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Abstract. Let R be a fusion ring and R¢ := R ®7 C be the corresponding fusion algebra.
We first show that the algebra R¢ has only one left (right, two-sided) cell and the corre-
sponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, R¢
admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron
homomorphism FPdim. Moreover, as an example, we explicitly determine the special mod-
ule of the interpolated fusion algebra R(PSL(2,q)) := r(PSL(2, ¢)) ®7 C up to isomorphism,
where r(PSL(2, q)) is the interpolated fusion ring with even g > 2.
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1. INTRODUCTION

Kazhdan and Lusztig in [6] defined the left, right and two-sided cells of Cox-
eter groups to study representations of Coxeter groups and Hecke algebras. Then
in [13], Mazorchuk and Miemietz defined, constructed and described right cell
2-representations of finitary 2-categories. Kildetoft and Mazorchuk found that on
the level of the Grothendieck group, a cell 2-representation is a based module over
a finite dimensional positively based algebra, and so they gave the definitions of left,
right and two-sided cells and the corresponding cell modules over arbitrary finite
dimensional positively based algebras. Furthermore, by using Frobenius-Perron the-
orem, they defined the special modules over any finite dimensional positively based
algebras. At last, in some sense, they classified the special modules for arbitrary
finite dimensional positively based algebras up to isomorphism, see [7], Section 9.
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However, for a finite dimensional positively based algebra, the module structures of
its special modules are not clear. For the works of cell modules of concrete positively
based algebras, one can refer [1] or [9].

In [2], Chapter 3, Etingof et al. introduced the concepts of 7 -rings, unital Z-
rings and based rings, etc. Let R be a fusion ring with basis X = {X;: 1 <1 < n},
and 1 = X; € X. Then the complexified algebra Rc = R ®; C is a positively based
algebra with positive basis X = {X;: 1 < i < n}. For a matrix with nonnegative
entries, Frobenius-Perron theorem shows that this matrix has a maximal nonnegative
eigenvalue. In this sense, one can define a group homomorphism FPdim: R — C
as follows. For any X; € X, let FPdim(X;) be the maximal nonnegative eigenvalue
of the matrix corresponding to the left multiplication by X;. Etingof et al. showed
that FPdim is also a ring homomorphism, and gave many properties of FPdim. This
provides an accessible way to study special module of R¢.

The family of finite simple groups of Lie type PSL(2,q), with ¢ prime-power,
admits a generic character table depending on whether ¢ is even, ¢ = 1 (mod 4)
or ¢ = —1 (mod 4), see [10], Section 3. In [10], by using the Schur orthogonality
relations, Liu et al. computed the fusion rules of interpolated fusion ring r(PSL(2, q)).
In particular, if g is prime-power, the interpolated fusion ring r(PSL(2, ¢)) is nothing
but the Grothendieck ring of Rep(PSL(2, q)).

In this paper, we use the properties of FPdim to explicitly classify the cell, cell
module and special module (up to isomorphism) of the fusion algebra Rc. As an
example, we study the special module of R(PSL(2,q)), where ¢ > 2 is even. This
paper is organized as follows. In Section 2, we recall the definitions of fusion rings
and Frobenius-Perron theorem. In Section 3, we review the concepts of positively
based algebras, cell modules and special modules. In Section 4, we prove Lemma 4.1,
which states that the fusion algebra Rc has only one left (right, two-sided) cell and
the corresponding cell module. And Corollary 4.2 and Theorem 4.3 show that R¢
only has a unique special module up to isomorphism, which is 1-dimensional, and
FPdim: R — C defined in Definition 3.3.3 of [2] is exactly the special representa-
tion of Rc. Moreover, we state the relations between the Casimir number and the
Perron-Frobenius element for a fusion algebra, see Lemma 4.4 and Corollary 4.5. In
Section 5, we first compute the Casimir number of r(PSL(2, q)) for even ¢ > 2, see
Lemma 5.2 and Corollary 5.5. Then, we use Casimir number to explicitly determine
the special module of R(PSL(2, q)), see Theorems 5.7 and 5.8.
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2. FUSION RINGS

In this section, we first recall the definitions of fusion rings, Frobenius-Perron the-
orem, Frobenius-Perron dimension (FPdim), related results and properties of FPdim
and the concepts of Casimir element ¢(1) of a fusion ring. Moreover, we introduce
the interpolated fusion ring r(PSL(2, q)), where ¢ > 2 is even.

Let R be a ring with Z,-basis X = {X;: 1 < i < n}, that is for any 1 < 4, j < n,

X X;= > NEX;,
1<kLn
where Nikj S
Definition 2.1. A ring R with Z-basis X = {X;: 1 <i < n} is called a fusion
ring (see [2]) if the followings hold:
1) X;=1€X.
(2) There exists a map ¢ — i* of the index set {1,2,...,n} such that the induced
map *: R — R,
r= Y kXimat= Y kX, kel
1<i<n 1<i<n
is an anti-involution of the ring R.
(3) There exists a group homomorphism defined by

1, i=1,
T(Xi)—{

0, otherwise,

such that
T(Xin) = (51‘j*,

where d;;+ is the Kronecker symbol.

Lemma 2.2. Each fusion ring R is transitive, that is, for any W, Z € X there
exist Y1,Ys € X such that WY; and YoW contain Z with nonzero coefficient.

Proof. It follows from [2], Definition 3.3.1, Exercise 3.3.2. O

Now, we are ready to recall Frobenius-Perron theorem, see [2], [3], [4], [5], [14]. It
is a crucial tool in the definitions of special modules, FPdim of a fusion ring and its

basis elements.

Theorem 2.3 (Frobenius-Perron). Let M € Matyy;(R>0). Then there is a non-
negative real number X\ such that:
(1) The number X is an eigenvalue of M.
(2) Any other eigenvalue ;1 € C satisfies |p] < A.
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Let M € Matgxk(R>o). Then there is a positive real number A such that:

(3) The number X is an eigenvalue of M.

(4) Any other eigenvalue y € C of M satisfies |p| < A.

(5) The eigenvalue \ has algebraic (and hence also geometric) multiplicity 1.

(6) There is a v € R such that Mv = \v. There is also a v € R such that
oM = \oT (07T is the transpose of ).

(7) Any w € R’;O which is an eigenvector of M (with some eigenvalue) is a scalar
multiple of v, and similarly for v.

The eigenvalue A is called the Perron-Frobenius eigenvalue of M, denoted by
FPdim(M). In particular, if M has strictly positive entries, then the eigenvector v
of the Perron-Frobenius eigenvalue FPdim(M) is called the Perron-Frobenius eigen-
vector. In this case, it follows from Theorem 2.3 (5) and (7) that FPdim(M) is unique
(the algebraic multiplicity is 1), and the Perron-Frobenius eigenvector is unique up
to a positive scalar.

By Frobenius-Perron theorem, one can define the FPdim of a fusion ring and
its basis elements. Let R be a fusion ring with Z;-basis X = {X;: 1 < i < n}.
Define Nx, to be the matrix given by the left multiplication of X; with respect to
a basis X1, Xs,..., X,. That is,

(2.1) Xi(X1,Xo, ..., Xn) = (X1, X, ..., X,)Nx,.

i

Definition 2.4. The maximal real eigenvalue \; of Nx, is called the FPdim of
the basis element X;, denoted by FPdim(X;) = A;, i.e., FPdim(X;) = FPdim(Nx;)
(the Perron-Frobenius eigenvalue of Nx,). The FPdim of the fusion ring R is defined

by FPdim(R) = 3 FPdim(X;)2.
=1

In fact, FPdim: R — C is a ring homomorphism. Furthermore, we have the follow-
ing properties and results of R and FPdim, see [2], Propositions 3.3.4, 3.3.6, 3.3.11.

Lemma 2.5. Let R be a fusion ring with 7 -basis X = {X;: 1 < i < n} and
FPdim: R — C be defined as above. Then the following statements hold.

(1) The number FPdim(X;) is an algebraic integer and FPdim(X;) > 1.

(2) There exists a unique, up to scaling, nonzero element ¢ € R¢ such that We =
FPdim(W)c for all W € R. Moreover, ¢Y = FPdim(Y)c for all Y € R.

(3) An element ¢ € R®z R as in (2) will be called a regular element of R.

n
(4) The element r = Y FPdim(X;)X; is a regular element of R.

i=1
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Throughout the following, we write X for X;« (see Definition 2.1) simply. Recall
that the matrix N, is determined by the left multiplication of X; given in (2.1).
We call a basis element X; self-dual if X" = X;. Equivalently, X; is self-dual if and
only if the matrix Nx, is symmetric, if and only if the unit element 1 is contained
in the decomposition formulas of X2, which corresponds to the fact that in a fusion
category the unit object is a direct summand of the tensor product of an object with
its dual.

The Casimir operator ¢ (see [11], Section 3.1) of the fusion ring R is a map from R
to its center Z(R) defined by

=> XizX; VzeR
i=1
Definition 2.6. Let R be a fusion ring with pair of dual bases {X;: 1 <i < n}
and {X;: 1 < 4 < n}. Then the element ¢(1) = > X; X/ is called the Casimir

element of R. =1

Lemma 2.7. Let R be a fusion ring with Z -basis {X;: 1 < i < n}. Then
FPdim(R) is the Perron-Frobenius eigenvalue of the matrix [¢(1)] determined by the
left multiplication of Casimir element c(1).

Proof. It follows from [2], Propositions 3.3.6 (1), 3.3.9 that FPdim: R — C is

n
a ring homomorphism and FPdim(X) = FPdim(X™*). Notice that ¢(1) = > X, X}.
Then =t

FPdim([c¢(1)]) = FPdim(¢(1)) = FPdim <§": XiX;‘>

i=1

= Z FPdim(X; X)) Z FPdim(X;)FPdim(X;)

i=1

=Y FPdim(X;)* = FPdim(R).

This completes the proof. [l

In the following, we introduce the interpolated fusion ring r(PSL(2,q)), where
> 2 is even. When ¢ > 4, the interpolated fusion ring r(PSL(2,¢)) has ¢ + 1
ba51s elements {211, Tg—1,¢, g1, Tgr1,e00 ¢ €1{1,2,...,q/2}, € {1,2,...,q/2—1}},
where g, d € {1, — 1,¢,q + 1}, (or x4, ) is the cth (or ¢’th) basis element of
FPdim d, and 1 is the unit element. Moreover, FPdim(r(PSL(2,q))) = q(¢®> — 1).
In the following, for any even ¢ > 4, we always denote the sets {1,2,...,¢/2} and
{1,2,...,49/2 —1} by I, and J,, respectively.
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Definition 2.8. The interpolated fusion ring r(PSL(2,q)) has q 4+ 1 basis ele-
ments {211, Zq—1,c, Tq,1, Lgt1,e: € € Iq, ¢’ € Jg}, and the fusion rules of 7(PSL(2, ¢))
are given by (see [10], Section 4.1):

Lg—1,c1Lg—1,c0 = 5617021.171 + E Tg—1l,c3 T (1 - 601,62)%1,1 + E Lq+1,cs
c3€ly cedy
c1+catczFq+1

and 2max(c1,c2,c3)

Lg—1,c1%q,1 = E (1= 0cy,e2)Tg—1,0 + Tg,1 + E Tg+1,¢s

ca€ly c’'€Jq
Lg—1,c1%q+1,c0 = § Tg—1,c +Tq1 + § Lg+1,c's
cely c'€dq
Tg1%q,1 = T11 + § Tg-1,ctTg1+ § Tg+1,c's
cely c'€dq
Tq1Tg+1,c0 = E ZTg—1,c T Tgq1 + E (1 + 601,02)xq+175/7
cely c'€dq
Lg+1l,c1Lg+1,c0 = 5617621.171 + E ZTg—1,c T (1 + 551752)1.%1
cely
+ E Tqt1,es +2 E Lq+1,eq-
c3€Jy ca€Jy
c1+catezFq—1 c1+catea=q—1
and 2max(c1,c2,c3) or 2max(c1,c2,c4)

In particular, when ¢ = 2, r(PSL(2,2)) has 3 basis elements z; 1, 1,2 and x2 1, and
the fusion rules are determined by

a?ig =T1,1, 12721 = T21, 33371 =211+ T12+ T21-
By the fusion rules of r(PSL(2, ¢)) (even ¢ > 2) given above, we have the following.

Lemma 2.9. The basis elements {x11,%q—1,c,Zq1,Tqt1,¢: € € Ig, ¢ € Jg} of
r(PSL(2,q)) are self-dual, where q > 4 is even. For q = 2, the basis elements
{z11,%1,2, 221} of 7(PSL(2,2)) are self-dual.

3. CELL AND SPECIAL STRUCTURES OF POSITIVELY BASED ALGEBRAS

In this section, we recall the definitions of positively based algebras, cell modules
and special modules in the sense of Kildetoft-Mazorchuk, see [7].

Let A be an algebra over C with basis B = {b;: ¢ € Z}. Here we always assume
that 1 € B. The basis B is called positive if all structure constants of A with respect
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to B are nonnegative real numbers. That is, for all 7,7 € Z,

bibj =Y bk,
kez

where rfj € Ryg for all 4, j, k. An algebra with fixed positive basis is called a pos-
itively based algebra (see [7], Subsection 2.1). It is obvious that for a fusion ring R
with Z -basis X = {X;: 1 < i < n}, the fusion algebra R¢ is a positively based
algebra with positive basis X = {X;: 1 <i < n}.

Let A be a positively based algebra with positive basis B = {b;: i € Z}. Define
the multioperation x: Z x T — 27 for any i, j € Z,

ixj = {k: rfj > 0},

where b;b; = > rfjbk. Thus, (Z,*) turns into a multisemigroup, see [8], Subsec-
tion 3.7. For iljjze 7T, we set ¢ <y, j if there exists an s € Z such that j € sxi. It is
easy to see that <, is a partial preorder on Z. We write i ~p, j if ¢ <z j and j <, 4.
Then ~;, becomes an equivalence relation on Z. The equivalence classes for ~, are
called left cells. Furthermore, the preorder <, also induces a genuine partial order
on the set of all left cells in Z, denoted also by < without ambiguity. Similarly,
using multiplication by s on the right, one can define the right preorder <g, the cor-
responding equivalence relation ~r and the right cells. Moreover, one can define the
two-sided preorder <z, the corresponding equivalence relation ~; and the two-sided
cells, using multiplication by s on the left and by ¢ on the right. We write ¢ <, j if

i1 <g 7 and i ~, j, and similarly for ¢ <g j and ¢ < j.

Definition 3.1. A two-sided cell J is called idempotent if there exist i, j, k € J
such that k € i % j.

Let A be a positively based algebra with positive basis B = {b;: i € Z}. Let £
be a left cell in Z and £ be the union of all left cells £’ in Z with £ <, £'. Define
L:= L\ L. Consider the C-submodule M. of A spanned by all b;, j € £, and the
C-submodule N of M, spanned by all b;, j € L. Kildetoft and Mazorchuk proved
that both M, and N, are A-submodules of the regular left module 4A, see [7],
Proposition 1. The left cell module of A associated to L is defined as the quotient
module Cz = My /N;. When £ = (), we regard Nz = 0 and Cz = M. Similarly,
one can define right cell modules and two-sided cell modules.

Lemma 3.2. Let A be a positively based algebra with positive basis B = {b;:
i € I}. Then the left cell module C = 4 A if and only if £ =T, see [1], Lemma 2.1.

Let A be a finite dimensional C-algebra and V' be a finite dimensional A-module
with fixed basis v = {v1, va,...,v,}. Then the pair (V,v) is called a based A-module.
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An element a € A is said to be a Perron-Frobenius element for a based A-module
(V,v) if all entries of the matrix of the action of @ on V' with respect to this basis v
are positive real numbers.

Given a Perron-Frobenius element a € A for a based module (V,v), let A be
the Perron-Frobenius eigenvalue of the linear operator a on V. Then we have the
following.

Definition 3.3. A simple A-subquotient L of V is called a special subquotient
with respect to a if A is an eigenvalue of a acting on L.

Remark 3.4. Given a Perron-Frobenius element a € A for a based A-module
(V,v), there is a unique, up to isomorphism, special subquotient L of V' with respect
to a, see [7], Corollary 3.

Let A be a positively based C-algebra with positive basis B = {b;: i € Z}. Given
a left cell £ in Z, consider the corresponding left cell module Cs defined as above.
Denote by B, the standard basis of Cz given by the image of the elements b;, where
i€ L. Setce Ry ={c; € Rsg: i € T}, and

(3.1) a(c) = Z c;b; € A.
ieT

Kildetoft and Mazorchuk showed that the element a(c) is a Perron-Frobenius element
for the based module (Cr, B), see [7], Lemma 4. Thus, for each left cell £ and
each c € [Rgo, one can consider the corresponding special subquotient L, . of C. It
follows from [7], Theorem 5 that for a fixed left cell and any ¢,¢’ € RZ, Ly . = Lz o
Since L. . is independent of ¢, we write L. for L. . simply. Furthermore, Theorem 6
of [7] implies that Lz = L if two left cells £ and £’ belong to the same two-sided cell.

Let (A, B) be a positively based algebra and (V, v) a based A-module. We will say
that (V,v) is positively based if for any b; € B and any vs € v, the element b; - v, is
a linear combination of elements in v with nonnegative real coefficients. For example,
the left regular A-module 4 A is positively based with respect to the basis B. For
vs, Uy € v, We write vy — v if there exists a b; € B such that the coefficient at v
in b; - vs is nonzero. The relation — is, clearly, reflexive and transitive. A based
A-module (V,v) will be called transitive if — is the full relation. For example, for
each left cell £, (C, Be) is a transitive A-module. For a transitive A-module (V,v),
we have the following, see [7], Section 9.4, Corollary 23.

Definition 3.5. A simple A-module is called special if it is isomorphic to a spe-
cial subquotient for a transitive A-module.

Lemma 3.6. There is a one-to-one correspondence between the set of isomor-
phism classes of special A-modules and the set of idempotent two-sided cells for A.

1308



In particular, if A is semi-simple, then we have the following, see [7], Proposi-
tion 13.

Lemma 3.7. Let A be a semi-simple positively based algebra. Then the following
statements hold.
(1) Each two-sided cell for A is idempotent.
(2) Let L be a left cell and J a two-sided cell containing £. Then the dimension
of L, equals the number of left cells in 7.

4. SPECIAL MODULE FOR FUSION ALGEBRA

Let R be a fusion ring with Z;-basis X = {X;: 1 < i < n}, where X; = 1. In this
section, we first classify the special module up to isomorphism of the complexified
fusion algebra Rc. We then state the relations between the Casimir element ¢(1)
and Perron-Frobenius element for a fusion algebra.

Lemma 4.1. The fusion algebra R¢ has unique left, right and two-sided cell n.

Proof. We first show that Rc only has one left cell n. On one hand, for any
ten, X; =X;X;,ie,i€ix],and so 1 <z . On the other hand, X/ X; = X;+...,
ie., 1 € i* x4, and hence ¢ <y 1. Thus, we prove that 1 ~p, i for any i € n, that
is, the unique left cell £ = n. Similarly, one can prove that R¢ has a unique right,
two-sided cell n. O

Corollary 4.2. The fusion algebra R¢ has only one left cell module r.Rc (the
regular left module) and only one special module up to isomorphism. Furthermore,
the special module is of dimension 1.

Proof. By Lemmas 3.2 and 4.1, one can immediately know that R¢ has only one
left cell module g Re. It follows from [2], Corollary 3.3.7 or [12], 1.2 (a) that Rc is
semi-simple. Hence, by Lemma 3.7 (1), the two-sided cell 7 = n is idempotent, and
so by Lemma 3.6, Rc has only one special cell module up to isomorphism. Moreover,
Lemma 3.7 (2) shows that the dimension of this special module is 1. Thus, the proof
is finished. (I

Recall that for the based module (r.Rc,Xn), any ¢ € RZ, a(c) = > ¢ X; is

a Perron-Frobenius element for (g, Re, X,,). Then we have the following. “~"

n
Theorem 4.3. Cr is a special module of Rc, where r = Y FPdim(X;)X; is

i=1
the regular element given in Lemma 2.5. Moreover, FPdim: R — C defined in
Lemma 2.5 is exactly the unique special representation up to isomorphism.
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Proof. By (3.1), we know that ¢, := ) X; is a Perron-Frobenius element for
i=1
(reRe, Xy). Furthermore, it follows from Lemma 2.5 (2) that ¢, -7 = FPdim(c,)r =

FPdim([cy,])r. Now, in order to prove that Cr is a special module of R¢, it remains to
show that Cr is a simple Rc-module. By Lemma 2.5 (2) again, X; -r = FPdim(X;)r
for any i € n, which shows that Cr is indeed a module over R¢. Hence, Cr is a special
subquotient of (g, Rc, Xn), and FPdim: R — C is the unique special representation
of Re up to isomorphism. O

The following results state the relations between the Casimir element and the
Perron-Frobenius element for a fusion algebra.

Lemma 4.4. The Casimir element c¢(1) of R is a Perron-Frobenius element for
the left cell module (r.Rc, Xy) if and only if [¢(1)] has strictly positive entries.

Proof. It follows from a straightforward verification. U

Corollary 4.5. If the coefficient of each basis element in ¢(1) is not 0, then ¢(1)
is a Perron-Frobenius element for (r.Rc, Xn).

Proof. It follows from the transitivity of a fusion ring, see Lemma 2.2. (]

5. SPECIAL MODULE FOR R(PSL(2,q))

In this section, for the case of interpolated fusion algebra R(PSL(2,q)), we set
the Casimir number ¢(1), as the Perron-Frobenius element to explicitly determine
the special module of R(PSL(2,q)) up to isomorphism. For simplicity, we write
rq :=r(PSL(2,¢q)) and R, := R(PSL(2,q)).

From Section 2 we know that for each even q > 4, R, is a positively based algebra
with positive basis U := {x1.1,Zq-1,¢,Zq,1, Tg+1,e: ¢ € Iy, ¢ € Jg}. In this case,
denote the set {(1,1),(¢ —1,¢),(¢,1),(¢+ 1,¢): c€ I, ¢ € J;} by g. When g = 2,
we write 2 = {(1,1),(1,2),(2,1)}. Then by Lemma 4.1, we have the following result.

Corollary 5.1. For each even q > 2, the fusion algebra R, has only one left cell gq,
and a unique left cell module r R,.

Next, we will compute the Casimir element ¢(1), of r, and prove that ¢(1), is
a Perron-Frobenius element for (r, Ry, Uq) for each even ¢ > 2.

Lemma 5.2. When ¢ =2, ¢(1)2 =3z11 + 21,2 + 22,1

Proof. It follows from a straightforward computation. O
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Throughout the following, unless otherwise stated, assume that ¢ > 4 is even. We
first give two lemmas, which will be useful in the study of the Casimir element ¢(1),
and the special module of R,.

Lemma 5.3. The following statements hold:
1) X 2516 = 50210+ (30— 1) X 2g-10+ 3¢ 2 Tgrre;

c1€ly cely c’edy
(2) 271 =211+ X Tg-1,c+Tg1 + Exq+1c’
cely c’'edy
(B) X e = (30-Dr11+(30-1) X Tg-1e+ (@ = 2)Tq1+ 50 2 Tgrre-
c2€Jy cely c’'edy

Proof. The relation (2) follows from a straightforward computation. We
prove (1) and (3). For any ¢; € I, we have

JUq Leo = T1,1+F E :mq l,e — E Tg—1,e3 T E Tg+1,c’-
cely c3€{g+1—2c1,2¢1} c'edy
Hence,
2 _q q q
(5.1) E Ty—1,c1 —5371714'52 Lg—1,c— E JU(1—1703“‘5 E Lg+1,c -
c1€ly cely c3€{q+1—2c1,2¢1} c'edy
c1€ly

It is easy to check that |J {¢+1—2¢c1,2c1} ={1,2,...,¢}. Since c3 € I,

c1€ly

§ Lg—1,c5 = § Lg—1,c-
c3€{q+1—2¢1,2¢1} cely

c1€ly

Thus, (5.1) becomes
q q q

5 = s (B 1) St Y e

c1€ly c€ly '€y
This shows (1). For any ¢, € J, we have
x3+1,cz =11t Z Tg—1,c+22q1 + Z Tgt1,e + Z Lq+1,cq-

cely c'edy ca€{q—1—2c2,2c2}

Similarly to (5.1), we have

(5.2) qu+1c2:( 1)x11+(——1)2xq e+ (@—2)xq1

c2€Jy cely

+ (% - 1) Z Tq+1,er T Z Lg+1,c4-

c'edy ca€{q—1—2c2,2¢c2}
CQEJQ
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It is not difficult to check that |J {¢ — 1 — 2¢2,2c2} = {1,2,...,9 — 2}. Since

cJ
cq € Jq, c2&a
E Tqt+l,ea = E Lgt1,e
cs€{q—1—2c2,2¢c2} c’'eldy
CQEJQ

Hence, (5.2) becomes
Z 2 _ (4 1 q 1 9 q
Logtl,c0 = 9 T11+ 95 Z Tg—1,c+ (g — 2)Tg1 + 5 Z Lg+1,c -
ca€Jy cely c’'edy

This shows (3). O

Lemma 5.4. The following statements hold:
(1) For any ¢y € I,

q q
LTg—1,c1 Z Tg—1,c = T1,1 + (5 - 1)le*1101 + (5 - 2) Z Lg—1,co

cel, ca€l\{er}

+(E-1)aa+ 5 Y v

c’'edy
(2) For any c3 € Jg,

q q q
Tgiles D Tarle =211+ (5 —1)Y wgae+ 5%l T 5Tq+1es
c'edy cel,

q
+ (5 + 1) Z Lg+1,cq4-
ca€Jq\{cs}

Proof. For any c1,c5 € I, we have

Lg—1,c1Tq—1,c5 = 601105‘%1,1 + E Lg—1,c — E Lg—1,c6

cel, ce€lq
c1+cs+ce=q+1
or 2max(c1,c5,C6)

+(1- 561765)1.%1 + Z Lg+1,c -

c’edy
Then
_ q
Tg—1,e1 Tg—1l,es = T1,1 + B Tg—1,e— Tq—1,c6
cs€ly cely cs€ly ce€ly

ci1+ces+eg=q+1
or 2max(c1,¢5,C6)

q q
+ (5 - 1)1[,'%1 + 5 Z Lg+1,c -
c'eldy

We need to consider ¢; +¢5 + ¢ = ¢+ 1 or ¢1 + ¢5 + ¢g = 2max(cy, ¢5,cg) when ¢
runs through I,.
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>ci+es+te=q+1l=>cs=q+1—c1 —c5: Itiseasytoseethatwhenc5:%q,
%q—l,...,%q—cl—l—l,

q q q
: I T R N
(53) Ce 2 Cl+ 72 Cl+ ) 525

and in the case when c¢5 < %q —c1+1,wehave g+ 1—c1 —c5 > %q.

> If ¢; + ¢5 + ¢c¢ = 2max(c1,c5,c6) = 2max(cy,c3), then ¢g = |1 — ¢5]: When
(35:(31—1, 61—2,...,1,
(5.4) c=1,2,...,004— 1.
In the case when cs =c; +1,¢c1 4+ 2,..., %q,
_ q
(55) 66—1,2,...,5—01,
and if ¢5 = ¢1, |¢1 — ¢5| = 0.
> If c14+c54c6 = 2max(cq, ¢5, c6) = 2¢6, then cg = c1+c¢5: Whences =1,2,. .., %q—cl,
_ q
(5.6) 067014_17014_2,.”75.

In the case when %q —1<es < %q, we have %q <c+es < %q + c1.

Thus, when ¢5 runs over I, (5.3) and (5.5) show that

q
06:1,2,...,5,

and (5.4), (5.6) imply that

%:1gwnmy—Lq+1,”%

Summarizing the discussion above, we have

E E Tg—1,c6 = Lg—1l,c; T2 E Lg—1,ca-

cs€ly ce€lq ca€lg\er}
c1tcs+ee=q+1
or 2max(c1,c5,C6)

Hence,
_ 4 q
Lg—1,c1 Z Tg—1,c=T1,1+ 9~ D)zg—1,e, + 9 2 Z Lg—1,co
cel, co€lg\{c1}
q q
+ (5 - 1>$q,1 3 > Tgiie
c’edy
Thus, (1) follows. Similarly, one can prove (2). O
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By the discussion above, we have the following.

Corollary 5.5. We have

c(Wg=(g+ Do+ (@—-1) D wg1e+(@—Drgr+(@+1) Y zgi1e

cely c'€Jq

Proof. It follows from a straightforward verification and Lemma 5.4. O

Corollary 5.6. For any even q > 2, the Casimir element c(1), is a Perron-
Frobenius element for the left cell module (g,Rq,Uq). Moreover, q(q*> — 1) (the
FPdim of r,) is the Perron-Frobenius eigenvalue of the matrix [c(1),] determined by
the left multiplication of Casimir element ¢(1),, and its algebraic multiplicity is 1.

Proof. It follows from Lemma 2.7, Corollaries 4.5 and 5.5. O

By the definition of r, the regular element of R, is given by

eq =111+ (q—1) Z Tg—1,c T qTq1 + (¢ +1) Z Tg+1,¢ -
c€ly c'€dq

Moreover, FPdim: R, — C is given by

(5.7) FPdim(z11) =1, FPdim(zg_1.)=¢—1, cé€ I,
FPdim(z,1) = ¢, FPdim(zg41,0)=q+1, ¢ €J,.

When ¢ =2, es = 21,1 + 21,2 + 2221 and
(5.8) FPdim(z1,;) = FPdim(x; 2) =1, FPdim(zz;) = 2.

Theorem 5.7. When q = 2, Cey is a special module of Ry. Furthermore, the
action of Ry on Cey (Ceq = C, as C-vector spaces) Is given by

1’1’1'1:%1’2'1:1, 1’2’1'1:2.
Proof. It follows from Lemma 2.7 and Corollary 5.6 that ¢(1)z is a Perron-

Frobenius element of Ry, and FPdim(¢(1)2) = FPdim([e(1)2]) = 6. Moreover, by the
fusion rules of 5, we have

Ti1€2 =T12 €2 = €3, Ta]-e€y = 2es.
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Hence, Ces is a module over Ry. It is left to show that ¢(1)2 - ea = FPdim(c(1)2)es.
Note that the action of Ry on Ces can be seen as

Ti1-1l=x12-1=1, x91-1=2.
Thus,
c(1)2-1=(r11+x12+2221) - 1=141+2x2=06=FPdim(c(1)2).
This completes the proof. O

Theorem 5.8. Let ¢ > 4 be even. Then Ce, is a special module of R,. Moreover,
the action of Ry on Ceq (Ceq = C, as C-vector spaces) is determined by

r11-1=1, 241.-1=qg—1, cel,,
Tg1-1=¢q, Tgr10-1=q+1, ¢ €J,

Proof. It follows from Corollary 5.6 that ¢(1), is the Perron-Frobenius element
for (r,Rq,Uq), and FPdim([c(1)4]) = FPdim(c(1)q) = ¢(¢* — 1). Now, we show
that Ce, is a module of R,. It suffices to show that the action of each basis el-
ement i1, Tg—1,, (€1 € Ig), Tg1 and Tgyi1c, (c2 € Jy) of Ry on eq is equal to
a scalar multiple of e¢,. It is easy to see that x11 -e; = e4. For each ¢; € I, by
Lemma 5.4 (1) and the fusion rules, we have

Lg—1,c1 " €q = Tg—1l,c1 (xl,l +(g—1) Z Tg—1,c T qTq1 + (¢ +1) Z x‘HLC/)
c€ly c'edy

=Zg-1,c, + (¢ —1) <$1,1 + (g - 1)a:q_17cl

q q
) T s (e )

co€lg\{c1} c'edy
+q( Y ottt Y )
ca€lg\{c1} c'edy
(3 ) (St s Y e
cely cely

=(¢— Dz +(¢— 1>2xq—1761 +(¢— 1)2 Z Tg—1,c2
ca€lg\{c1}

(P = Qrgr+ (= 1) D Tgpre
c'edy

=(q—1)eg
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Similarly, by Lemma 5.4 (2), one can check that for any co € Jy, Zgt1,c,-€q = (q+1)eq.
At last, we show that 241 - e, = geq. In fact, by the fusion rules, we have

Zg,1€q = Lg,1 - <x1,1 +(q—1) Z Tg-1,c +qTq1 + (g +1) Z x‘HLC/)

cel, c’'edq

= qul + (q - 1) ((% - ]‘) Z xQ*l,C + gxq,l + g Z xq+1’c/>

cel, c’'edy

CITD SERPREHESD DENY

cely c'€Jq
q q q
+(g+ 1)((5 - 1) Y Tg-iet (5 - 1>$q,1 T3 > J0q+1,c'>
c€ly c’'€Jq

=g+ (=)D et Cro1+ (@ +9) Y Ter1e = qeq
c€ly c'€Jq

Summarizing the discussion above, Ce, is a module over R,. Moreover, the action
of Ce, can be regarded as follows:

x11-1=1, xg1c-1=q—-1,c€ly, x41-1=¢q, Tgt10-1=q+1, € J,.
It is left to prove that ¢(1),-1 = FPdim(c(1),) = q(¢®> —1). In fact, by Corollary 5.5,

c(l)g-1= ((q +Dz11+(¢—1) Z Tg-1,e + (g —Dzg1+ (¢ +1) Z $q+1,02) 1

ci1€ly c2€Jy
B q q
=g+ D+ @-Dla- DI+ (- D+ @+Da+1(3-1)
=¢’—q=q( —1).
Thus, the proof is finished. O

Remark 5.9. The action of R, on Ce, with even ¢ > 2 is the same as (5.7)
or (5.8). Furthermore, Theorems 5.7 and 5.8 illustrate Theorem 4.3.
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