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Abstract. We construct a class of quantum doubles D(Hp, ) of pointed Hopf algebras of
rank one Hp. We describe the algebra structures of D(Hp_) by generators with relations.
Moreover, we give the comultiplication Ap, counit £p and the antipode Sp, respectively.

Keywords: pointed Hopf algebra; quantum double; rank one

MSC 2020: 16T05, 16G30

1. INTRODUCTION AND PRELIMINARIES

During the past years, great progress has been made in the study of quantum
groups and their representation theories. For example, the representation theory
of the small quantum group uq(sl,) and the restricted quantum universal envelop-
ing Hopf algebra 4l,(s(,) associated to s[, have been studied in [6], [8], [12], [13].
Quantum groups are mathematical objects which arose from the study of the quan-
tum inverse scattering method, especially the quantum Yang-Baxter equation. They
are non-commutative and non-cocommutative Hopf algebras. However, how to con-
struct more non-commutative and non-cocommutative Hopf algebras has always been
a problem of great interest to us.

The most common way to construct a new Hopf algebra is to generate a new
Hopf algebra from a known Hopf algebra through its deformation. Roche, Dijkgraaf
and Pasquier gave a method to construct a quasi Hopf algebra, see [3]. Given
a finite group G and a 3-cocycle w, they can construct a quasi Hopf algebra D¥(G).
If w is trivial, then D“(G) is isomorphic to the quantum double D(kG) of the
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group algebra kG. If w is a boundary, then D¥(G) is a twisted deformation
of D(kG). If w is not a boundary, then D“((G) is a genuine quasi Hopf algebra,
that is, D“(G) is not isomorphic to any 2-cocycle deformation of a Hopf algebra.
Panov studied Ore extensions in the class of Hopf algebras, which enables one to
describe the Hopf-Ore extensions for group algebras in [10]. Krop and Radford
defined the rank as a measure of complexity for Hopf algebras, see [7]. They
classified all finite dimensional pointed Hopf algebras of rank one over an alge-
braically closed field k of characteristic 0. It was shown in [7], [11] that a finite
dimensional pointed Hopf algebra of rank one over an algebraically closed field is
isomorphic to a quotient of a Hopf-Ore extension of its coradical. Doi studied the
2-cocycle o of Hopf algebra H, and introduced a class of 2-cocycle deformed Hopf
algebras H?, see [4]. Chen studied the general properties of 2-cocycle and double
crossproducts. He proved that all lazy 2-cocycles form a group with respect to
convolution, see [2].

In 1986, Drinfeld introduced quasitriangular Hopf algebra, and gave a method
to construct quasitriangular Hopf algebra D(H) from a finite dimensional Hopf al-
gebra H. The finite-dimensional Hopf algebra D(H) is called a quantum double
(or Drinfeld double) of the Hopf algebra H. The representation category of a qua-
sitriangular Hopf algebra is a braided tensor category, and its braided structure can
provide solutions for the quantum Yang-Baxter equation. In particular, the repre-
sentation of the quantum double of a finite dimensional Hopf algebra can provide
solutions for the quantum Yang-Baxter equation, so the quantum doubles of finite
dimensional Hopf algebras and their representation theories have attracted much
attention. Chen constructed a class of noncomutative and noncocomutative Hopf
algebras (see [1]); these Hopf algebras are isomorphic to the quantum doubles of
Taft algebras. In this paper, we construct a class of quantum doubles from pointed
Hopf algebras of rank one Hp, where D = {G, x, g, 1} is a group datum and G is
a dihedral group.

Throughout, we work over an algebraically closed field k with char(k)=0. Unless
otherwise stated, all algebras and Hopf algebras are defined over k. Our references
for basic concepts and notations about Hopf algebras are [5], [9]. In particular, for
a Hopf algebra, we will use £, A and S to denote the counit, comultiplication and
antipode, respectively.

2. POINTED HOPF ALGEBRAS OF RANK ONE

In this section, we first recall the construction of a finite dimensional pointed Hopf
algebra of rank one from a group datum D. A quadruple D is called a group datum
if G is a finite group, g is an element in the center of G, x is a k-linear character
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of G, and p € k subject to x™ = 1 or u(¢g™ — 1) = 0, where n is the order of x(g).
If u(g™ —1) = 0, then the group datum D is said to be of nilpotent type. Otherwise,
it is of non-nilpotent type, see [7].

Given a group datum D = {G, x, g, 1}, we let Hp be an associative algebra gen-
erated by y and h in G such that kG is a subalgebra of Hp and

y" =pulg" —1), yh=x(h)hy forheG.

The algebra Hp is finite dimensional with a canonical k-basis {y*h: h € G, 0 <i <
n—1}. Thus, dim Hp = n|G|, where G is the order of G. In fact, Hp is endowed with
a Hopf algebra structure. The comultiplication A, the counit €, and the antipode S
are given respectively by

Aly)=y®g+1®y, =) =0, Sy =-yg ',
A(h)=h®h, eh)=1, S(h)=h"!

for all h € G. It is easy to see that G is the group of group-like elements of Hp
and Hp is a pointed Hopf algebra of rank one, see [7]. If the group datum D is of
nilpotent type, Hp is said to be a pointed rank one Hopf algebra of type. Otherwise,
it is of non-nilpotent type.

Throughout this paper, let G = D,, = (a,b: a® = b*> = (ba)?> = 1) be the
dihedral group, where n = 2m and m > 1 is an odd integer. Assume p = 0, and
char(k)=0. Let w be a root of unity with |w| = 2n. In this case, kD, is semisimple
and ™ € Z(D,,). Let x € D,, be given by x(a) = —1 and x(b) = 1. Then we can
construct a pointed Hopf algebra of rank one with group datum D = {D,,, x, a™,0}.
Denote these Hopf algebras by Hp, . Then Hp, is generated as an algebra by a, b, y
such that

a"=1, =1, (ba)*>=1, y>=0, ya=—ay, by=>by.

The comultiplication A, the counit £, and the antipode S are given respectively by

Aly) =y@ad™ +10@y, Ala)=a®a, A(b)=b&D,
ela)=1, eb)=1, e(y)=0,
S(a)=a"t, Sb)=b"" S(y)=—ya™.

Then Hp, is of dimension 4n with a k-basis {b’a/y*: 0 <i,k<1,0<j <n—1}.
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3. DRINFELD DOUBLES OF THE HOPF ALGEBRAS Hp,

In this section, we describe the structures of the Drinfeld doubles (or the quantum
doubles) of the Hopf algebras Hp,, .

Definition 3.1 ([5], Definition IX 2.2). A pair (X, A) of bialgebras is matched if
there exist linear maps a: A® X — X and f: A® X — A turning X into a module
coalgebra over A, and turning A into a right module-coalgebra over X, respectively,
such that if we set

ala®@z)=a-xz and Bla®x)=a",
the following conditions are satisfied:

a (ey)= > (ar-z1)(@®™ - y), a-1=¢la)l,
(a)(z)
(ab)® = Z abreipy 1 = (21,
() ()

E a1x1®a2'$2=g a™ ® a - o1

(a)(@) (a) (@)
for all a,b € A and z,y € X.

Lemma 3.2 ([5], Theorem IX.2.3). Let (X, A) be a matched pair of Hopf algebras.
There exists a unique Hopf algebra structure on the vector space X ® A, with unit
equal to 1 ® 1, such that its product is given by

(z®a)(y®b) = Z z(ar - y1) ® az??b,
(a)(y)

its coproduct by
Az ®a)= Z (1 ®a1) ® (22 ® az),
(a)(z)
its counit by

e(z®@a) =¢e(z)e(a)
and its antipode S given by
Sr@a)= Y Sa(as)- Sx(wz) @ Sa(ar) ¥,
(w)(a)

where Sx and Sa are antipode of X and A, respectively. Further X ® A is called
bicrossed product of X and A and denoted X <1 A. Obviously, X and A are subal-
gebras of X <1 A under the injective ix(z) =2 ® 1 and ia(a) = 1 ® a, respectively.
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Theorem 3.3 ([5], Theorem IX.3.5). Let (H,u,n,A,c,5,S71) be a finite-
dimensional Hopf algebra with invertible antipode. Consider the Hopf algebra

X = (Hop)* — (H*)cop — (H*,A*,€*, (MOP)*W*, (5—1)*75*).
Let a: H® X — X and : H® X — H be the linear maps given by
aa® f)=a-f=> f(Saz)?a1) and Bla®f)=a’ =" f(S " (as)ar)as,
(a) (a)
where a € H and f € X. Then the pair (H, X) of Hopf algebras is matched in the

sense of Definition 3.1.

Proposition 3.4 ([5], Definition IX.4.1). The quantum double D(Hp,) of the
Hopf algebra Hp, is the bicrossed product of Hp, and of (Hp, )°°P:

D(Hp, ) = (Hp, )P =< Hp,.

Proposition 3.5. The multiplication, comultiplication and counit in D(Hp, ) are
given by

(f®a)(g®b) = ng "(a3)?a1) ® azh, ep(f ®a)=ce(a)f(1)

AD(f®a) = Z (fi ®a1) @ (f2 ® az),
(a)(f)

where f,g € (Hp, )P and a,b € Hp,, Y f1 ® f2 is determined by ) fi(x)f2(y) =
f(yx) for all x,y € Hp,, .

Note that Hp, and (Hj, )°°P are Hopf subalgebras of D(Hp, ) via the identifica-
tions y = ey, y € Hp, and f = fal, fe (Hp )P, respectively, where ¢ is the
unit element of (H}, )°P. Let {biajy’“: 0 < i, k<1,0<j<n-—1} be the basis
in H}, dual to the basis {bia’y*: 0 < i,k <1,0<j <n—1} of Hp,. That is,
biaiyk (bialy*) = 1, and biaiy* (b af y¥') = 0 1f( "3 k) # (4,4, k), where 0 < 4,4,
kK <1,0<7,7 <n-—1

Lemma 3.6. The multiplication of Hf, is determined by

bialyt ifs=0,i=Fkandj=1I,
bialys bralyt = < bialy ifs=1,¢t=0, k=i andl=m+j (mod n),

0, otherwise,

where 0 < i,k,s,t <1land0<j,l<n—1.
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Proof. By the coalgebra structure of Hp,, we have A(bla") = bla" @ bla”,
and A(btahy) = blay @ bta"t™ 4 bla" @ bty for 0 <t <land 0 < h<n—1. We
prove the lemma for s =t =0;s=0,t=1;s=1,t =0 and s =t = 1, respectively.

Case 1: If s = t = 0, then bial bFal(b'a") = biai (b'a™)bFal(bta’), where
0 < ikt <1,0<jl,h <n—1. Hence, biajbFal(b'a”) = 1 if and only if
t=14i=kand j =1 = h. Obviously, biaJ bFal(b'a"y) = 0, and so we have

o biad ifi=kandj=I,
*al at =
0, otherwise.

Case 2: If s = 0, t = 1, then biad braly(btay) = bial (b'a”) bFaly(b'aly), where
0<i,kt<1,0<j1,h<n—1. Hence, bial bkaly(b'a"y) = 1if and only if t = i = k
and j = [ = h. Obviously, bia’ b*aly(b'a") = 0, and so we have

bial bkaly =

biady if i=kand j=I,
0, otherwise.

Case 3: If s = 1, t = 0, then biaiy bkal(btaly) = biaiy(bta™y)b*al (b'a"+t™), where
0<i,k,t<1,0<4,1,h <n—1. Hence, biaiyb*al(btay) = 1ifand onlyift =i = k,
j=handl=h+m (mod n). Obviously, biaiyb*a!(b'a") = 0, and so we have

- biaiy ifi=kand j+m=1,
biady bkal = Y /
0, otherwise.

Case 4: If s =t = 1, then one can easily check that biaiy b*aly(b'a) = 0, and
biaiybkaly(btahy) = 0 for 0 < 4,k,t < 1, 0 < j,I,h < n — 1. This completes

the proof. O
1n=-1__
Obviously, > Eb’aﬁ = ¢ is the identity of the algebra H} . Put a =
1 n=1 _1=05=0 1 n-1___
> X Wb, 5 E > blaly.
i=0 j=0 i=0 j=0

Lemma 3.7. The algebra H}, is generated, as an algebra, by «, [3.

Proof. Let A be the subalgebra of Hj, generated by a, 8. By Lemma 3.6,
we have

1 n-1 1 n-1 1 n-1
ce o =Y Y i, 2= Y Y W,
i=0 j= =0 j=0 1=0 j=0
1 - 1 n-1
Z Z 3(i4+25) i 7 biad ., 21— Z Z w(2n71)(i+2j)w
i=0 j= i=0 j=0
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For any 0 < i,# <1 and 0 < j,j/ < n— 1, we have w% = "+ if and only if
1 =1 and j = j'. Hence, b’al € A for any 0 <7 < 1,0 < j < n — 1. Moreover, by
bial f = blaly, blaly € A, 0<i<1,0<j <n— 1 Consequently, H, = A. O

Corollary 3.8. The following holds in Hy, .
" =¢, B2=0, aBf=—Pa.
Proof. It follows from Lemma 3.6 and the proof of Lemma 3.7. (]

Corollary 3.9. The algebra H, has a k-basis {aipi: 0<i<2n—1,0<j < 1}.

Proof. It follows from Lemma 3.7 and Corollary 3.8. O

Proposition 3.10. The comultiplication A°P, the counit ¢ and the antipode S
of (Hp, )°°P are given by
o 1 -1 1 n+1 —1
Ap(a):§a®(a+a )—1—504 ®(a—a™ ),

AP(B) = f@e+ 5[ +uTam +(1-w @6,

6(05) =1, E(ﬂ) =0,
1

S(a) = 5(04 +at ot —amth),
S(8) = 310+ & Ma™ + (1 ~w a5,

Proof. In Hf , for any 0 < ¢ <n — 1, we claim
A(a?) = Z ak @ ai=k 4 Z ak ® anti=k
0<k<i i+1<k<n—1
+ Z ba* @ batthk + Z bak @ baitk—n,
0<kn—i—1 n—i<kL<n—1
In fact, assume

1 n—1
— ikl 75 -
Ala)= > > Bl by @b ay’,
J,3",0,U=0 k,k’=0

where 9?}{“,;1,11, = J(bj akylbj/aklyll). By a straightforward computation, one gets that
9;;’3;1,7” = 1if and only if j, k, I, ', k', I’ satisfy one of the following cases:

Case 1: l=1"=j=j =0,and k+ k' =i (mod n).

Case 2: 1=1'=0,j=7=1,and k' =k+¢,0<k<n—i—1.

Case 8: 1=1'=0,j=7 =1, andk=k"+n—i,n—i<k<n—1.
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k1 .
Moreover, we have 9;,_ v = 0 for other cases. Similarly, one can prove

Aba') = > db@bath4+ Y aF@baithn
0<k<n—i—1 n—i<k<n—1
+ > baFedF+ Y baF@ai
Osk<i i+1<k<n—1
A(aly) = Z ak ® ai=ky + Z ak @ anti=ky
(YN i+1<k<n—1
+ Z bak @ baitky + Z bak @ baitk—ny
0<ksn—i—1 n—i<kL<n—1
+ > (D)Faby@aF+ Y (=) Fakby @antick
0<k<i i+1<k<n—1
+ Z (=1)**baky @ baitF
0<k<n—i—1
+ Z (=1)"Fbaky @ baitk—n
n—i<k<n—1
and
A(baty) = Z akF @ baithky + Z aF @ baith—ny
0<k<n—i—1 n—i<k<n—1
+ > baFeaty+ Y baF@aiFtny
0<k<i i+1<k<n—1
+ > (D)"FbaFy@a R+ Y (<1)FbaFy @ ok
0<kh<i i+1<k<n—1
+ > (1) Faky @ batth
o<ks<n—i—1
b ()T e b,
n—i<k<n—1

1 n—-1 -
Notice that A(a) = >° > W2 A(biad), and A(B) = Z E A(biaiy). Let A =
=0 j=0 1=0 j=

E w¥ai, B= E w?*t1hai. Then a = A + B. By the 1dent1t1es above, one gets
3=0 3=0

Al@)=T®(A+B) +a® (WA+w 2 B)+a?® (WA+w™B)+...
+am 1@ W VAL w2 UB) 4 h® (wA+w 'B)
+ba® (WA+w3B)+ba2® (WA+wSB) +...
+ban 1@ (WA + w2V B)

=a®A+a ' ®B.
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By a straightforward computation, we have a"t! = A — B. Consequently, A =
(a+ a1y and B = $(a — o™ "), and hence we have

1 1
Aa) = 5(oz—l—ofl) ® a+ E(oz —a ) ®antt,

n—1 _ n—1 R

Similarly, let A’ = > (—=1)/a/ and B’ = > (—1)’bal. One can check that
§=0 §=0

A 4+ wmB" = a™ and A —w™B’ = a~™. Consequently, A’ = 1(a™ + a™™)

and B’ = %w_m(am — a~™). Moreover, by a straightforward computation, one has
Af)=e® P+ B® (A" + B'). Hence, we have

AB)=c@B+ 388 (1 +w a4 (1-w ")

It is easy to see that

(—b‘ ) 1 ifi=j=k=0,
e(b*ad =
Y 0, otherwise,

where 0 < 4, £k < 1, and 0 < j < n — 1. Consequently, e(a) = 1, e(8) = 0.
Moreover, a straightforward verification shows that S(a?) = a™~%, S(ba') = ba?,
S(aty) = (=1)"*tam—iy, and S(ba'y) = (—1)"*'bai—my, where 0 < i < n— 1. Hence,

Sla)=T+w 2a+...+w 2 V=T 4 wb+w’ba+ ... + w? than—1.

_ n—1 —_ n—1 J— o
Let A= Y w%al, B= Y w % 'bal. Then S(a) = A+ B, where B is given as
§=0 §=0
before. Moreover, one can check that a~! = A+ B and o" ! = A—B, and so we have
A=1Lat+a ), and B = (o™t —a" ). It follows that S(a) = (e +a™* +
a1 — 1), Similarly, one can get S(8) = i[(1 + w™™)a™ + (1 — w™™)a"™]B.
This completes the proof. ([

Corollary 3.11. In (Hj, )P, we have

(1) A%(a™") = é( ot h)eal (e et @,
(2) A%(@"+) = ba+ ™) @0 — Ha - ") wart,
(3) A%(a™) = %(a ta ™M ea" + 3@ —aMa"m,
(4) A®(a™™) =3 (of’"— M) @am™ 4+ g Ham) @a,
(5) S(a™t) = %(a+a +amtt —anh,

(6) S(am)=L(a ! —a+amtl +anl),

(7) S(a™) =a™, S(a™™) =a™™.

Proof. It is similar to the proof of Proposition 3.10. (]
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Proposition 3.12. Let Ap, ep and Sp be the comultiplication, counit and the
antipode of D(Hp, ). Then we have

Aplexa)=(exa)®(exa), Aplexibd)=(exb)® (exb),

Ap(epay) = (exy) @ (e>a)™ + (e 1) @ (e >ay),
AD(aml):%(abﬂl)@(aw1)+%(a><11)®(a><11)71
+%(am1)"“®(am 1) — %(ozml)’”r1 ® (axa1)7!,

Ap(B<il) = (5%1)@(5%1)—1—%(I—kw*m)(aml)m@(ﬂml)

50— w a1 e (G ),
eplexa)=1, eplexb)=1, eplexy)=0, eplaxl)=1 ep(fxl)=0,

Sp(eaa) = (sxaa)™t, Sp(exb)=exib, Splexay)=—(exa)"(e=y),

—_

1 1 1
Splaval) = (asal) + Z(a T+ 5 (s D"t - —(ax1)™,

Sp(B5a1) = Z(1+w ™)@ )™(8 1) +

[\

1
1w ) (B ),
where € <11 is the unit element of D(Hp,)).

Proof. We only check the rules of the antipode since other rules can be easily
obtained. By the definition of the antipode given above, we have Sp(e <1 a) =
a~texa(a ) =exa! = (e xa)” . Similarly, we can get Sp(e > b) = e > b.
Splexy)=a e (—a"y) +(—a"y) e 1" = —exa™y = —(exa)" (e X Y).
By Lemma 3.11, we have

Splaxil)=1-S(a+a ) x15@/2 4 1.5 —a~t) 150"/
=1-S(a) 1572 £ 1.8(a"1) 152
+1-8(a)sa 1502 1. g t) s 150"TH/2
=S(a)x1
1 1 1 no1_ 1 nt1
=—(axl)+-(axl)"+=(ax1)"" = =(ax 1),
2 2 2 2
and
Sp(Bpa1) =1- () 5a 15B) 4 1. (8) pa 151w M +(1=w " )a"™) /2
= 5(p)pal
1 1
= 5(1 +w ™) (ax)™(Bx1) 4+ 5(1 —w M) (ax1)T(B ).
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Let H,,(w) be an algebra generated by x1, x2, 3, y1 and y2 subject to the following

relations:
ot =1, 22=1, (zox1)® =1, 22 =0, x30; = —x123, T3T2 = ToT3,
yi" =1, yi=0, yiy2 = —yau,
T1Y2 = —Y221, *T2Y2 = Y2X2, X3Yr = —Y1T3,

1 1
T1y1 = 5(1 +whyray + 5(1 —whypta,

1 _ 1
Toy1 = 5(1 + W2)3J1 Yoy + 5(1 - W2)3J1 15527
1 _ _ _
T3y2 = Yox3 + " — 5(1 +w My = (1w My ™

One can easily check that H,,(w) is spanned as a vector space by {yiyjzbzlak:

0<i<2n—1,0<4,p,0<1,0< ¢< n—1}, and so dim(H, (w)) < 16n2.

Theorem 3.13. There is an algebra isomorphism ¢ from H,(w) to D(Hp,)
given by

p(r1) =ea, p(r2) =cab, @(r3) =exy, @y)=axl, o(y)=03Gx1.

Moreover, H,, (w) has a k-basis {yiyjabaizl: 0<i<2n—1,0<j,p,1<1,0<q<

n — 1} and dim(H, (w)) = 16n2.

Proof. Let X =exa, Y =exb Z=exy, D=axl,and F = g x 1.
Since Hp, and (H}, )°°P are Hopf subalgebras of D(Hp, ) as stated before, we have
Xt =1,Y2=1,(YX)2=1,22=0,2X = -XZ,YZ =Z2Y, D> = 1, E? = 0,
and DFE = —ED. By Proposition 3.5, one gets that

XD:(A+w4B)><1a7 DX =ama, DX =a"lpaq,
YD =(A+w'B)=b, DY =axb D'Y=a"'xb,
ZD=—-(A+B)xy, DZ=axy,
XE=-fma, EX=fxa,

YE=p»b, EY =fb,
ZE=exa"+B8xy—Tx1, FEZ=p(xy,

where T = A’ + B', A, B, A’B’, A and B are given as before. Moreover, one has
1 1
DX —-XD=(1-w"Bxa= 51 —wh(a—a"M) xa = 51 —wh (DX —D"X).
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Consequently, we have XD = 1(1 + w*)DX + 3(1 — w*)D"*1 X. Furthermore,

D*1Y—YD:(1—w2)§mb:%(

= %(1 —W?)(D7Y = DY),

1—w)lat—a" b

Consequently, we have YD = (1 + w?) DY + (1 — w?)D""'Y. Obviously, we
have ZD = —DZ, XE = —FEX, and YE = EY. Similarly, we can get ZFE =
EZ+X™— (14w ™)D™ — (1 —w ™)D~™. It follows that there exists a unique
algebra map ¢: H,(w) — D(Hp, ) such that ¢(x1) = X, ¥(z2) =Y, ¢¥(a3) = Z,
Y(y1) = D and ¢¥(y2) = E. By Lemma 3.7 and the definition of D(Hp,), D(Hp,)
is generated as an algebra by X, Y, Z, D and E. Hence, v is surjective, and so
16n? > dim(H,(w)) > dim(D(Hp, ) = 16n>. Thus, dim(H,(w)) = 16n2. It follows
that v is an algebra isomorphism. O

Proposition 3.14. Let H, (w) be a Hopf algebra with the comultiplication, the
counit and the antipode determined by
Alx) =21 Q@x1, Ar2) =202, Alxs) =232 +1Q 3,

1 1, ~
A(y) = P ® @ +yr )+ 591“ ® (1 —yi ),

1 —m m —m —m
A(y2) :yz®1+5[(1+w Juit + (1= w ™)y "] @ ya,
6(xl) = 17 6(‘752) = 17 8(%3) = 07 6(yl) = ]-a 6(2/2) = Oa
S(z1) =", S(x2) =22, S(as) = —al'ws,
1 — n— n
S(y) = 5 + v Lyt — gyt
1

1 _
S(y2) = 5(1 +w ™My y2 + 5

Moreover, ¢ is an Hopf algebra isomorphism.

(1 =w™ ™)y "ya.

Proof. It follows from Proposition 3.12 and Theorem 3.13. (I

If n = 2, then the R-matrix of Ho(w) can be described by the following equation.

1 ; 1
R:1®1+Zx3®(y2+y1y2+yfy2+yfyz)+zx1®(1+yf—y1—yi’)

1 ; 1
+ 0123 ® (2 + Y2ys — Y1y2 — Yiy2) + 1P @ (- yi — wyr + wy?)

1 ; 1
+ 0223 ® (Y2 — Y2ys — wyrys + wySys) + 1o ® (1 - Y+ wyr — wy?)

+1x .2 .3
1 27123 @ (Y2 — YiY2 + WY1Y2 — WY Y2).
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