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K Y B E R N E T I K A — V O L U M E 5 9 ( 2 0 2 3 ) , N U M B E R 5 , P A G E S 7 3 7 – 7 5 1

MATRIX REPRESENTATION OF FINITE EFFECT
ALGEBRAS

Grzegorz Bińczak, Joanna Kaleta and Andrzej Zembrzuski

In this paper we present representation of finite effect algebras by matrices. For each non-
trivial finite effect algebra E we construct set of matrices M(E) in such a way that effect
algebras E1 and E2 are isomorphic if and only if M(E1) = M(E2). The paper also contains
the full list of matrices representing all nontrivial finite effect algebras of cardinality at most 8.

Keywords: effect algebra, state of effect algebra

Classification: 81P10, 81P15

1. INTRODUCTION

Effect algebras have been introduced by Foulis and Bennet in 1994 (see [4]) for the
study of foundations of quantum mechanics (see [3]). Independently, Chovanec and
Kôpka introduced an essentially equivalent structure called D-poset (see [8]). Another
equivalent structure was introduced by Giuntini and Greuling in [5].

The most important example of an effect algebra is (E(H), 0, I,⊕), where H is a
Hilbert space and E(H) consists of all self-adjoint operators A on H such that 0 ≤ A ≤ I.
For A,B ∈ E(H), A⊕B is defined if and only if A+B ≤ I and then A⊕B = A+B.
Elements of E(H) are called effects and they play an important role in the theory of
quantum measurements ([1, 2]).

A quantum effect may be treated as two-valued (it means 0 or 1) quantum mea-
surement that may be unsharp (fuzzy). If there exist some pairs of effects a, b which
posses an orthosum a ⊕ b then this orthosum correspond to a parallel measurement of
two effects.

In this paper to each finite effect algebra we assign (see 3.1) a set of matrices M(E) in
such a way that effect algebras E1 and E2 are isomorphic if and only if M(E1) = M(E2).
We also present the list of matrices representing all nontrivial finite effect algebras of
cardinality at most 8. Using this list it is easy to check that every effect algebras of
cardinality ≤ 8 has a state. So the 9-element Riečanová’s example of effect algebra
without a state is smallest.

Let us start with the following definition of an effect algebra.
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738 G. BIŃCZAK, J. KALETA AND A. ZEMBRZUSKI

Definition 1.1. In [4] an effect algebra is defined to be an algebraic system (E, 0, 1,⊕)
consisting of a set E, two special elements 0, 1 ∈ E called the zero and the unit, and a
partially defined binary operation ⊕ on E that satisfies the following conditions for all
p, q, r ∈ E:

1. [Commutative Law] If p⊕ q is defined, then q ⊕ p is defined and p⊕ q = q ⊕ p.

2. [Associative Law] If q⊕ r is defined and p⊕ (q⊕ r) is defined, then p⊕ q is defined,
(p⊕ q)⊕ r is defined, and p⊕ (q ⊕ r) = (p⊕ q)⊕ r.

3. [Orthosupplementation Law] For every p ∈ E there exists a unique q ∈ E such
that p⊕ q is defined and p⊕ q = 1.

4. [Zero-unit Law] If 1⊕ p is defined, then p = 0.

For simplicity, we often refer to E, rather than to (E, 0, 1,⊕), as being an effect
algebra. If p, q ∈ E, we say that p and q are orthogonal and write p ⊥ q iff p ⊕ q is
defined in E. If p, q ∈ E and p ⊕ q = 1, we call q the orthosupplement of p and write
p′ = q.

Definition 1.2. For effect algebras E1, E2 a mapping φ : E1 → E2 is said to be an
isomorphism if φ is a bijection, a ⊥ b ⇐⇒ φ(a) ⊥ φ(b), φ(1) = 1 and φ(a ⊕ b) =
φ(a)⊕ φ(b).

It is shown in [4] that the relation ≤ defined for p, q ∈ E by p ≤ q iff ∃r ∈ E with
p ⊕ r = q is a partial order on E and 0 ≤ p ≤ 1 holds for all p ∈ E. It is also shown
that the mapping p 7→ p′ is an order-reversing involution and that q ⊥ p iff q ≤ p′.
Furtheremore, E satisfies the following cancellation law : If p⊕ q ≤ r ⊕ q, then p ≤ r.

For n ∈ N and x ∈ E let nx = x⊕ x⊕ · · · ⊕ x (n-times). We write ord(x) = n ∈ N if
n is the greatest integer such that nx exists in E, if no such n exists, then ord(x) =∞.

An atom of an effect algebra E is a minimal element of E \ {0}. An effect algebra
E is atomic if for every non-zero element x ∈ E there exists an atom a ∈ E such that
a ≤ x. An effect algebra E is non-trivial if |E| > 1.

We say that a finite system F = (xk)nk=1 of not necessarily different elements of
an effect algebra E is orthogonal if x1 ⊕ x2 ⊕ · · · ⊕ xn ( written

⊕n
k=1 xk,

⊕
{xk|k ∈

{1, 2, . . . , n}} or
⊕
F ) exists in E. Here we define x1 ⊕ x2 ⊕ · · · ⊕ xn = (x1 ⊕ x2 ⊕

· · · ⊕ xn−1)⊕ xn supposing that
⊕n−1

k=1 xk is defined and
⊕n−1

k=1 xk ≤ x′n. We also define⊕
∅ = 0. An arbitrary system G = (xk)k∈H of not necessarily different elements of E is

called orthogonal if
⊕
K exists for every finite K ⊆ G. We say that for an orthogonal

system G = (xk)k∈H the element
⊕
G exists if and only if ∨{

⊕
K|K ⊆ G,K finite }

exists in E and then we put
⊕
G = ∨{

⊕
K|K ⊆ G,K finite }. We call an effect algebra

E orthocomplete if every orthogonal system G = (sk)k∈H of elements of E has the sum⊕
G.

Proposition 1.3. (Wei Ji [11, Proposition 3.1]) Let E be an orthocomplete atomic
effect algebra. Then for every x ∈ E, there is a set {ai|i ∈ I} of mutually different
atoms in E and a set {ki|i ∈ I} of positive integers such that x =

⊕
{kiai|i ∈ I}.
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Let E be a finite effect algebra. Then A is orthocomplete and atomic. If |E| > 1 and
E has atoms a1, . . . am then by Proposition 1.3 for every x ∈ E there exist non-negative

integers k1, . . . , km such that x =
m⊕
i=1

kiai.

2. E-TEST SPACES

In [7] Gudder introduced (algebraic) E-test spaces:

Definition 2.1. Let X be a nonempty set and N0 = N∪{0}. Let f, g ∈ NX0 . We define

• f ≤ g if f(x) ≤ g(x) for all x ∈ X,

• f + g ∈ NX0 by (f + g)(x) = f(x) + g(x),

• g − f ∈ NX0 by (g − f)(x) = g(x)− f(x) if f ≤ g,

• 0 ∈ NX0 by 0(x) = 0 for all x ∈ X.

A pair (X, T ) is an E-test space if and only if T ⊆ NX0 and the following conditions
hold:

1. For any x ∈ X there exists a t ∈ T such that t(x) 6= 0.

2. If s, t ∈ T with s ≤ t, then s = t.

The elements of T are called tests of (X, T ).

Definition 2.2. Let (X, T ) be an E-test space. Let E(X, T ) = {f ∈ NX0 : f ≤ t for
some t ∈ T }. The elements of E(X, T ) are called events of (X, T ). Let f, g, h ∈ E(X, T )
then we say that f, g are

1. orthogonal (f ⊥ g) if f + g ∈ E(X, T ),

2. local complements of each other (f loc g) if f + g ∈ T ,

3. perspective with axis h (f ≈h g) if f + h ∈ T and g + h ∈ T ,

4. perspective (f ≈ g) if there exists h ∈ E(X, T ) such that f ≈h g.

We say that (X, T ) is algebraic if for f, g, h ∈ E(X, T ), f ≈ g and h ⊥ f imply that
h ⊥ g.

Lemma 2.3. (Gudder [7, Lemma 3.1])

(a) An E-test space (X, T ) is algebraic if and only if for f, g, h ∈ E(X, T ), f ≈ g and
h loc f imply h loc g.

(b) If (X, T ) is algebraic, then ≈ is an equivalence relation on E(X, T ).
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Let (X, T ) be an algebraic E-test space. By Lemma 2.3 perspectivity in an algebraic
E-test space is transitive, hence it is an equivalence.

If f ∈ E(X, T ), we define π(f) = {g ∈ E(X, T ) : g ≈ f}. The equivalence class π(f)
is called the perspectivity class of f . Let

Π = Π(X) = {π(f) : f ∈ E(X, T )}.

Theorem 2.4. (Gudder [7, Theorem 3.2]) If (X, T ) is an algebraic E-test space, then
Π(X) can be organized into an effect algebra.

We explain how the Π(X) is organized into an effect algebra:

1. We define 0, 1 ∈ Π by 0 = π(0) = {0} and 1 = π(t) for any t ∈ T .

2. For every f ∈ E(X, T ) we define π(f)′ = π(g) if g loc f (such g exists since there
exists t ∈ T such that f ≤ t and then t− f ∈ E(X, T ) and (t− f) loc f).

3. If f, g ∈ E(X, T ) we define π(f)⊕ π(g) = π(f + g) when f ⊥ g.

The following Lemma shows how algebraicity of an E-test space can be checked using
only tests.

Lemma 2.5. Let (X, T ) be an E-test space. Then (X, T ) is algebraic if and only if for
every tests t1, t2, t3 ∈ T if t1 + t2 ≥ t3 then t1 + t2 − t3 ∈ T .

P r o o f . Let (X, T ) be an E-test space.
Assume that for every tests t1, t2, t3 ∈ T if t1 + t2 ≥ t3 then t1 + t2 − t3 ∈ T .
We show that (X, T ) is algebraic using Lemma 2.3. Let f, g, h ∈ E(X, T ), f ≈ g and

h loc f . Then there exists d ∈ E(X, T ) such that f + d, g+ d ∈ T and h+ f ∈ T . Hence
(g + d) + (h+ f) ≥ f + d, which implies

(g + d) + (h+ f)− (f + d) = h+ g ∈ T .

It follows that h loc g so (X, T ) is algebraic.
Now assume that (X, T ) is algebraic. Let t1, t2, t3 ∈ T and t1 + t2 ≥ t3. Let f ∈ NX0

be a function such that f(x) = min(t1(x), t3(x)) for all x ∈ X. Then f ∈ E(X, T )
since f ≤ t1. Let g = f + t2 − t3. We know that t3 − t2 ≤ t1 and t3 − t2 ≤ t3 so
t3 − t2 ≤ min(t1, t3) = f hence g = f + t2 − t3 ≥ 0. Moreover g = f + t2 − t3 ≤ t2 since
f ≤ t3. Therefore g ∈ E(X, T ). Let h = t1 − f . Then h ∈ E(X, T ) since h ≥ 0 and
h ≤ t1.

Let us observe that f ≈ g since f + (t3 − f) = t3 ∈ T and g + (t3 − f) = f + t2 −
t3 + t3 − f = t2 ∈ T . Moreover h+ f = t1 − f + f = t1 ∈ T so h loc f . By Lemma 2.3
we have h loc g thus h+ g = (t1 − f) + (f + t2 − t3) = t1 + t2 − t3 ∈ T . �

Complexity of checking if an E-test space is algebraic using Lemma 2.5 is smaller
than using the Definition 2.2 since there is more events than tests.
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3. MAIN THEOREM

By Mn×m(N0) we denote the set of all n×m matrices whose entries are elements of N0,
i. e., natural numbers including 0.

Definition 3.1. Let E be a non-trivial finite effect algebra with atoms a1, . . . , am
(ai 6= aj for i 6= j) and a = (a1, . . . , am). Then define Seqa(E) = {(x1, . . . , xm) ∈

Nm0 :
m⊕
t=1

xtat = 1}. Let n = card(Seqa(E)) and

M(E) =
{

[yij ] ∈Mn×m(N0) : ∀
1≤i<j≤n

∃
1≤t≤m

yit 6= yjt,

{(yi1, . . . , yim) ∈ Nm0 : 1 ≤ i ≤ n} = Seq(aσ(1),...,aσ(m))(E) where

σ : {1, . . . ,m} → {1, . . . ,m} is some permutation
}
.

If E is a non-trivial finite effect algebra and A ∈M(E) we say that A represents E.

It turns out that rows in A ∈ M(E) are all elements of Seq(aσ(1),...,aσ(m))(E) where
σ : {1, . . . ,m} → {1, . . . ,m} is some permutation. Moreover if A,B ∈ M(E) then B
can be obtained from A by permuting its rows and columns. By ek we understand row
[0, . . . , 0, 1, 0, . . . , 0] where 1 is only at kth position.

Definition 3.2. Let n,m ∈ N. Let Bnm be the set of matrices A ∈ Mn×m(N0) such
that

(1) All rows and columns in A are non-zero.

(2) If r1 is ith row in A, r2 is jth row in A and r2 ≥ r1 − ek ≥ 0 for some 1 ≤ k ≤ m
then i = j.

(3) If r1, r2, r3 are rows in A and r1 + r2 ≥ r3, then r1 + r2 − r3 is a row in A.

The condition (2) in the above Definition follows that distinct rows are incomparable.

Definition 3.3. Let A = [yij ] ∈ Mn×m(N0) and X = {1, 2, . . . ,m} . Define T (A) =
{t1, . . . , tn} where t1, t2, . . . , tn : X → N0 are functions such that ti(j) = yij .

Lemma 3.4. If A ∈ Bnm and X = {1, 2, . . . ,m}, then (X,T (A)) is an algebraic E-test
space.

P r o o f . Let A = [yij ] ∈ Bnm.
Let X = {1, 2, . . . ,m} and T (A) = {t1, . . . , tn}. Then (X,T (A)) is an E-test space

by (1) and (2) in the Definition 3.2. By Lemma 2.5 and (3) (X,T (A)) is algebraic. �

The matrix A =
[

1 1 0
0 1 1

]
/∈ B23 since the condition (2) in the Definition 3.2 is

not satisfied: [ 0 1 1 ] ≥ [ 1 1 0 ] − e1 ≥ 0 but (X,T (A)) is an algebraic E-
test space since rows in A are incomparable and algebraicity follows from the Lemma
2.5. So (X,T (A)) can be an algebraic E-test space for A /∈ Bnm. Equivalent matrix
representation is A′ = [1 1] (from cancellativity it follows that first and third atom
must be the same).
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Definition 3.5. Let A ∈ Bnm, X = {1, 2, . . . ,m} and T = T (A) = {t1, . . . , tn}. Then
(X, T ) is an algebraic E-test space by Lemma 3.4. By Theorem 2.4 Π(A) = Π(X) can
be organized into an effect algebra.

We describe when for a matrix A with m columns there exists a non-trivial effect
algebra E with m atoms such that A ∈M(E):

Theorem 3.6. Let A ∈Mn×m(N0) for n,m ∈ N. Then there exists a non-trivial finite
effect algebra E with atoms a1, . . . , am (ai 6= aj for i 6= j) such that A ∈ M(E) if and
only if A ∈ Bnm.

P r o o f .

⇒ Let A = [yij ] ∈Mn×m(N0) and E be a non-trivial finite effect algebra with atoms
a1, . . . , am (ai 6= aj for i 6= j) and a = (a1, . . . , am) such that A ∈M(E). Then

(1) Each row in A is non-zero: if (x1, . . . , xm) is a row in A and x1 = x2 =

. . . = xm = 0 then 0 =
m⊕
t=1

xtat = 1 and we get a contradiction since E is

non-trivial.

Each column in A is non-zero: let 1 ≤ j ≤ m then there exist non-negative

integers k1, . . . , km such that a′j =
m⊕
i=1

kiai so

1 = aj ⊕ a′j =

j−1⊕
i=1

kiai ⊕ (kj + 1)aj ⊕
m⊕

i=j+1

kiai

and (k1, . . . , kj−1, kj + 1, kj+1, . . . , km) ∈ Seqa(E) is a row in A with a non-
zero jth coordinate. It follows that the jth column is also non-zero.

(2) If r1 = (yi1, . . . , yim) and r2 = (yj1, . . . , yjm) and r2 ≥ r1 − ek ≥ 0 for some
1 ≤ k ≤ m then yjt ≥ yit for t 6= k and yjk ≥ yik − 1. Therefore

m⊕
t=1

(yit)at =

m⊕
t=1

(yjt)at = 1

so by cancellation law we have

ak =

k−1⊕
t=1

(yjt − yit)at ⊕ (yjk − yik + 1)ak ⊕
m⊕
t=1

(yjt − yit)at.

But ak is an atom, so (yi1, . . . , yim) = (yj1, . . . , yjm). Suppose that i 6= j then
we obtain a contradiction since for A ∈M(E) we have ∀

1≤i<j≤n
∃

1≤t≤m
yit 6=

yjt. Hence i = j.

(3) Let r1, r2, r3 be rows in A, r1 + r2 ≥ r3 and r1 = (yi1, . . . , yim), r2 =

(yj1, . . . , yjm), r3 = (yk1, . . . , ykm) then
m⊕
t=1

yitat =
m⊕
t=1

yjtat =
m⊕
t=1

yktat = 1
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and yit + yjt ≥ ykt for 1 ≤ t ≤ m. Let x = (x1, . . . , xm) where xt =
min(yit, ykt) for 1 ≤ t ≤ m. By cancellation law

m⊕
t=1

(yit − xt)at =

m⊕
t=1

(ykt − xt)at. (1)

We have r3−r2 ≤ r1 and r3−r2 ≤ r3 so r3−r2 ≤ min(r1, r3) and ykt−yjt ≤ xt
for 1 ≤ t ≤ m. Hence xt − ykt + yjt ≥ 0 for 1 ≤ t ≤ m and by (1), we obtain

m⊕
t=1

(yit − xt + xt − ykt + yjt)at =

m⊕
t=1

(ykt − xt + xt − ykt + yjt)at,

so
m⊕
t=1

(yit − ykt + yjt)at =

m⊕
t=1

(yjt)at = 1

and (yi1 + yj1 − yk1, . . . , yit + yjt − ykt, . . . , yim + yjm − ykm) ∈ Seqa(E) so
r1 + r2 − r3 is a row in A.

Hence A ∈ Bnm.

⇐ Let A = [yij ] ∈ Bnm.

Let X = {1, 2, . . . ,m} and T = T (A) = {t1, . . . , tn}. Then (X, T ) is an algebraic
E-test space by Lemma 3.4. By Theorem 2.4 Π(X) can be organized into an effect
algebra.

We show that A ∈M(Π(X)). It is enough to show that Seq(Π(X)) = {t1, . . . , tn}
since the condition ∀

1≤i<j≤n
∃

1≤t≤m
yit 6= yjt follows from (2).

First we describe atoms in Π(X). Let ei : X → N0 be a function such that ei(x) ={
0 x 6= i
1 x = i

for 1 ≤ i ≤ m. Then ei ∈ E(X, T ) for 1 ≤ i ≤ m.

We show that {π(e1), . . . , π(em)} is the set of mutually different atoms in Π(X).
Let f ∈ E(X, T ) and let π(f) be an atom in Π(X). Then 0 < f so there exists
i ∈ {1, . . . ,m} such that f(i) > 0 so f(i) ≥ 1 and f ≥ ei so π(f) ≥ π(ei) > 0 then
π(f) = π(ei).

Let k ∈ {1, . . . ,m}. We show that π(ek) is an atom in Π(X). Let f ∈ E(X, T )
and π(ek) ≥ π(f) > 0. Then there exists g ∈ E(X, T ) such that f ⊥ g and
π(ek) = π(f) ⊕ π(g) = π(f + g) so ek ≈h f + g for some h ∈ E(X, T ). Then
ek + h ∈ T and f + g + h ∈ T , so r1 = ek + h and r2 = f + g + h are rows in A.
Moreover, r2 ≥ r1 − ek = h ≥ 0, by (2) we have r1 = r2 so ek + h = f + g + h
thus ek = f + g therefore f = ek and g = 0 since π(f) > 0. Hence π(f) = π(ek)
so π(ek) is an atom.

Now we show that π(ei) 6= π(ej) for 1 ≤ i < j ≤ m. Assume that π(ei) = π(ej)
for i, j ∈ {1, . . . ,m}. Then there exists f ∈ E(X, T ) such that ei ≈f ej thus
ei + f, ej + f ∈ T and r1 = ei + f , r2 = ej + f are rows in A. Then r2 ≥ f =
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r1 − ei ≥ 0 so r1 = r2 by (2), hence ei = ej so i = j. This ends the proof that
{π(e1), . . . , π(em)} is the set of mutually different atoms in Π(X).

Now we prove that Seq(π(e1),...,π(em))(Π(X)) = {t1, . . . , tn}.
Let i ∈ {1, . . . , n}. Then ti = (yi1, . . . , yim) ∈ Seq(π(e1),...,π(em))(Π(X)) is equiva-
lent to

m⊕
t=1

yitπ(et) = 1.

We know that ti = yi1e1 + · · ·+ yimem ∈ T thus

1EA = π(ti) = π(yi1e1 + · · ·+ yimem) =

m⊕
t=1

yitπ(et)

so ti ∈ Seq(π(e1),...,π(em))(Π(X)) and {t1, . . . , tn} ⊆ Seq(π(e1),...,π(em))(Π(X)).

Let t = (x1, . . . , xm) ∈ Seq(π(e1),...,π(em))(Π(X)) then

1EA =

m⊕
t=1

xtπ(et) = π(x1e1 + · · ·+ xmem) = π(t)

hence t ∈ T = {t1, . . . , tn} so Seq(π(e1),...,π(em))(Π(X) ⊆ {t1, . . . , tn} thus

Seq(π(e1),...,π(em))(Π(X)) = {t1, . . . , tn}

and A ∈M(Π(X)).

�

In the following Lemma we describe events in (X,T (A)).

Lemma 3.7. Let E be a non-trivial finite effect algebra with atoms a1, . . . , am (ai 6= aj
for i 6= j), A ∈ Mn×m(N0) and A ∈ M(E). Let f : X → N0 be a function, where
X = {1, . . . ,m}. Then

f ∈ E(X,T (A)) ⇐⇒
m⊕
i=1

f(i)ai exists in E.

P r o o f . By Theorem 3.6 and Lemma 3.4 (X,T (A)) is an algebraic E-test space.
Assume that f ∈ E(X,T (A)) then there exists t ∈ T (A) such that 0 ≤ f ≤ t and

m⊕
i=1

t(i)ai = 1

since A ∈M(E). Hence
m⊕
i=1

t(i)ai exists in E so
m⊕
i=1

f(i)ai exists in E.
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Assume that x =
m⊕
i=1

f(i)ai exists in E. Let x′ =
m⊕
i=1

kiai for ki ∈ N0 for all i ∈ X.

Then

1 = x⊕ x′ =

m⊕
i=1

(f(i) + ki)ai.

Let t : X → N0 be a function such that t(i) = f(i) + ki for all i ∈ X. Then t ∈ T (A)
since A ∈M(E). Moreover 0 ≤ f ≤ t so f ∈ E(X,T (A)). �

Theorem 3.8. Let E be a non-trivial finite effect algebra withm atoms, A ∈Mn×m(N0)
and A ∈M(E). Then effect algebras E and Π(A) are isomorphic.

P r o o f . Let E be a non-trivial finite effect algebra with atoms a1, . . . , am (ai 6= aj
for i 6= j), A ∈ Mn×m(N0) and A ∈ M(E). Then A ∈ Bnm by Theorem 3.6. Let
X = {1, 2, . . . ,m} and T (A) = {t1, . . . , tn}. Then (X,T (A)) is an algebraic E-test
space by Lemma 3.4. By Theorem 2.4 Π(A) = Π(X) can be organized into an effect
algebra.

Let φ : E → Π(X) be a function such that if x =
m⊕
i=1

xiai then φ(x) = π(f), where

f : X → N0 is a function such that f(i) = xi for all i ∈ X. By Lemma 3.7, we have
f ∈ E(X,T (A)).

Now we show that φ is well-defined. Let x =
m⊕
i=1

xiai =
m⊕
i=1

yiai in E and f, g : X → N0

be functions such that f(i) = xi and g(i) = yi for all i ∈ X. Let x′ =
m⊕
i=1

ziai then

m⊕
i=1

(xi + zi)ai = 1,

m⊕
i=1

(yi + zi)ai = 1.

Let h : X → N0 be a function such that h(i) = zi for all i ∈ X. Then f+h, g+h ∈ T (A)
so f ≈h g hence π(f) = π(g).

Now we show that φ is a bijection.
Let x, y ∈ E and assume that φ(x) = φ(y). Then there exists x1, . . . , xm, y1, . . . , ym ∈

N0 such that x =
m⊕
i=1

xiai, y =
m⊕
i=1

yiai and if f, g : X → N0 are functions such that

f(i) = xi and g(i) = yi for all i ∈ X and π(f) = π(g). Then there exists h ∈ E(X,T (A))
such that f ≈h g so f + h ∈ T (A) and g + h ∈ T (A) thus

m⊕
i=1

(xi + zi)ai = 1,

m⊕
i=1

(yi + zi)ai = 1,

where zi = h(i) for all i ∈ X. Hence

x⊕
m⊕
i=1

(zi)ai = y ⊕
m⊕
i=1

(zi)ai
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and x = y by cancellation law.

Let f ∈ E(X,T (A)). By Lemma 3.7 we have x =
m⊕
i=1

(f(i))ai exists in E and φ(x) =

π(f). This ends the proof that φ is a bijection.

By Proposition 1.3 there exist x1, . . . , xm ∈ N0 such that 1 =
m⊕
i=1

xiai then φ(1) =

π(f) where f(i) = xi for all i ∈ X. Moreover f ∈ T (A) since A ∈ M(E). Hence
π(f) = φ(1) = 1.

Let x, y ∈ E. We show that x ⊥ y ⇐⇒ φ(x) ⊥ φ(y). By Proposition 1.3 there exist

x1, . . . , xm, y1, . . . , ym ∈ N0 such that x =
m⊕
i=1

xiai and y =
m⊕
i=1

yiai. Let f, g : X → N0

be functions such that f(i) = xi and g(i) = yi for all i ∈ X. Then f, g ∈ E(X,T (A)) by
Lemma 3.7 .

If x ⊥ y then x ⊕ y =
m⊕
i=1

(xi + yi)ai exists in E. By Lemma 3.7 we have f + g ∈

E(X,T (A)) so π(f + g) = π(f)⊕ π(g) = φ(x)⊕ φ(y) exists in Π(A) so φ(x) ⊥ φ(y).
If φ(x) ⊥ φ(y) then π(f + g) = π(f)⊕ π(g) = φ(x)⊕ φ(y) exists in Π(A) so f + g ∈

E(X,T (A)) and
m⊕
i=1

(xi + yi)ai = x⊕ y exists in E by Lemma 3.7. Hence x ⊥ y.

Now we show that φ(x⊕ y) = φ(x)⊕ φ(y) for all x, y ∈ E such that x ⊥ y.

Let x, y ∈ E and x =
m⊕
i=1

f(i)ai, y =
m⊕
i=1

g(i)ai for some functions f, g : X → N0.

Then x⊕ y =
m⊕
i=1

(f(i) + g(i))ai and

φ(x)⊕ φ(y) = π(f)⊕ π(g) = π(f + g) = φ(x⊕ y)

so φ : E → Π(X) is an isomorphism of effect algebras. �

Corollary 3.9. Let E1, E2 be non-trivial finite effect algebras. Then E1 and E2 are
isomorphic if and only if M(E1) = M(E2).

P r o o f . Let E1, E2 be non-trivial finite effect algebras.

⇐ If M(E1) = M(E2) and A ∈M(E1) then E1 and Π(A) are isomorphic by Theorem
3.8. Moreover, E2 and Π(A) are isomorphic by Theorem 3.8. Hence E1 and E2

are isomorphic.

⇒ Assume that E1 and E2 are isomorphic. Let φ : E1 → E2 be an isomorphism. If
a1, . . . , am (ai 6= aj for i 6= j) are atoms of E1 then φ(a1), . . . , φ(am) are atoms of
E2. Let us observe that

(x1, . . . , xm) ∈ Seq(a1,...,am)(E1) ⇐⇒
m⊕
i=1

xiai = 1 in E1 ⇐⇒

m⊕
i=1

xiφ(ai) = 1 in E2 ⇐⇒ (x1, . . . , xn) ∈ Seq(φ(a1),...,φ(am))(E2)

since φ is an isomorphism. Hence Seq(a1,...,am)(E1) = Seq(φ(a1),...,φ(am))(E2) and
M(E1) = M(E2). �
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By Corollary 3.9, the cardinality (up to isomorphism) of finite non-trivial effect alge-
bras with m atoms and k elements is equal to cardinality of the set {A ∈ Bnm : |Π(A)| ≤
k and n ∈ N}/ ∼, where A ∼ B if and only if B can be obtained from A by some per-
mutation of rows or columns.

List of matrices representing nontrivial finite effect algebras of cardinatily at most 8:

• 2-elem.: [1],

• 3-elem.: [2],

• 4-elem.: [3],
[

1 1
]
,

[
2 0
0 2

]
,

• 5-elem.: [4],

[
3 0
0 2

]
,

[
2 0 0
0 1 1

]
,

 2 0 0
0 2 0
0 0 2

,

• 6-elem.: [5],
[

1 2
]
,

[
1 2
3 0

]
,

[
3 0
0 3

]
,

[
2 0
0 4

]
,

[
3 0 0
0 1 1

]
,

 3 0 0
0 2 0
0 0 2

,

[
1 1 0 0
0 0 1 1

]
,

 1 1 0 0
0 0 2 0
0 0 0 2

,


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2



• 7-elem.: [6],

[
2 1
0 4

]
,

[
4 0
0 3

]
,

[
5 0
0 2

]
,

[
2 0 0
0 1 2

]
,

[
0 1 1
4 0 0

]
,

 2 0 0
0 3 0
0 0 3

,

 0 0 2
1 2 0
3 0 0

,

 2 0 0
0 2 0
0 0 4

,

 1 1 0 0
0 0 2 0
0 0 0 3

,


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

,

 1 1 0 0 0
0 0 1 1 0
0 0 0 0 2

,


1 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

,


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


• 8-elem.: [7],

[
1 3

]
,

[
3 0
1 3

]
,

[
3 1
1 3

]
,

[
4 0
0 4

]
,

[
2 0
0 6

]
,

[
5 0
0 3

]
,

[
5 0
1 2

]
, 4 0

2 2
0 4

,
[

1 1 1
]
,

[
2 1 0
0 1 2

]
,

[
0 1 2
1 2 0

]
,

[
0 1 2
3 0 0

]
,

[
1 1 1
0 0 3

]
,

[
0 1 1
5 0 0

]
,

 0 1 2
2 0 1
1 2 0

,

 3 0 0
0 3 0
0 0 3

,

 0 0 3
1 1 1
3 0 0

,

 0 1 2
1 2 0
3 0 0

,

 1 0 2
1 2 0
3 0 0

,
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 3 0 0
0 3 0
0 1 2

,

 2 0 0
0 3 0
0 0 4

,

 0 0 2
1 2 0
4 0 0

,

 2 0 0
0 2 0
0 0 5

,


3 0 0
0 3 0
0 0 3
1 1 1

,

[
1 1 0 0
0 0 1 2

]
,

 2 0 0 0
0 2 0 0
0 0 1 2

,

 1 1 0 0
0 0 3 0
0 0 0 3

,

 1 1 0 0
0 0 2 0
0 0 0 4

,


1 1 0 0
0 0 3 0
0 0 0 3
0 0 1 2

,


2 0 0 0
0 2 0 0
0 0 3 0
0 0 1 2

,


2 0 0 0
0 2 0 0
0 0 3 0
0 0 0 3

,


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 4

,

 1 1 0 0 0
0 0 1 1 0
0 0 0 0 3

,


1 1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 3

,


3 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2

,

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

,


2 0 0 0 0 0
0 2 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 1

,


1 1 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

,


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

.

So we have (up to isomorphism):

• one 2-element effect algebra,

• one 3-element effect algebra,

• three 4-element effect algebras,

• four 5-element effect algebras,

• ten 6-element effect algebras,

• fourteen 7-element effect algebras,

• forty 8-element effect algebras,

The list of all effect algebras up to 11-elements can be found at
https://www.mat.savba.sk/∼hycko/wprepea/.

Definition 3.10. A state on an effect algebra E is a mapping s : E → [0, 1] ⊆ R such
that s(1) = 1 and if a⊕ b is defined, then s(a⊕ b) = s(a) + s(b).

https://www.mat.savba.sk/~hycko/wprepea/
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Definition 3.11. Let
A = [yij ] ∈Mn×m(N0)

then denote  y11 . . . y1m 1
...

...
...

yn1 . . . ynm 1


by (A|1).

The following theorem gives the necessary condition enabling algebra to have a state.

Theorem 3.12. Let E be a non-trivial finite effect algebra with atoms a1, . . . , am. Let
A ∈M(E) and B = (A|1). If E has a state then rank A = rank B.

P r o o f . Let
A = [yij ] ∈M(E) ∩Mn×m(N0).

Suppose that E has a state h : E → [0, 1]. Let st = h(at) ≥ 0 for 1 ≤ t ≤ m. We

know that
m⊕
t=1

yitat = 1 for 1 ≤ i ≤ n since A ∈M(E). Hence 1 = h(1) = h(
m⊕
t=1

yitat) =

m∑
t=1

yith(at) =
m∑
t=1

yitst. Thus

A ·

 s1
...
sm

 =

 1
...
1

 .
By Rouché-Capelli Theorem [12], rank A = rank B, where B = (A|1). �

Problem. Prove or disprove: if E is a finite effect algebra with atoms a1, . . . , am,
A ∈M(E) and B = (A|1) then E has a state if and only if rank A = rank B.

In [6] Greechie gives an example of finite effect algebra that has no states. This effect
algebra E has 12 atoms {a1, . . . , a12} such that a1⊕a2⊕a3⊕a4 = 1, a5⊕a6⊕a7⊕a8 = 1,
a9 ⊕ a10 ⊕ a11 ⊕ a12 = 1, a1 ⊕ a5 ⊕ a9 = 1, a2 ⊕ a6 ⊕ a10 = 1, a3 ⊕ a7 ⊕ a11 = 1,
a4 ⊕ a8 ⊕ a12 = 1. Let

A =



1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1


then A ∈M(E) and the echelon form of (A|1) is (using Maxima, see [9]).
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

1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1


.

So rankA = 6 and rank (A|1) = 7. Thus E has no state by 3.12.

In [10], Riečanová found example of finite effect algebra E that has no states. This
effect algebra E has 3 atoms {a, b, c} such that a⊕ b⊕ c = 1, 3a = 4b = 3c = 1. Let

B =


1 1 1
3 0 0
0 4 0
0 0 3


then B ∈M(E) and rank B = 3 and rank (B|1) = 4 thus E has no state by 3.12.

This effect algebra E is represented by the following Hasse diagram:

1

3b

2a = b⊕ c 2b a⊕ b = 2c

a b c

0

The above effect algebra E has 9 elements. Using the list of all matrices representing
effect algebras which have at most 8 elements it is easy to check that every effect algebras
of cardinality ≤ 8 has a state. So the Riečanová’s example is smallest one.

(Received January 7, 2023)



Matrix representation of finite effect algebras 751

R E F E R E N C E S

[1] P. Bush, P. J. Lahti, and P. Mittelstadt: The quantum theory of measurement. In: The
Quantum Theory of Measurement. Lecture Notes in Physics Monographs, Vol 2. Springer,
Berlin, Heidelberg 1991. DOI:10.1007/978-3-662-13844-1 3

[2] P. Bush, M. Grabowski, and P. J. Lahti: Operational Quantum Physics. Springer-Verlag,
Berlin 1995. DOI:10.1007/978-3-540-49239-9
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