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Abstract. We construct a class of quantum doubles D(HDn
) of pointed Hopf algebras of

rank one HD. We describe the algebra structures of D(HDn
) by generators with relations.

Moreover, we give the comultiplication ∆D , counit εD and the antipode SD, respectively.
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1. Introduction and preliminaries

During the past years, great progress has been made in the study of quantum

groups and their representation theories. For example, the representation theory

of the small quantum group uq(sl2) and the restricted quantum universal envelop-

ing Hopf algebra Uq(sl2) associated to sl2 have been studied in [6], [8], [12], [13].

Quantum groups are mathematical objects which arose from the study of the quan-

tum inverse scattering method, especially the quantum Yang-Baxter equation. They

are non-commutative and non-cocommutative Hopf algebras. However, how to con-

struct more non-commutative and non-cocommutative Hopf algebras has always been

a problem of great interest to us.

The most common way to construct a new Hopf algebra is to generate a new

Hopf algebra from a known Hopf algebra through its deformation. Roche, Dijkgraaf

and Pasquier gave a method to construct a quasi Hopf algebra, see [3]. Given

a finite group G and a 3-cocycle ω, they can construct a quasi Hopf algebra Dω(G).

If ω is trivial, then Dω(G) is isomorphic to the quantum double D(kG) of the
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group algebra kG. If ω is a boundary, then Dω(G) is a twisted deformation

of D(kG). If ω is not a boundary, then Dω(G) is a genuine quasi Hopf algebra,

that is, Dω(G) is not isomorphic to any 2-cocycle deformation of a Hopf algebra.

Panov studied Ore extensions in the class of Hopf algebras, which enables one to

describe the Hopf-Ore extensions for group algebras in [10]. Krop and Radford

defined the rank as a measure of complexity for Hopf algebras, see [7]. They

classified all finite dimensional pointed Hopf algebras of rank one over an alge-

braically closed field k of characteristic 0. It was shown in [7], [11] that a finite

dimensional pointed Hopf algebra of rank one over an algebraically closed field is

isomorphic to a quotient of a Hopf-Ore extension of its coradical. Doi studied the

2-cocycle σ of Hopf algebra H , and introduced a class of 2-cocycle deformed Hopf

algebras Hσ, see [4]. Chen studied the general properties of 2-cocycle and double

crossproducts. He proved that all lazy 2-cocycles form a group with respect to

convolution, see [2].

In 1986, Drinfeld introduced quasitriangular Hopf algebra, and gave a method

to construct quasitriangular Hopf algebra D(H) from a finite dimensional Hopf al-

gebra H . The finite-dimensional Hopf algebra D(H) is called a quantum double

(or Drinfeld double) of the Hopf algebra H . The representation category of a qua-

sitriangular Hopf algebra is a braided tensor category, and its braided structure can

provide solutions for the quantum Yang-Baxter equation. In particular, the repre-

sentation of the quantum double of a finite dimensional Hopf algebra can provide

solutions for the quantum Yang-Baxter equation, so the quantum doubles of finite

dimensional Hopf algebras and their representation theories have attracted much

attention. Chen constructed a class of noncomutative and noncocomutative Hopf

algebras (see [1]); these Hopf algebras are isomorphic to the quantum doubles of

Taft algebras. In this paper, we construct a class of quantum doubles from pointed

Hopf algebras of rank one HD, where D = {G,χ, g, µ} is a group datum and G is

a dihedral group.

Throughout, we work over an algebraically closed field k with char(k)=0. Unless

otherwise stated, all algebras and Hopf algebras are defined over k. Our references

for basic concepts and notations about Hopf algebras are [5], [9]. In particular, for

a Hopf algebra, we will use ε, ∆ and S to denote the counit, comultiplication and

antipode, respectively.

2. Pointed Hopf algebras of rank one

In this section, we first recall the construction of a finite dimensional pointed Hopf

algebra of rank one from a group datum D. A quadruple D is called a group datum

if G is a finite group, g is an element in the center of G, χ is a k-linear character
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of G, and µ ∈ k subject to χn = 1 or µ(gn − 1) = 0, where n is the order of χ(g).

If µ(gn − 1) = 0, then the group datum D is said to be of nilpotent type. Otherwise,

it is of non-nilpotent type, see [7].

Given a group datum D = {G,χ, g, µ}, we let HD be an associative algebra gen-

erated by y and h in G such that kG is a subalgebra of HD and

yn = µ(gn − 1), yh = χ(h)hy for h ∈ G.

The algebra HD is finite dimensional with a canonical k-basis {y
ih : h ∈ G, 0 6 i 6

n−1}. Thus, dimHD = n|G|, where G is the order of G. In fact, HD is endowed with

a Hopf algebra structure. The comultiplication ∆, the counit ε, and the antipode S

are given respectively by

∆(y) = y ⊗ g + 1⊗ y, ε(y) = 0, S(y) = −yg−1,

∆(h) = h⊗ h, ε(h) = 1, S(h) = h−1

for all h ∈ G. It is easy to see that G is the group of group-like elements of HD

and HD is a pointed Hopf algebra of rank one, see [7]. If the group datum D is of

nilpotent type, HD is said to be a pointed rank one Hopf algebra of type. Otherwise,

it is of non-nilpotent type.

Throughout this paper, let G = Dn = 〈a, b : an = b2 = (ba)2 = 1〉 be the

dihedral group, where n = 2m and m > 1 is an odd integer. Assume µ = 0, and

char(k)=0. Let ω be a root of unity with |ω| = 2n. In this case, kDn is semisimple

and am ∈ Z(Dn). Let χ ∈ D̂n be given by χ(a) = −1 and χ(b) = 1. Then we can

construct a pointed Hopf algebra of rank one with group datum D = {Dn, χ, a
m, 0}.

Denote these Hopf algebras by HDn
. Then HDn

is generated as an algebra by a, b, y

such that

an = 1, b2 = 1, (ba)2 = 1, y2 = 0, ya = −ay, by = by.

The comultiplication ∆, the counit ε, and the antipode S are given respectively by

∆(y) = y ⊗ am + 1⊗ y, ∆(a) = a⊗ a, ∆(b) = b⊗ b,

ε(a) = 1, ε(b) = 1, ε(y) = 0,

S(a) = a−1, S(b) = b−1, S(y) = −yam.

Then HDn
is of dimension 4n with a k-basis {biajyk : 0 6 i, k 6 1, 0 6 j 6 n−1}.
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3. Drinfeld doubles of the Hopf algebras HDn

In this section, we describe the structures of the Drinfeld doubles (or the quantum

doubles) of the Hopf algebras HDn
.

Definition 3.1 ([5], Definition IX 2.2). A pair (X,A) of bialgebras is matched if

there exist linear maps α : A⊗X → X and β : A⊗X → A turning X into a module

coalgebra over A, and turning A into a right module-coalgebra over X , respectively,

such that if we set

α(a⊗ x) = a · x and β(a⊗ x) = ax,

the following conditions are satisfied:

a · (xy) =
∑

(a)(x)

(a1 · x1)(a2
x2 · y), a · 1 = ε(a)1,

(ab)x =
∑

(b)(x)

ab1·x1b2
x2 , 1x = ε(x)1,

∑

(a)(x)

a1
x1 ⊗ a2 · x2 =

∑

(a)(x)

a2
x2 ⊗ a1 · x1

for all a, b ∈ A and x, y ∈ X .

Lemma 3.2 ([5], Theorem IX.2.3). Let (X,A) be a matched pair of Hopf algebras.

There exists a unique Hopf algebra structure on the vector space X ⊗ A, with unit

equal to 1⊗ 1, such that its product is given by

(x ⊗ a)(y ⊗ b) =
∑

(a)(y)

x(a1 · y1)⊗ a2
y2b,

its coproduct by

△(x⊗ a) =
∑

(a)(x)

(x1 ⊗ a1)⊗ (x2 ⊗ a2),

its counit by

ε(x⊗ a) = ε(x)ε(a)

and its antipode S given by

S(x⊗ a) =
∑

(x)(a)

SA(a2) · SX(x2)⊗ SA(a1)
SX(x1),

where SX and SA are antipode of X and A, respectively. Further X ⊗ A is called

bicrossed product of X and A and denoted X ⊲⊳ A. Obviously, X and A are subal-

gebras of X ⊲⊳ A under the injective iX(x) = x⊗ 1 and iA(a) = 1⊗ a, respectively.
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Theorem 3.3 ([5], Theorem IX.3.5). Let (H,µ, η,∆, ε, S, S−1) be a finite-

dimensional Hopf algebra with invertible antipode. Consider the Hopf algebra

X = (Hop)∗ = (H∗)cop = (H∗,∆∗, ε∗, (µop)∗, η∗, (S−1)∗, S∗).

Let α : H ⊗X → X and β : H ⊗X → H be the linear maps given by

α(a⊗ f) = a · f =
∑

(a)

f(S−1(a2)?a1) and β(a⊗ f) = af =
∑

(a)

f(S−1(a3)a1)a2,

where a ∈ H and f ∈ X . Then the pair (H,X) of Hopf algebras is matched in the

sense of Definition 3.1.

Proposition 3.4 ([5], Definition IX.4.1). The quantum double D(HDn
) of the

Hopf algebra HDn
is the bicrossed product of HDn

and of (H∗

Dn
)cop:

D(HDn
) = (H∗

Dn
)cop ⊲⊳ HDn

.

Proposition 3.5. The multiplication, comultiplication and counit in D(HDn
) are

given by

(f ⊗ a)(g ⊗ b) =
∑

(a)

fg(S−1(a3)?a1)⊗ a2b, εD(f ⊗ a) = ε(a)f(1)

∆D(f ⊗ a) =
∑

(a)(f)

(f1 ⊗ a1)⊗ (f2 ⊗ a2),

where f, g ∈ (H∗

Dn
)cop and a, b ∈ HDn

,
∑
f1 ⊗ f2 is determined by

∑
f1(x)f2(y) =

f(yx) for all x, y ∈ HDn
.

Note that HDn
and (H∗

Dn
)cop are Hopf subalgebras of D(HDn

) via the identifica-

tions y = ε ⊲⊳ y, y ∈ HDn
and f = f ⊲⊳ 1, f ∈ (H∗

Dn
)cop, respectively, where ε is the

unit element of (H∗

Dn
)cop. Let {biajyk : 0 6 i, k 6 1, 0 6 j 6 n − 1} be the basis

in H∗

Dn
dual to the basis {biajyk : 0 6 i, k 6 1, 0 6 j 6 n − 1} of HDn

. That is,

biajyk(biajyk) = 1, and biajyk(bi
′

aj
′

yk
′

) = 0 if (i′, j′, k′) 6= (i, j, k), where 0 6 i, i′,

k, k′ 6 1, 0 6 j, j′ 6 n− 1.

Lemma 3.6. The multiplication of H∗

Dn
is determined by

biajys bkalyt =





biajyt if s = 0, i = k and j = l,

biajy if s = 1, t = 0, k = i and l ≡ m+ j (mod n),

0, otherwise,

where 0 6 i, k, s, t 6 1 and 0 6 j, l 6 n− 1.
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P r o o f. By the coalgebra structure of HDn
, we have ∆(btah) = btah ⊗ btah,

and ∆(btahy) = btahy⊗ btah+m + btah ⊗ btahy for 0 6 t 6 1 and 0 6 h 6 n− 1. We

prove the lemma for s = t = 0; s = 0, t = 1; s = 1, t = 0 and s = t = 1, respectively.

Case 1 : If s = t = 0, then biaj bkal(btah) = biaj(btah)bkal(btah), where

0 6 i, k, t 6 1, 0 6 j, l, h 6 n − 1. Hence, biaj bkal(btah) = 1 if and only if

t = i = k and j = l = h. Obviously, biaj bkal(btahy) = 0, and so we have

biaj bkal =

{
biaj if i = k and j = l,

0, otherwise.

Case 2 : If s = 0, t = 1, then biaj bkaly(btahy) = biaj(btah) bkaly(btahy), where

0 6 i, k, t 6 1, 0 6 j, l, h 6 n−1. Hence, biaj bkaly(btahy) = 1 if and only if t = i = k

and j = l = h. Obviously, biaj bkaly(btah) = 0, and so we have

biaj bkaly =

{
biajy if i = k and j = l,

0, otherwise.

Case 3 : If s = 1, t = 0, then biajy bkal(btahy) = biajy(btahy)bkal(btah+m), where

0 6 i, k, t 6 1, 0 6 j, l, h 6 n−1. Hence, biajy bkal(btahy) = 1 if and only if t = i = k,

j = h and l ≡ h+m (mod n). Obviously, biajy bkal(btah) = 0, and so we have

biajy bkal =

{
biajy if i = k and j +m = l,

0, otherwise.

Case 4 : If s = t = 1, then one can easily check that biajy bkaly(btah) = 0, and

biajy bkaly(btahy) = 0 for 0 6 i, k, t 6 1, 0 6 j, l, h 6 n − 1. This completes

the proof. �

Obviously,
1∑

i=0

n−1∑
j=0

biaj = ε is the identity of the algebra H∗

Dn
. Put α =

1∑
i=0

n−1∑
j=0

ωi+2jbiaj , β =
1∑

i=0

n−1∑
j=0

biajy.

Lemma 3.7. The algebra H∗

Dn
is generated, as an algebra, by α, β.

P r o o f. Let A be the subalgebra of H∗

Dn
generated by α, β. By Lemma 3.6,

we have

α0 =

1∑

i=0

n−1∑

j=0

biaj = ε, α1 =

1∑

i=0

n−1∑

j=0

ωi+2jbiaj , α2 =

1∑

i=0

n−1∑

j=0

ω2(i+2j)biaj ,

α3 =

1∑

i=0

n−1∑

j=0

ω3(i+2j)biaj , . . . , α2n−1 =

1∑

i=0

n−1∑

j=0

ω(2n−1)(i+2j)biaj .
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For any 0 6 i, i′ 6 1 and 0 6 j, j′ 6 n − 1, we have ωi+2j = ωi′+2j′ if and only if

i = i′ and j = j′. Hence, biaj ∈ A for any 0 6 i 6 1, 0 6 j 6 n − 1. Moreover, by

biajβ = biajy, biajy ∈ A, 0 6 i 6 1, 0 6 j 6 n− 1. Consequently, H∗

Dn
= A. �

Corollary 3.8. The following holds in H∗

Dn
.

α2n = ε, β2 = 0, αβ = −βα.

P r o o f. It follows from Lemma 3.6 and the proof of Lemma 3.7. �

Corollary 3.9. The algebraH∗

Dn
has a k-basis {αiβj : 0 6 i 6 2n−1, 0 6 j 6 1}.

P r o o f. It follows from Lemma 3.7 and Corollary 3.8. �

Proposition 3.10. The comultiplication ∆op, the counit ε and the antipode S

of (H∗

Dn
)cop are given by

∆op(α) =
1

2
α⊗ (α+ α−1) +

1

2
αn+1 ⊗ (α− α−1),

∆op(β) = β ⊗ ε+
1

2
[(1 + ω−m)αm + (1− ω−m)α−m]⊗ β,

ε(α) = 1, ε(β) = 0,

S(α) =
1

2
(α+ α−1 + αn−1 − αn+1),

S(β) =
1

2
[(1 + ω−m)αm + (1− ω−m)α−m]β.

P r o o f. In H∗

Dn
, for any 0 6 i 6 n− 1, we claim

∆(ai) =
∑

06k6i

ak ⊗ ai−k +
∑

i+16k6n−1

ak ⊗ an+i−k

+
∑

06k6n−i−1

bak ⊗ bai+k +
∑

n−i6k6n−1

bak ⊗ bai+k−n.

In fact, assume

∆(ai) =

1∑

j,j′,l,l′=0

n−1∑

k,k′=0

θ
j,k,l
j′,k′,l′b

jakyl ⊗ bj
′

ak
′

yl
′

,

where θj,k,lj′,k′,l′ = ai(bjakylbj
′

ak
′

yl
′

). By a straightforward computation, one gets that

θ
j,k,l
j′,k′,l′ = 1 if and only if j, k, l, j′, k′, l′ satisfy one of the following cases:

Case 1 : l = l′ = j = j′ = 0, and k + k′ ≡ i (mod n).

Case 2 : l = l′ = 0, j = j′ = 1, and k′ = k + i, 0 6 k 6 n− i− 1.

Case 3 : l = l′ = 0, j = j′ = 1, and k = k′ + n− i, n− i 6 k 6 n− 1.
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Moreover, we have θj,k,lj′,k′,l′ = 0 for other cases. Similarly, one can prove

∆(bai) =
∑

06k6n−i−1

ak ⊗ bai+k +
∑

n−i6k6n−1

ak ⊗ bai+k−n

+
∑

06k6i

bak ⊗ ai−k +
∑

i+16k6n−1

bak ⊗ ai−k+n,

∆(aiy) =
∑

06k6i

ak ⊗ ai−ky +
∑

i+16k6n−1

ak ⊗ an+i−ky

+
∑

06k6n−i−1

bak ⊗ bai+ky +
∑

n−i6k6n−1

bak ⊗ bai+k−ny

+
∑

06k6i

(−1)i−kaky ⊗ ai−k +
∑

i+16k6n−1

(−1)i−kaky ⊗ an+i−k

+
∑

06k6n−i−1

(−1)i+kbaky ⊗ bai+k

+
∑

n−i6k6n−1

(−1)i+kbaky ⊗ bai+k−n

and

∆(baiy) =
∑

06k6n−i−1

ak ⊗ bai+ky +
∑

n−i6k6n−1

ak ⊗ bai+k−ny

+
∑

06k6i

bak ⊗ ai−ky +
∑

i+16k6n−1

bak ⊗ ai−k+ny

+
∑

06k6i

(−1)i−kbaky ⊗ ai−k +
∑

i+16k6n−1

(−1)i−kbaky ⊗ ai−k+n

+
∑

06k6n−i−1

(−1)i+kaky ⊗ bai+k

+
∑

n−i6k6n−1

(−1)i+kaky ⊗ bai+k−n.

Notice that ∆(α) =
1∑

i=0

n−1∑
j=0

ωi+2j∆(biaj), and ∆(β) =
1∑

i=0

n−1∑
j=0

∆(biajy). Let A =
n−1∑
j=0

ω2jaj , B =
n−1∑
j=0

ω2j+1baj . Then α = A+B. By the identities above, one gets

∆(α) = 1⊗ (A+B) + a⊗ (ω2A+ ω−2B) + a2 ⊗ (ω4A+ ω−4B) + . . .

+ an−1 ⊗ (ω2(n−1)A+ ω−2(n−1)B) + b ⊗ (ωA+ ω−1B)

+ ba⊗ (ω3A+ ω−3B) + ba2 ⊗ (ω5A+ ω−5B) + . . .

+ ban−1 ⊗ (ω2n−1A+ ω−2(n−1)B)

= α⊗A+ α−1 ⊗B.
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By a straightforward computation, we have αn+1 = A − B. Consequently, A =
1
2 (α+ αn+1) and B = 1

2 (α− αn+1), and hence we have

∆(α) =
1

2
(α+ α−1)⊗ α+

1

2
(α− α−1)⊗ αn+1.

Similarly, let A′ =
n−1∑
j=0

(−1)jaj and B′ =
n−1∑
j=0

(−1)jbaj. One can check that

A′ + ωmB′ = αm and A′ − ωmB′ = α−m. Consequently, A′ = 1
2 (α

m + α−m)

and B′ = 1
2ω

−m(αm − α−m). Moreover, by a straightforward computation, one has

∆(β) = ε⊗ β + β ⊗ (A′ +B′). Hence, we have

∆(β) = ε⊗ β +
1

2
β ⊗ [(1 + ω−m)αm + (1− ω−m)α−m].

It is easy to see that

ε(biajyk) =

{
1 if i = j = k = 0,

0, otherwise,

where 0 6 i, k 6 1, and 0 6 j 6 n − 1. Consequently, ε(α) = 1, ε(β) = 0.

Moreover, a straightforward verification shows that S(ai) = an−i, S(bai) = bai,

S(aiy) = (−1)i+1am−iy, and S(baiy) = (−1)i+1bai−my, where 0 6 i 6 n−1. Hence,

S(α) = 1 + ω−2a+ . . .+ ω−2(n−1)an−1 + ωb+ ω3ba+ . . .+ ω2n−1ban−1.

Let A =
n−1∑
j=0

ω−2jaj, B =
n−1∑
j=0

ω−2j−1baj . Then S(α) = A+ B, where B is given as

before. Moreover, one can check that α−1 = A+B and αn−1 = A−B, and so we have

A = 1
2 (α

−1 + αn−1), and B = 1
2 (α

−1 − αn−1). It follows that S(α) = 1
2 (α + α−1 +

αn−1 − αn+1). Similarly, one can get S(β) = 1
2 [(1 + ω−m)αm + (1 − ω−m)α−m]β.

This completes the proof. �

Corollary 3.11. In (H∗

Dn
)cop, we have

(1) ∆op(α−1) = 1
2 (α

−1 + αn−1)⊗ α−1 + 1
2 (α

−1 − αn−1)⊗ α,

(2) ∆op(αn+1) = 1
2 (α+ αn+1)⊗ αn+1 − 1

2 (α − αn+1)⊗ αn−1,

(3) ∆op(αm) = 1
2 (α

m + α−m)⊗ αm + 1
2 (α

m − α−m)⊗ α−m,

(4) ∆op(α−m) = 1
2 (α

−m − αm)⊗ αm + 1
2 (α

−m + αm)⊗ α−m,

(5) S(α−1) = 1
2 (α+ α−1 + αn+1 − αn−1),

(6) S(αn+1) = 1
2 (α

−1 − α+ αn+1 + αn−1),

(7) S(αm) = αm, S(α−m) = α−m.

P r o o f. It is similar to the proof of Proposition 3.10. �
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Proposition 3.12. Let △D, εD and SD be the comultiplication, counit and the

antipode of D(HDn
). Then we have

△D(ε ⊲⊳ a) = (ε ⊲⊳ a)⊗ (ε ⊲⊳ a), △D(ε ⊲⊳ b) = (ε ⊲⊳ b)⊗ (ε ⊲⊳ b),

△D(ε ⊲⊳ y) = (ε ⊲⊳ y)⊗ (ε ⊲⊳ a)m + (ε ⊲⊳ 1)⊗ (ε ⊲⊳ y),

△D(α ⊲⊳ 1) =
1

2
(α ⊲⊳ 1)⊗ (α ⊲⊳ 1) +

1

2
(α ⊲⊳ 1)⊗ (α ⊲⊳ 1)−1

+
1

2
(α ⊲⊳ 1)n+1 ⊗ (α ⊲⊳ 1)−

1

2
(α ⊲⊳ 1)n+1 ⊗ (α ⊲⊳ 1)−1,

△D(β ⊲⊳ 1) = (β ⊲⊳ 1)⊗ (ε ⊲⊳ 1) +
1

2
(1 + ω−m)(α ⊲⊳ 1)m ⊗ (β ⊲⊳ 1)

+
1

2
(1− w−m)(α ⊲⊳ 1)−m ⊗ (β ⊲⊳ 1),

εD(ε ⊲⊳ a) = 1, εD(ε ⊲⊳ b) = 1, εD(ε ⊲⊳ y) = 0, εD(α ⊲⊳ 1) = 1, εD(β ⊲⊳ 1) = 0,

SD(ε ⊲⊳ a) = (ε ⊲⊳ a)−1, SD(ε ⊲⊳ b) = ε ⊲⊳ b, SD(ε ⊲⊳ y) = −(ε ⊲⊳ a)m(ε ⊲⊳ y),

SD(α ⊲⊳ 1) =
1

2
(α ⊲⊳ 1) +

1

2
(α ⊲⊳ 1)−1 +

1

2
(α ⊲⊳ 1)n−1 −

1

2
(α ⊲⊳ 1)n+1,

SD(β ⊲⊳ 1) =
1

2
(1 + ω−m)(α ⊲⊳ 1)m(β ⊲⊳ 1) +

1

2
(1− ω−m)(α ⊲⊳ 1)−m(β ⊲⊳ 1),

where ε ⊲⊳ 1 is the unit element of D(HDn
).

P r o o f. We only check the rules of the antipode since other rules can be easily

obtained. By the definition of the antipode given above, we have SD(ε ⊲⊳ α) =

a−1 · ε ⊲⊳ (a−1)ε = ε ⊲⊳ a−1 = (ε ⊲⊳ a)−1. Similarly, we can get SD(ε ⊲⊳ b) = ε ⊲⊳ b.

SD(ε ⊲⊳ y) = a−m ·ε ⊲⊳ (−amy)ε+(−amy)·ε ⊲⊳ 1ε = −ε ⊲⊳ amy = −(ε ⊲⊳ a)m(ε ⊲⊳ y).

By Lemma 3.11, we have

SD(α ⊲⊳ 1) = 1 · S(α+ α−1) ⊲⊳ 1S(α)/2 + 1 · S(α− α−1) ⊲⊳ 1S(αn+1)/2

= 1 · S(α) ⊲⊳ 1S(α)/2 + 1 · S(α−1) ⊲⊳ 1S(α)/2

+ 1 · S(α) ⊲⊳ 1S(αn+1)/2 − 1 · S(α−1) ⊲⊳ 1S(αn+1)/2

= S(α) ⊲⊳ 1

=
1

2
(α ⊲⊳ 1) +

1

2
(α ⊲⊳ 1)−1 +

1

2
(α ⊲⊳ 1)n−1 −

1

2
(α ⊲⊳ 1)n+1,

and

SD(β ⊲⊳ 1) = 1 · S(ε) ⊲⊳ 1S(β) + 1 · S(β) ⊲⊳ 1S((1+ω−m)αm+(1−ω−m)α−m)/2

= S(β) ⊲⊳ 1

=
1

2
(1 + ω−m)(α ⊲⊳ 1)m(β ⊲⊳ 1) +

1

2
(1− ω−m)(α ⊲⊳ 1)−m(β ⊲⊳ 1).

�
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Let Hn(ω) be an algebra generated by x1, x2, x3, y1 and y2 subject to the following

relations:

xn1 = 1, x22 = 1, (x2x1)
2 = 1, x23 = 0, x3x1 = −x1x3, x3x2 = x2x3,

y2n1 = 1, y21 = 0, y1y2 = −y2y1,

x1y2 = −y2x1, x2y2 = y2x2, x3y1 = −y1x3,

x1y1 =
1

2
(1 + ω4)y1x1 +

1

2
(1− ω4)yn+1

1 x1,

x2y1 =
1

2
(1 + ω2)y−1

1 x2 +
1

2
(1− ω2)yn−1

1 x2,

x3y2 = y2x3 + xm1 −
1

2
(1 + ω−m)ym1 −

1

2
(1 − ω−m)y−m

1 .

One can easily check that Hn(ω) is spanned as a vector space by {yi1y
j
2x

p
2x

q
1x

l
3 :

0 6 i 6 2n− 1, 0 6 j, p, l 6 1, 0 6 q 6 n− 1}, and so dim(Hn(ω)) 6 16n2.

Theorem 3.13. There is an algebra isomorphism ϕ from Hn(ω) to D(HDn
)

given by

ϕ(x1) = ε ⊲⊳ a, ϕ(x2) = ε ⊲⊳ b, ϕ(x3) = ε ⊲⊳ y, ϕ(y1) = α ⊲⊳ 1, ϕ(y2) = β ⊲⊳ 1.

Moreover, Hn(ω) has a k-basis {y
i
1y

j
2x

p
2x

q
1x

l
3 : 0 6 i 6 2n− 1, 0 6 j, p, l 6 1, 0 6 q 6

n− 1} and dim(Hn(ω)) = 16n2.

P r o o f. Let X = ε ⊲⊳ a, Y = ε ⊲⊳ b, Z = ε ⊲⊳ y, D = α ⊲⊳ 1, and E = β ⊲⊳ 1.

Since HDn
and (H∗

Dn
)cop are Hopf subalgebras of D(HDn

) as stated before, we have

Xn = 1, Y 2 = 1, (Y X)2 = 1, Z2 = 0, ZX = −XZ, Y Z = ZY , D2n = 1, E2 = 0,

and DE = −ED. By Proposition 3.5, one gets that

XD = (A+ ω4B) ⊲⊳ a, DX = α ⊲⊳ a, Dn+1X = αn+1 ⊲⊳ a,

Y D = (A+ ω2B) ⊲⊳ b, DY = α ⊲⊳ b, D−1Y = α−1 ⊲⊳ b,

ZD = −(A+B) ⊲⊳ y, DZ = α ⊲⊳ y,

XE = −β ⊲⊳ a, EX = β ⊲⊳ a,

Y E = β ⊲⊳ b, EY = β ⊲⊳ b,

ZE = ε ⊲⊳ am + β ⊲⊳ y − T ⊲⊳ 1, EZ = β ⊲⊳ y,

where T = A′ +B′, A, B, A′B′, A and B are given as before. Moreover, one has

DX−XD = (1−ω4)B ⊲⊳ a =
1

2
(1−ω4)(α−αn+1) ⊲⊳ a =

1

2
(1−ω4)(DX−Dn+1X).
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Consequently, we have XD = 1
2 (1 + ω4)DX + 1

2 (1− ω4)Dn+1X. Furthermore,

D−1Y − Y D = (1 − ω2)B ⊲⊳ b =
1

2
(1− ω2)(α−1 − αn−1) ⊲⊳ b

=
1

2
(1− ω2)(D−1Y −Dn−1Y ).

Consequently, we have Y D = 1
2 (1 + ω2)D−1Y + 1

2 (1 − ω2)Dn−1Y. Obviously, we

have ZD = −DZ, XE = −EX , and Y E = EY . Similarly, we can get ZE =

EZ +Xm− 1
2 (1+ω−m)Dm − 1

2 (1−ω−m)D−m. It follows that there exists a unique

algebra map ψ : Hn(ω) → D(HDn
) such that ψ(x1) = X , ψ(x2) = Y , ψ(x3) = Z,

ψ(y1) = D and ψ(y2) = E. By Lemma 3.7 and the definition of D(HDn
), D(HDn

)

is generated as an algebra by X , Y , Z, D and E. Hence, ψ is surjective, and so

16n2 > dim(Hn(ω)) > dim(D(HDn
) = 16n2. Thus, dim(Hn(ω)) = 16n2. It follows

that ψ is an algebra isomorphism. �

Proposition 3.14. Let Hn(ω) be a Hopf algebra with the comultiplication, the

counit and the antipode determined by

△(x1) = x1 ⊗ x1, △(x2) = x2 ⊗ x2, △(x3) = x3 ⊗ xm1 + 1⊗ x3,

△(y1) =
1

2
y1 ⊗ (y1 + y−1

1 ) +
1

2
yn+1
1 ⊗ (y1 − y−1

1 ),

△(y2) = y2 ⊗ 1 +
1

2
[(1 + ω−m)ym1 + (1− w−m)y−m

1 ]⊗ y2,

ε(x1) = 1, ε(x2) = 1, ε(x3) = 0, ε(y1) = 1, ε(y2) = 0,

S(x1) = x−1
1 , S(x2) = x2, S(x3) = −xm1 x3,

S(y1) =
1

2
(y1 + y−1

1 + yn−1
1 − yn+1

1 ),

S(y2) =
1

2
(1 + ω−m)ym1 y2 +

1

2
(1− ω−m)y−m

1 y2.

Moreover, ϕ is an Hopf algebra isomorphism.

P r o o f. It follows from Proposition 3.12 and Theorem 3.13. �

If n = 2, then the R-matrix of H2(ω) can be described by the following equation.

R = 1⊗ 1 +
1

4
x3 ⊗ (y2 + y1y2 + y21y2 + y31y2) +

1

4
x1 ⊗ (1 + y21 − y1 − y31)

+
1

4
x1x3 ⊗ (y2 + y21y2 − y1y2 − y31y2) +

1

4
x2 ⊗ (1− y21 − ωy1 + ωy31)

+
1

4
x2x3 ⊗ (y2 − y21y2 − ωy1y2 + ωy31y2) +

1

4
x1x2 ⊗ (1− y21 + ωy1 − ωy31)

+
1

4
x2x1x3 ⊗ (y2 − y21y2 + ωy1y2 − ωy31y2).
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