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Abstract. In this work, necessary and sufficient conditions for the oscillation of solutions
of 2-dimensional linear neutral delay difference systems of the form

∆

[

x(n) + p(n)x(n−m)

y(n) + p(n)y(n−m)

]

=

[

a(n) b(n)

c(n) d(n)

] [

x(n− α)

y(n− β)

]

are established, where m > 0, α > 0, β > 0 are integers and a(n), b(n), c(n), d(n), p(n) are
sequences of real numbers.

Keywords: oscillation; nonoscillation; system of neutral equations; Krasnoselskii’s fixed
point theorem

MSC 2020 : 34K11, 34C10, 39A13

1. Introduction

Consider the 2-dimensional difference system

(S1) ∆

[

x(n) + p(n)x(n−m)

y(n) + p(n)y(n−m)

]

=

[

a(n) b(n)

c(n) d(n)

] [

x(n− α)

y(n− β)

]

,

where m > 0, α > 0, β > 0 are integers and a(n), b(n), c(n), d(n), p(n) are sequences

of real numbers for n ∈ N(n0) = {n0, n0 + 1, n0 + 2, . . .}, n0 > 0. If α = 0, β = 0

and p(n) ≡ 0 for all n, then (S1) reduces to

(S2)

[

x(n+ 1)

y(n+ 1)

]

=

[

a1(n) b1(n)

c1(n) d1(n)

] [

x(n)

y(n)

]

.
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In [17], Tripathy has studied the oscillatory behaviour of solutions of the system (S2)

along with the oscillatory behaviour of solutions of the system

(S3)

[

x(n+ 1)

y(n+ 1)

]

=

[

a1(n) b1(n)

c1(n) d1(n)

] [

x(n)

y(n)

]

+

[

f1(n)

f2(n)

]

.

Indeed, (S1) and (S2) are not viewed as the direct discrete analogue of their con-

tinuous counterparts, so the work [17] is challenging, being done with the help of

the work [11]. In this work, the oscillation and nonoscillation criteria for (S1) are

established unlike to the work [17]. Of course, the study of (S1) is not so much simple

when α > 0, β > 0 and p(n) 6= 0 for all n.

In [7], [8], [9], Graef and Thandapani, Jiang and Tang, and Li have studied the

oscillatory and asymptotic behaviour of all vector solutions of the system of the form

(S4)

[

∆x(n)

∆y(n− 1)

]

=

[

0 b(n)

−c(n) 0

] [

f(x(n))

g(y(n))

]

,

where f, g ∈ C(R,R) such that uf(u) > 0 and ug(u) > 0 for u 6= 0. We may note

that (S4) is a special case of (S1), if we let f(u) = u and g(u) = u. It is known that

a similar kind of results can be obtained for

(S5) ∆

[

x(n) + p(n)x(n −m)

y(n) + p(n)y(n−m)

]

=

[

0 b(n)

c(n) 0

] [

x(n− α)

y(n− β)

]

as long as the works [7], [8] and [9] are concerned.

Consider a particular case of (S1) as

(S6) ∆

[

x(n) + p(n)x(n−m)

y(n) + p(n)y(n−m)

]

=

[

a(n) 0

0 d(n)

] [

x(n− α)

y(n− β)

]

from which we find two first-order neutral delay difference equations

∆[x(n) + p(n)x(n−m)]− a(n)x(n− α) = 0,(1.1)

∆[y(n) + p(n)y(n−m)]− d(n)y(n− β) = 0.(1.2)

A close observation reveals that the oscillation properties of (1.1) and (1.2) are

studied by Parhi and Tripathy in their works [12] and [13] and hence the fact

that (1.1) and (1.2) are oscillatory implies that (S6) is oscillatory when a(n)d(n) 6= 0

for all n. Hence, we do not discuss the oscillation properties of (S1) when either

a(n) = 0 = d(n) (as in (S5)) or b(n) = 0 = c(n) (as in (S6)) for all n. In this work,

our objective is to present the oscillatory behaviour of all vector solutions of (S1)

when a(n) 6= 0, b(n) 6= 0, c(n) 6= 0, d(n) 6= 0 for all n. Up to our best understanding,

the present work is a new finding in the literature. However, there are some works
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(see, e.g., [4], [5], [10], [14], [15], [16]) in which the authors have studied oscilla-

tion and nonoscillation properties of some kind of neutral and nonneutral systems

of equations that are not in the closed forms like (S1), (S2) and (S3). Concerning

difference equations and systems of difference equations, we refer to the monographs

by Agarwal et al. (see [3], [1]) and by Elyadi (see [6]).

Definition 1.1. By a solution of (S1) we mean a vector X(n) = [x(n), y(n)]⊤

which satisfies (S1) for n ∈ N(−̺) = {−̺,−̺ + 1, . . . , 0, 1, 2, . . .}, where ̺ =

max{m,α, β}. We say that the solution X(n) oscillates componentwise or simply

oscillates or strongly oscillates, if each component oscillates. Otherwise, the solu-

tion X(n) is called nonoscillatory. Therefore, a solution of (S1) is nonoscillatory if

it has a component which is eventually positive or eventually negative, and strongly

nonoscillatory if both components ofX(n) are nonoscillatory. A vector solutionX(n)

of (S1) has the property that it oscillates or converges to zero as n → ∞, if each

component of X(n) has this property.

Lemma 1.1 ([13]). Let f(n), g(n) and p(n) be real valued functions of discrete

arguments defined for n > n0 such that f(n) = g(n) + p(n)g(n −m), n > n0 +m,

where m > 0 is an integer. Suppose that there exist real numbers b1, b2, b3, b4 such

that p(n) is in one of the following ranges:

(1) −∞ < b1 6 p(n) 6 0,

(2) 0 6 p(n) 6 b2 < 1,

(3) 1 < b3 6 p(n) 6 b4 < ∞.

If g(n) > 0 for n > n0, lim inf
n→∞

g(n) = 0, and lim
n→∞

f(n) = L exists, then L = 0.

Theorem 1.1 ([2]). Let X be a Banach space. Let Ω be a bounded closed convex

subset of X and let T1, T2 be maps of Ω into X such that T1x+T2y ∈ Ω for every pair

x, y ∈ Ω. If T1 is a contraction and T2 is completely continuous, then the equation

T1x+ T2x = x has a solution in Ω.

2. Oscillation criteria

In this section, necessary and sufficient conditions are established for the oscillation

of all vector solutions of the system (S1).

Theorem 2.1. Let 0 < p(n) 6 r < 1 for large n. Assume that a(n) < 0, b(n) > 0,

c(n) > 0, d(n) < 0 are for large n such that

(A1)
∞
∑

n=0
b(n) < ∞,

∞
∑

n=0
c(n) < ∞.
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Then every bounded vector solution of (S1) either strongly oscillates or converges to

zero if and only if

(A2)
∞
∑

n=0
a(n) = −∞,

∞
∑

n=0
d(n) = −∞.

P r o o f. On the contrary, let X(n) = [x(n), y(n)]⊤ be a strongly nonoscillatory

bounded vector solution of (S1) such that x(n) > 0, x(n − m) > 0, x(n − α) > 0,

x(n−β) > 0 and y(n) > 0, y(n−m) > 0, y(n−α) > 0, y(n−β) > 0 for n > n0 > ̺.

Setting

K(n) =
∞
∑

i=n

b(i)y(i− β), T (n) =
∞
∑

i=n

c(i)x(i− α);

u(n) = x(n) + p(n)x(n−m), v(n) = y(n) + p(n)y(n−m)

for (S1), we find that

∆[u(n) +K(n)] = a(n)x(n− α) 6 0,(2.1)

∆[v(n) + T (n)] = d(n)y(n− β) 6 0(2.2)

for n > n1 > n0. Hence, there exists n2 > n1 such that [u(n)+K(n)] and [v(n)+T (n)]

are monotonic for n > n2. Since u(n) > 0, v(n) > 0 and lim
n→∞

K(n) < ∞,

lim
n→∞

T (n) < ∞, then lim
n→∞

u(n) exists and lim
n→∞

v(n) exists. We claim that

lim inf
n→∞

x(n) = 0 = lim inf
n→∞

y(n). If not, we can find n3 > n2 such that x(n − α) > γ

and y(n− β) > η for n > n3. Therefore, summing (2.1) and (2.2) from n3 to ∞, we

obtain contradictions to the hypothesis (A2). So, our claim holds. By Lemma 1.1,

it follows that lim
n→∞

u(n) = 0 = lim
n→∞

v(n). Ultimately, u(n) > x(n) and v(n) > y(n)

implies that lim
n→∞

x(n) = 0 = lim
n→∞

y(n). The above argument is analogous, if we

assume that x(n) < 0, x(n − m) < 0, x(n − α) < 0, x(n − β) < 0 and y(n) < 0,

y(n−m) < 0, y(n− α) < 0, y(n− β) < 0 for n > n0 > ̺.

Next, we consider the case when x(n) > 0, x(n−m) > 0, x(n−α) > 0, x(n−β) > 0

and y(n) < 0, y(n−m) < 0, y(n− α) < 0, y(n− β) < 0 for n > n0 > ̺. Then

∆[u(n) +K(n)] = a(n)x(n− α) 6 0,(2.3)

∆[v(n) + T (n)] = d(n)y(n− β) > 0(2.4)

and hence [u(n) + K(n)] and [v(n) + T (n)] are monotonic as well as bounded also

for n > n2. Consequently, lim
n→∞

[u(n) + K(n)] and lim
n→∞

[v(n) + T (n)] exist. Using

the above argument, it is easy to see that lim
n→∞

X(n) = [0, 0]⊤. The case x(n) < 0,

x(n−m) < 0, x(n−α) < 0, x(n− β) < 0 and y(n) > 0, y(n−m) > 0, y(n−α) > 0,

y(n− β) > 0 for n > n0 > ̺ is similar.
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Conversely, let us assume that (A2) fails to hold. Let B denote the Banach space

of all bounded sequences in R
2 with the supremum norm, i.e., B =

{

X : N → R
2 :

‖X‖ = sup
n∈N

|X | < ∞
}

. For a fixed real number k > 0, put

Ω = {X ∈ B : x(n), y(n) ∈ I, n ∈ N},

where I = [ 13k(1−r), k]. Indeed, Ω ⊂ B is closed, bounded and convex. Due to (A1),

we can find n1 > 0 such that

∞
∑

n=n1

|a(n)| <
(1− r)

6
,

∞
∑

n=n1

|b(n)| <
(1− r)

6
,

∞
∑

n=n1

|c(n)| <
(1− r)

6
,

∞
∑

n=n1

|d(n)| <
(1− r)

6
.

Let us define the maps G,H : Ω → B such that

(GX)(n) =











(2 + r)k

3
− p(n)x(n−m)−

∞
∑

s=n

a(s)x(s − α)

(2 + r)k

3
− p(n)y(n−m)−

∞
∑

s=n

d(s)y(s− β)











for n > n1,

(GX)(n) = (GX)(n1) for 0 < n < n1

and

(HX)(n) =











−

∞
∑

s=n

b(s)y(s− β)

−

∞
∑

s=n

c(s)x(s − α)











for n > n1,

(HX)(n) = (HX)(n1) for 0 < n < n1.

We rewrite G, H as

G =

[

G1

G2

]

, H =

[

H1

H2

]

.

Let X,Y ∈ Ω. Then for n > n1,

(G1X)(n) + (H1Y )(n) =
(2 + r)k

3
− p(n)x(n−m)

−

∞
∑

s=n

a(s)x(s− α)−

∞
∑

s=n

b(s)y(s− β)

6
(2 + r)k

3
+

∞
∑

s=n

|a(s)|x(s− α) +

∞
∑

s=n

|b(s)|y(s− β)

6
(2 + r)k

3
+

(1− r)k

6
+

(1− r)k

6
= k
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and

(G1X)(n) + (H1Y )(n)

=
(2 + r)k

3
− p(n)x(n−m)−

∞
∑

s=n

a(s)x(s− α)−

∞
∑

s=n

b(s)y(s− β)

>
(2 + r)k

3
− p(n)x(n−m)−

∞
∑

s=n

|a(s)|x(s− α)−

∞
∑

s=n

|b(s)|y(s− β)

>
(2 + r)k

3
− rk −

(1− r)k

6
−

(1− r)k

6
=

k(1− r)

3
.

A similar observation can be made for (G2X)(n) + (H2Y )(n), n > n1. Hence,

GX +HY ∈ Ω. For X1, X2 ∈ Ω, it is easy to verify that

|(G1X1)(n)− (G1X2)(n)| 6 r|x1(n−m)− x2(n−m)|

+

∞
∑

s=n

|a(s)||x1(s− α)− x2(s− α)|

6

[

r +
(1− r)

6

]

‖x1 − x2‖ =
(5r + 1)

6
‖x1 − x2‖,

and

|(G2X1)(n)− (G2X2)(n)| 6
(5r + 1)

6
‖y1 − y2‖

for n > n1 implies that

‖GX1 −GX2‖ 6
(5r + 1)

6
‖X1 −X2‖,

that is, G is a contraction mapping.

Next, we show that H is continuous. Let Xj = [xj , yj ]
⊤ ∈ Ω for any j ∈ N.

Let Xj(n) be such that xj(n) → x(n) and yj(n) → y(n) as j → ∞. If we choose

X = [x, y]⊤, then Xj ∈ Ω implies that X ∈ Ω and hence x(n), y(n) ∈ I for n > n1.

Therefore,

|(H1Xj)(n)− (H1X)(n)| 6
∞
∑

s=n

|b(s)||yj(s− β)− y(s− β)| → 0 as j → ∞,

|(H2Xj)(n)− (H2X)(n)| 6
∞
∑

s=n

|c(s)||xj(s− α)− x(s− α)| → 0 as j → ∞

imply that

‖(HXj)− (HX)‖ → 0 as j → ∞,

that is, H is continuous. To complete the proof of the theorem, we need to show

that HΩ is uniformly Cauchy. Indeed, for ε > 2
3k(1 − r) > 0, we can find n2 > n1
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such that for n > n2

∞
∑

s=n

|b(s)||y(s− β)| <
ε

2
,

∞
∑

s=n

|c(s)||x(s− α)| <
ε

2
.

Hence for n4 > n3 > n2, it follows that

|(H1X)(n4)− (H1X)(n3)| =

∣

∣

∣

∣

∞
∑

s=n4

b(s)y(s− β)−

∞
∑

s=n3

b(s)y(s− β)

∣

∣

∣

∣

6

∞
∑

s=n4

|b(s)||y(s− β)|+
∞
∑

s=n3

|b(s)||y(s− β)| < ε

and

|(H2X)(n4)− (H2X)(n3)| =

∣

∣

∣

∣

∞
∑

s=n4

c(s)x(s − α)−

∞
∑

s=n3

c(s)x(s − α)

∣

∣

∣

∣

6

∞
∑

s=n4

|c(s)||x(s− α)|+

∞
∑

s=n3

|c(s)||x(s − α)| < ε,

that is, HΩ is uniformly Cauchy.

Hence by Krasnoselskii’s fixed point theorem, there exists a solution X(n) =

[x(n), y(n)]⊤ of (S1) in Ω such that (GX)(n)+(HX)(n) = X(n) for n > n1. Keeping

in view that

(G1X)(n) + (H1X)(n) = x(n), (G2X)(n) + (H2X)(n) = y(n) for n > n1,

it is easy to verify that X(n) = [x(n), y(n)]⊤ is the required vector solution of (S1).

This completes the proof of the theorem. �

Theorem 2.2. Let 1 < t 6 p(n) 6 t1 6 1
2 t

2 < ∞ for large n. If (A1) holds, then

the conclusion of Theorem 2.1 remains intact.

P r o o f. The sufficient part of the proof is the same as in Theorem 2.1. For the

necessary part, let B denote the Banach space of all bounded sequences in R
2 with

the sup norm, i.e.,

B =
{

X : N → R
2 : ‖X‖ = sup

n∈N

|X | < ∞
}

.

For a fixed real number k > 0, put

Ω1 = {X ∈ B : x(n), y(n) ∈ I1, n ∈ N},
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where I1 = [k(t− 1)/(8tt1), k]. It is easy to see that Ω1 ⊂ B is closed, bounded and

convex. Because of (A1), we can find n1 > 0 such that

∞
∑

n=n1

|a(n)| <
(t− 1)

4t
,

∞
∑

n=n1

|b(n)| <
(t− 1)

8t1
,

∞
∑

n=n1

|c(n)| <
(t− 1)

8t1
,

∞
∑

n=n1

|d(n)| <
(t− 1)

4t
.

We define the maps G,H : Ω1 → B as

(GX)(n) =











(2t2 + t− 1)k

4tp(n+m)
−

x(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

a(s)x(s− α)

(2t2 + t− 1)k

4tp(n+m)
−

y(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

d(s)y(s− β)











for n > n1,

(GX)(n) = (GX)(n1) for 0 < n < n1

and

(HX)(n) =











−
1

p(n+m)

∞
∑

s=n+m

b(s)y(s− β)

−
1

p(n+m)

∞
∑

s=n+m

c(s)x(s − α)











for n > n1,

(HX)(n) = (HX)(n1) for 0 < n < n1.

We rewrite G, H as

G =

[

G1

G2

]

, H =

[

H1

H2

]

.

Let X,Y ∈ Ω1. Then for n > n1,

(G1X)(n) + (H1Y )(n) =
(2t2 + t− 1)k

4tp(n+m)
−

x(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

a(s)x(s− α)

−
1

p(n+m)

∞
∑

s=n+m

b(s)y(s− β)

6
(2t2 + t− 1)k

4t2
+

1

p(n+m)

∞
∑

s=n+m

|a(s)|x(s − α)

+
1

p(n+m)

∞
∑

s=n+m

|b(s)|y(s− β)

6
(2t2 + t− 1)k

4t2
+

(t− 1)k

8tt1
+

(t− 1)k

4t2

6
(2t2 + t− 1)k

4t2
+

(t− 1)k

8t2
+

(t− 1)k

4t2
= k

4t2 + 5t− 5

8t2
< k
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and

(G1X)(n) + (H1Y )(n) =
(2t2 + t− 1)k

4tp(n+m)
−

x(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

a(s)x(s− α)

−
1

p(n+m)

∞
∑

s=n+m

b(s)y(s− β)

>
(2t2 + t− 1)k

4tt1
−

x(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

|b(s)|y(s− β)

>
(2t2 + t− 1)k

4tt1
−

k

t
−

(t− 1)k

8tt1

= k
4t2 + t− 8t1 − 1

8tt1
> k

t− 1

8tt1
.

A similar observation can be obtained for (G2X)(n) + (H2Y )(n), n > n1. Hence,

GX +HY ∈ Ω1. For X1, X2 ∈ Ω1, it is easy to verify that

|(G1X1)(n)− (G1X2)(n)| 6
1

t
|x1(n+m)− x2(n+m)|

+
1

p(n+m)

∞
∑

s=n+m

|a(s)||x1(s− α) − x2(s− α)|

6

[1

t
+

(t− 1)

4t

]

‖x1 − x2‖ =
(3 + t)

4t
‖x1 − x2‖,

and

|(G2X1)(n) − (G2X2)(n)| 6
(3 + t)

4t
‖y1 − y2‖

for n > n1 implies that

‖GX1 −GX2‖ 6
(3 + t)

4t
‖X1 −X2‖,

that is, G is a contraction mapping.

Proceeding as in the proof of Theorem 2.1, we can show that H is continuous

and HΩ1 is uniformly Cauchy. Hence by Krasnoselskii’s fixed point theorem, there

exists a solution X(n) = [x(n), y(n)]⊤ of (S1) in Ω1 such that (GX)(n)+(HX)(n) =

X(n) for n > n1. Therefore, the theorem is proved. �

Theorem 2.3. Let −1 < r1 6 p(n) 6 0 for large n. If (A1) holds, then the

conclusion of Theorem 2.1 remains intact.

P r o o f. Proceeding as in the proof of Theorem 2.1, we can find an n2 > n1 such

that [u(n)+K(n)] and [v(n)+T (n)] are monotonic for n > n2. Since lim
n→∞

K(n) < ∞

and lim
n→∞

T (n) < ∞, then lim
n→∞

u(n) exists and lim
n→∞

v(n) exists. Using the same
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argument as in the proof of Theorem 2.1, we can show that lim inf
n→∞

x(n) = 0 =

lim inf
n→∞

y(n). By Lemma 1.1, it follows that lim
n→∞

u(n) = 0 = lim
n→∞

v(n). Therefore,

0 = lim
n→∞

u(n) = lim sup
n→∞

(x(n) + p(n)x(n−m)) > lim sup
n→∞

(x(n) + r1x(n−m))

> lim sup
n→∞

x(n) + lim inf
n→∞

(r1x(n−m)) = (1 + r1) lim sup
n→∞

x(n)

implies that lim
n→∞

x(n) = 0. Similarly, we can show that lim
n→∞

y(n) = 0. The rest of

the sufficient part follows from Theorem 2.1.

Conversely, assume that (A2) fails to hold. Let B denote the Banach space of all

bounded sequences in R
2 with the supremum norm defined by B =

{

X : N → R
2 :

‖X‖ = sup
n∈N

|X | < ∞
}

. For a fixed real number k > 0, put

Ω2 = {X ∈ B : x(n), y(n) ∈ I2, n ∈ N},

where I2 = [ 1
12k(1 + r1), k]. Indeed, Ω2 ⊂ B is closed, bounded and convex. Due

to (A1), we can find n1 > 0 such that

∞
∑

n=n1

|a(n)| <
(1 + r1)

24
,

∞
∑

n=n1

|b(n)| <
(1 + r1)

24
,

∞
∑

n=n1

|c(n)| <
(1 + r1)

24
,

∞
∑

n=n1

|d(n)| <
(1 + r1)

24
.

Let us define the maps G,H : Ω2 → B such that

(GX)(n) =











(1 + r1)k

6
− p(n)x(n−m)−

∞
∑

s=n

a(s)x(s− α)

(1 + r1)k

6
− p(n)y(n−m)−

∞
∑

s=n

d(s)y(s− β)











for n > n1,

(GX)(n) = (GX)(n1) for 0 < n < n1

and

(HX)(n) =











−

∞
∑

s=n

b(s)y(s− β)

−

∞
∑

s=n

c(s)x(s − α)











for n > n1,

(HX)(n) = (HX)(n1) for 0 < n < n1.

We note that

G =

[

G1

G2

]

, H =

[

H1

H2

]

.

The rest of the proof follows from the proof of Theorem 2.1 and hence the details

are omitted. �
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Theorem 2.4. Let −∞ < r2 6 p(n) 6 r3 < −1 for large n. If (A1) holds, then

the conclusion of Theorem 2.1 remains intact.

P r o o f. The sufficient part of the proof is similar to that of Theorem 2.3. By

Lemma 1.1, it follows that lim
n→∞

u(n) = 0 = lim
n→∞

v(n). Hence,

0 = lim
n→∞

u(n) = lim inf
n→∞

(x(n) + p(n)x(n−m)) 6 lim inf
n→∞

(x(n) + r3x(n−m))

6 lim sup
n→∞

x(n) + lim inf
n→∞

(r3x(n−m)) = (1 + r3) lim sup
n→∞

x(n)

implies that lim
n→∞

x(n) = 0. Similarly, we can show that lim
n→∞

y(n) = 0.

For the necessary part of the proof, let B denote the Banach space of all bounded

sequences in R
2 with the sup norm, i.e., B =

{

X : N → R
2 : ‖X‖ = sup

n∈N

|X | < ∞
}

.

For a fixed real number k > 0, put

Ω3 = {X ∈ B : x(n), y(n) ∈ I3, n ∈ N},

where I3 = [−kr3/(M − r3), Lk], and

M > max
{

− r2, r3 +
r3

1 + r3

}

, L =
2M − (M + 1)r3
(r3 −M)(1 + r3)

> 0.

Indeed, Ω3 ⊂ B is closed, bounded and convex. Due to (A1), we can find n1 > 0

such that
∞
∑

n=n1

|a(n)| <
−r3

(M − r3)
,

∞
∑

n=n1

|b(n)| <
−r3

(M − r3)
,

∞
∑

n=n1

|c(n)| <
−r3

(M − r3)
,

∞
∑

n=n1

|d(n)| <
−r3

(M − r3)
.

Let us define the maps G,H : Ω3 → B such that

(GX)(n) =











−(2− r3)Mk

(M − r3)p(n+m)
−

x(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

a(s)x(s − α)

−(2− r3)Mk

(M − r3)p(n+m)
−

y(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

d(s)y(s− β)











for n > n1,

(GX)(n) = (GX)(n1) for 0 < n < n1

and

(HX)(n) =











−
1

p(n+m)

∞
∑

s=n+m

b(s)y(s− β)

−
1

p(n+m)

∞
∑

s=n+m

c(s)x(s − α)











for n > n1,

(HX)(n) = (HX)(n1) for 0 < n < n1.
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We note that

G =

[

G1

G2

]

, H =

[

H1

H2

]

.

Let X,Y ∈ Ω3. Then for n > n1,

(G1X)(n) + (H1Y )(n) =
−(2− r3)Mk

(M − r3)p(n+m)
−

x(n+m)

p(n+m)

−
1

p(n+m)

∞
∑

s=n+m

a(s)x(s − α)

−
1

p(n+m)

∞
∑

s=n+m

b(s)y(s− β)

6
−(2− r3)Mk

(M − r3)r3
−

x(n+m)

p(n+m)
−

1

p(n+m)

∞
∑

s=n+m

b(s)y(s− β)

6
−(2− r3)Mk

(M − r3)r3
−

Lk

r3
+

Lk

(M − r3)

= − k
[L(M − r3) + 2M − (M + 1)r3

(M − r3)r3

]

= kL

and

(G1X)(n) + (H1Y )(n) =
−(2− r3)Mk

(M − r3)p(n+m)
−

x(n+m)

p(n+m)

−
1

p(n+m)

∞
∑

s=n+m

a(s)x(s− α)

−
1

p(n+m)

∞
∑

s=n+m

b(s)y(s− β)

>
−(2− r3)Mk

(M − r3)r2
−

kr3
(M − r3)r2

+
1

r2

∞
∑

s=n+m

|a(s)|x(s− α)

>
−(2− r3)Mk

(M − r3)r2
−

2kr3
(M − r3)r2

> −
kr3

(M − r3)
.

A similar observation can be obtained for (G2X)(n) + (H2Y )(n), n > n1. Hence,

GX +HY ∈ Ω3. For X1, X2 ∈ Ω3, it is easy to verify that

|(G1X1)(n)− (G1X2)(n)| 6 −
1

r3
|x1(n+m)− x2(n+m)|

−
1

p(n+m)

∞
∑

s=n+m

|a(s)||x1(s− α) − x2(s− α)|

6

[

−
1

r3
+

1

M − r3

]

‖x1 − x2‖
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and

|(G2X1)(n)− (G2X2)(n)| 6
[

−
1

r3
+

1

M − r3

]

‖y1 − y2‖

for n > n1 implies that

‖GX1 −GX2‖ 6

[

−
1

r3
+

1

M − r3

]

‖X1 −X2‖,

that is, G is a contraction mapping.

Proceeding as in the proof of Theorem 2.3, we can show that H is continuous

and HΩ3 is uniformly Cauchy. Hence by Krasnoselskii’s fixed point theorem, there

exists a solution X(n) = [x(n), y(n)]⊤ of (S1) in Ω3 such that (GX)(n)+(HX)(n) =

X(n) for n > n1. Therefore, the theorem is proved. �

R em a r k 2.1. It would be interesting to keep this work up for any solution of

the system (S1) (i.e., not necessarily the bounded solution).

E x am p l e 2.1. Consider a 2-dimensional linear neutral difference system of the

form:

∆

[

x(n) + e−nx(n− 2)

y(n) + e−ny(n− 2)

]

=

[

−(2 + e−n + 2e−(n+1)) e−(n+2)

e−n −(2 + e−n + 2e−(n+1))

]

(S7)

×

[

x(n− 4)

y(n− 6)

]

for n > 6.

Clearly, (A1) and (A2) are satisfied for (S7). By Theorem 2.1, every bounded vector

solution X(n) of (S7) is strongly oscillatory. Indeed, X(n) = [(−1)n, e(−1)n]⊤ is one

of such solutions of (S7).

A c k n ow l e d g em e n t. The author is thankful to the referees for their valuable

comments and suggestions aimed at the completion of the work.
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[5] J. Diblík, B.  Lupińska, M. R̊užičková, J. Zonenberg: Bounded and unbounded non-
oscillatory solutions of a four-dimensional nonlinear neutral difference systems. Adv.
Difference Equ. 2015 (2015), Article ID 319, 11 pages. zbl MR doi

459

https://zbmath.org/?q=an:0952.39001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1740241
http://dx.doi.org/10.1201/9781420027020
https://zbmath.org/?q=an:1084.39001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2179948
http://dx.doi.org/10.1155/9789775945198
https://zbmath.org/?q=an:0878.39001
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1447437
http://dx.doi.org/10.1007/978-94-015-8899-7
https://zbmath.org/?q=an:1248.39011
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2934471
https://zbmath.org/?q=an:1422.39007
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3412562
http://dx.doi.org/10.1186/s13662-015-0662-9


[6] S. N. Elaydi: An Introduction to Difference Equations. Undergraduate Texts in Mathe-
matics. Springer, New York, 1996. zbl MR doi

[7] J. R. Graef, E. Thandapani: Oscillation of two-dimensional difference systems. Comput.
Math. Appl. 38 (1999), 157–165. zbl MR doi

[8] J. Jiang, X. Tang: Oscillation and asymptotic behaviour of two-dimensional difference
systems. Comput. Math. Appl. 54 (2007), 1240–1249. zbl MR doi

[9] W.-T. Li: Classification schemes for nonoscillatory solutons of two-dimensional nonlinear
difference systems. Comput. Math. Appl. 42 (2001), 341–355. zbl MR doi

[10] M. Migda, E. Schmeidel, M. Zdanowicz: Periodic solutions of a 2-dimensional system of
neutral difference equations. Discrete Contin. Dyn. Syst., Ser. B 23 (2018), 359–367. zbl MR doi

[11] N. Parhi, A. K. Tripathy: Oscillatory behavior of second order difference equations. Com-
mun. Appl. Nonlinear Anal. 6 (1999), 79–100. zbl MR

[12] N. Parhi, A. K. Tripathy: Oscillation of a class of neutral difference equations of first
order. J. Difference Equ. Appl. 9 (2003), 933–946. zbl MR doi

[13] N. Parhi, A. K. Tripathy: Oscillation of forced nonlinear neutral delay difference equa-
tions of first order. Czech. Math. J. 53 (2003), 83–101. zbl MR doi

[14] E. Schmeidel: Oscillation of nonlinear three-dimensional difference systems with delays.
Math. Bohem. 135 (2010), 163–170. zbl MR doi

[15] E. Schmeidel, M. Zdanowicz: Existence of the asymptotically periodic solution to the
system of nonlinear neutral difference equations. Tatra Mt. Math. Publ. 79 (2021),
149–162. zbl MR doi
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