and Lemma 5.4. �

Corollary 5.6. For any even q > 2, the Casimir element c(1)q is a Perron-

Frobenius element for the left cell module (Rq
Rq, Uq). Moreover, q(q

2 − 1) (the

FPdim of rq) is the Perron-Frobenius eigenvalue of the matrix [c(1)q] determined by

the left multiplication of Casimir element c(1)q, and its algebraic multiplicity is 1.

P r o o f. It follows from Lemma 2.7, Corollaries 4.5 and 5.5. �

By the definition of rq, the regular element of Rq is given by

eq = x1,1 + (q − 1)
∑

c∈Iq

xq−1,c + qxq,1 + (q + 1)
∑

c′∈Jq

xq+1,c′ .

Moreover, FPdim: Rq → C is given by

(5.7) FPdim(x1,1) = 1, FPdim(xq−1,c) = q − 1, c ∈ Iq,

FPdim(xq,1) = q, FPdim(xq+1,c′) = q + 1, c′ ∈ Jq.

When q = 2, e2 = x1,1 + x1,2 + 2x2,1 and

(5.8) FPdim(x1,1) = FPdim(x1,2) = 1, FPdim(x2,1) = 2.

Theorem 5.7. When q = 2, Ce2 is a special module of R2. Furthermore, the

action of R2 on Ce2 (Ce2 = C, as C-vector spaces) is given by

x1,1 · 1 = x1,2 · 1 = 1, x2,1 · 1 = 2.

P r o o f. It follows from Lemma 2.7 and Corollary 5.6 that c(1)2 is a Perron-

Frobenius element of R2, and FPdim(c(1)2) = FPdim([c(1)2]) = 6. Moreover, by the

fusion rules of r2, we have

x1,1 · e2 = x1,2 · e2 = e2, x2,1 · e2 = 2e2.
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Hence, Ce2 is a module over R2. It is left to show that c(1)2 · e2 = FPdim(c(1)2)e2.

Note that the action of R2 on Ce2 can be seen as

x1,1 · 1 = x1,2 · 1 = 1, x2,1 · 1 = 2.

Thus,

c(1)2 · 1 = (x1,1 + x1,2 + 2x2,1) · 1 = 1 + 1 + 2× 2 = 6 = FPdim(c(1)2).

This completes the proof. �

Theorem 5.8. Let q > 4 be even. Then Ceq is a special module of Rq. Moreover,

the action of Rq on Ceq (Ceq = C, as C-vector spaces) is determined by

x1,1 · 1 = 1, xq−1,c · 1 = q − 1, c ∈ Iq,

xq,1 · 1 = q, xq+1,c′ · 1 = q + 1, c′ ∈ Jq.

P r o o f. It follows from Corollary 5.6 that c(1)q is the Perron-Frobenius element

for (Rq
Rq, Uq), and FPdim([c(1)q]) = FPdim(c(1)q) = q(q2 − 1). Now, we show

that Ceq is a module of Rq. It suffices to show that the action of each basis el-

ement x1,1, xq−1,c1 (c1 ∈ Iq), xq,1 and xq+1,c2 (c2 ∈ Jq) of Rq on eq is equal to

a scalar multiple of eq. It is easy to see that x1,1 · eq = eq. For each c1 ∈ Iq, by

Lemma 5.4 (1) and the fusion rules, we have

xq−1,c1 · eq = xq−1,c1 ·

(
x1,1 + (q − 1)

∑

c∈Iq

xq−1,c + qxq,1 + (q + 1)
∑

c′∈Jq

xq+1,c′

)

= xq−1,c1 + (q − 1)

(
x1,1 +

( q
2
− 1

)
xq−1,c1

+
(q
2
− 2

) ∑

c2∈Iq\{c1}

xq−1,c2 +
(q
2
− 1

)
xq,1 +

q

2

∑

c′∈Jq

xq+1,c′

)

+ q

( ∑

c2∈Iq\{c1}

xq−1,c2 + xq,1 +
∑

c′∈Jq

xq+1,c′

)

+ (q + 1)
(q
2
− 1

)(∑

c∈Iq

xq−1,c + xq,1 +
∑

c′∈Jq

xq+1,c′

)

= (q − 1)x1,1 + (q − 1)2xq−1,c1 + (q − 1)2
∑

c2∈Iq\{c1}

xq−1,c2

+ (q2 − q)xq,1 + (q2 − 1)
∑

c′∈Jq

xq+1,c′

= (q − 1)eq.
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Similarly, by Lemma 5.4 (2), one can check that for any c2 ∈ Jq, xq+1,c2 ·eq = (q+1)eq.

At last, we show that xq,1 · eq = qeq. In fact, by the fusion rules, we have

xq,1 · eq = xq,1 ·

(
x1,1 + (q − 1)

∑

c∈Iq

xq−1,c + qxq,1 + (q + 1)
∑

c′∈Jq

xq+1,c′

)

= xq,1 + (q − 1)

((q
2
− 1

) ∑

c∈Iq

xq−1,c +
q

2
xq,1 +

q

2

∑

c′∈Jq

xq+1,c′

)

+ q

(
x1,1 +

∑

c∈Iq

xq−1,c + xq,1 +
∑

c′∈Jq

xq+1,c′

)

+ (q + 1)

((q
2
− 1

) ∑

c∈Iq

xq−1,c +
(q
2
− 1

)
xq,1 +

q

2

∑

c′∈Jq

xq+1,c′

)

= qx1,1 + (q2 − q)
∑

c∈Iq

xq−1,c + q2xq,1 + (q2 + q)
∑

c′∈Jq

xq+1,c′ = qeq.

Summarizing the discussion above, Ceq is a module over Rq. Moreover, the action

of Ceq can be regarded as follows:

x1,1 · 1 = 1, xq−1,c · 1 = q − 1, c ∈ Iq, xq,1 · 1 = q, xq+1,c′ · 1 = q + 1, c′ ∈ Jq.

It is left to prove that c(1)q ·1 = FPdim(c(1)q) = q(q2−1). In fact, by Corollary 5.5,

c(1)q · 1 =

(
(q + 1)x1,1 + (q − 1)

∑

c1∈Iq

xq−1,c1 + (q − 1)xq,1 + (q + 1)
∑

c2∈Jq

xq+1,c2

)
· 1

= (q + 1) + (q − 1)(q − 1)
q

2
+ (q − 1)q + (q + 1)(q + 1)

(q
2
− 1

)

= q3 − q = q(q2 − 1).

Thus, the proof is finished. �

Remark 5.9. The action of Rq on Ceq with even q > 2 is the same as (5.7)

or (5.8). Furthermore, Theorems 5.7 and 5.8 illustrate Theorem 4.3.
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