
Mathematica Bohemica

Moha Ben Taleb El Hamam
The unit group of some fields of the form Q(

√
2,
√
p,
√
q,
√
−l)

Mathematica Bohemica, Vol. 149 (2024), No. 1, 49–55

Persistent URL: http://dml.cz/dmlcz/152292

Terms of use:
© Institute of Mathematics AS CR, 2024

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/152292
http://dml.cz


149 (2024) MATHEMATICA BOHEMICA No. 1, 49–55

THE UNIT GROUP OF SOME FIELDS OF THE FORM

Q(
√
2,
√
p,
√
q,
√
−l)

Moha Ben Taleb El Hamam, Fez

Received June 3, 2022. Published online February 9, 2023.
Communicated by Clemens Fuchs

Abstract. Let p and q be two different prime integers such that p ≡ q ≡ 3 (mod 8) with
(p/q) = 1, and l a positive odd square-free integer relatively prime to p and q. In this paper
we investigate the unit groups of number fields L = Q(

√
2,
√
p,
√
q,
√
−l).

Keywords: unit group; multiquadratic number fields; unit index

MSC 2020 : 11R27, 11R04, 11R29

1. Introduction

Let k be a number field of degree n and let Ek denote the unit group of k that

is the group of the invertible elements of the ring Ok of algebraic integers of the

number field k. By Dirichlet’s well known unit theorem, if n = r1 + 2r2, where r1
is the number of real embeddings and r2 the number of conjugate pairs of complex

embeddings of k, then there exist r = r1 + r2 − 1 units of Ok that generate Ek

(modulo the roots of unity), and these r units are called a fundamental system of

units of k. Therefore

Ek ≃ µ(k)× Z
r1+r2−1,

where µ(k) is the group of roots of unity contained in k.

A major problem in algebraic number theory (and thus in the theory of units of

number fields which is related to all areas of algebraic number theory) is the compu-

tation of a fundamental system of units. For quadratic fields, the problem is easily

solved. For quartic bicyclic fields, Kubota (see [10]) gave a method for finding a fun-

damental system of units. Wada in [11] generalized Kubota’s method, creating an

algorithm for computing fundamental units in any given multiquadratic field. How-

ever, in general, it is not easy to compute the unit group of a number field especially
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for number fields of degree greater than 4. Very recently, Azizi, Chems-Eddin and

Zekhnini used some very technical computations to determine the unit group of some

number fields k of degree 16 (cf. [4]–[7], [9]). This paper is actually a continuation

of these works. We determine 7 generators of the torsion-free subgroup of Ek for an

infinite family of number fields k of degree 16 of the form Q(
√
2,
√
p,
√
q,
√
−l), where

p ≡ q ≡ 3 (mod 8) are two different prime integers and l a positive odd square-free

integer. We note that the computation of the unit group of these fields may be very

important to deal with the problem of the 2-class field tower of biquadratic number

fields (see, for example, [2]).

Let εm denote the fundamental unit of the quadratic field Q(
√
m) and (·/·) the

Legendre symbol. Then the main theorem of this paper is the following.

Theorem 1.1. Let p ≡ q ≡ 3 (mod 8) be two different prime integers, l a positive

odd square-free integer relatively prime to p and q, and L = Q(
√
2,
√
p,
√
q,
√
−l).

Without loss of generality we may assume that (p/q) = 1. So we have:

(1) If l = 1, then a fundamental system of units of L is given by
{

ε2,
√
εp,

√
εq,

√
εpq,

√√
εp
√
εq
√
ε2pq,

√√
ε2p

√
ε2q

√
ε2pq,

√

ζ8ε2
√
εp
√
ε2p

}

,

where ζ8 is a primitive 8th root of unity.

(2) If l 6= 1, then a fundamental system of units of L is given by
{

ε2,
√
εp,

√
ε2p,

√
εq,

√
εpq,

√√
εp
√
εq
√
ε2pq,

√√
ε2p

√
ε2q

√
ε2pq

}

.

The proof of this theorem needs long and technical computations. Therefore, we

will expose it in the third section of the paper.

2. Preliminary results

In this section we recall some results that will be useful in what follows.

Lemma 2.1. Let K0 be a real number field, K = K0(i) a quadratic extension

of K0, n > 2 an integer and ξn a primitive 2
nth root of unity, then ξn = 1

2
(µn+iλn),

where µn =
√
2 + µn−1, λn =

√
2− µn−1, µ2 = 0, λ2 = 2 and µ3 = λ3 =

√
2. Let n0

be the greatest integer such that ξn0
is contained in K, {ε1, . . . , εr} a fundamental

system of units of K0 and ε a unit of K0 such that (2 + µn0
)ε is a square in K0

(if it exists). Then a fundamental system of units ofK is one of the following systems:

(1) {ε1, . . . , εr−1,
√

ξn0
ε} if ε exists, in this case ε = εj11 . . . ε

jr−1

r−1 εr, where ji ∈ {0, 1}.
(2) {ε1, . . . , εr} otherwise.
P r o o f. See [1], Proposition 2. �
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Lemma 2.2. Let K0/Q be an abelian extension such that K0 is real and β a pos-

itive square-free algebraic integer of K0. Assume that K = K0(
√
−β) is a quadratic

extension of K0, which is abelian over Q. Assume furthermore that i =
√
−1 6∈ K.

Let {ε1, . . . , εr} be a fundamental system of units of K0. Without loss of generality

we may suppose that the units εi are positive. Let ε be a unit of K0 such that βε is

a square in K0 (if it exists). Then a fundamental system of units of K is one of the

following systems:

(1) {ε1, . . . , εr−1,
√−ε} if ε exists, in this case ε = εj11 . . . ε

jr−1

r−1 εr, where ji ∈ {0, 1}.
(2) {ε1, . . . , εr} otherwise.

P r o o f. See [1], Proposition 3. �

Lemma 2.3. Let p ≡ q ≡ 3 (mod 8) be two primes such that (p/q) = 1.

(1) Let x and y be two integers such that ε2pq = x+ y
√
2pq. Then

(a) x− 1 is a square in N,

(b)
√

2ε2pq = y1 + y2
√
2pq and 2 = −y21 + 2pqy22 for some integers y1 and y2

satisfying y = y1y2.

(2) There are two integers a and b such that εpq = a+ b
√
pq and we have

(a) 2p(a+ 1) is a square in N,

(b) b is even,
√
εpq = b1

√
p + b2

√
q and 1 = pb21 − qb22 for some integers b1

and b2 such that b = 2b1b2.

(3) Let c and d be two integers such that ε2qi = c+ d
√
2qi. Then we have

(a) c− 1 is a square in N,

(b)
√

2ε2qi = d1 + d2
√
2qi and 2 = −d21 + 2qid

2
2 for some integers d1 and d2

such that d = d1d2.

(4) Let α and β be two integers such that εqi = α+ β
√
qi. Then we have

(a) α− 1 is a square in N,

(b)
√

2εqi = β1 + β2

√
qi and 2 = −β2

1 + qiβ
2
2 for some integers β1 and β2 such

that β = β1β2.

P r o o f. See [8], Lemma 2.4. �

3. Proof of Theorem 1.1

Now we can prove Theorem 1.1. Let us prove the first statement.

(1) Without loss of generality we can suppose that (p/q) = 1. First we will need

a fundamental system of units of L+ = Q(
√
2,
√
p,
√
q) and then using Lemma 2.1

we deduce a fundamental system of units of L.
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Consider the following diagram of subfields of L+/Q(
√
2).

L+ = Q(
√
2,
√
p,
√
q)

OO jj

❚❚
❚❚

❚❚
❚❚

❚❚44

❥❥
❥❥
❥❥
❥❥
❥

L1 = Q(
√
2,
√
p)
jj

❚❚
❚❚

❚❚
❚❚

❚❚
❚

L2 = Q(
√
2,
√
q)

OO

L3 = Q(
√
2,
√
pq)

44

❥❥
❥❥
❥❥
❥❥
❥❥
❥❥

Q(
√
2)

Put Gal(L+/Q) = 〈σ1, σ2, σ3〉, where

σ1(
√
2) = −

√
2, σ1(

√
p) =

√
p, σ1(

√
q) =

√
q,

σ2(
√
2) =

√
2, σ2(

√
p) = −√

p, σ2(
√
q) =

√
q,

σ3(
√
2) =

√
2, σ3(

√
p) =

√
p, σ3(

√
q) = −√

q.

By [8], Proposition 2.7, we have

EL+ =
〈

− 1, ε2,
√
εp,

√
ε2p,

√
εq,

√
εpq,

√√
εp
√
εq
√
ε2pq,

√√
ε2p

√
ε2q

√
ε2pq

〉

.

Put

ξ2 = (2 +
√
2)εa2

√
εp

b√ε2p
c√εq

d√εpq
e

4
√
εpεqε2pq

f 4
√
ε2pε2qε2pq

g

with a, b, c, d, e, f, g ∈ {0, 1} (see also [3], Theorem 3.14). We use norm maps from L+

to its biquadratic subextensions. The computations of these norms are summarized

in the following table (see Table 1). Note that the third line of Table 1 is constructed

as follows (we similarly construct the rest of the table) By Lemma 2.3, we have
√
εp = 1

√

2
(β1 + β2

√
p) and 2 = −β2

1 + pβ2
2 . Thus

√
εp

σ1 =
1

−
√
2
(β1 + β2

√
p) = −√

εp,

√
εp

σ2 =
1√
2
(β1 − β2

√
p) =

1√
2

(β1 − β2

√
p)(β1 + β2

√
p)

β1 + β2

√
p

=
1√
2

(β2
1 − β2

2p)√
2
√
εp

=
1

2

−2
√
εp

=
−1
√
εp

,

√
εp

σ3 =
1√
2
(β1 + β2

√
p) =

√
εp,

√
εp

1+σ1 =
√
εpσ1(

√
εp) =

√
εp(−

√
εp) = −εp,

√
εp

1+σ2 =
√
εpσ2(

√
εp) =

√
εp

( −1
√
εp

)

= −1,

√
εp

1+σ1σ3 =
√
εpσ1(σ3(

√
εp)) =

√
εpσ1(

√
εp) =

√
εp(−

√
εp) = −εp,

√
εp

1+σ2σ3 =
√
εpσ2(σ3(

√
εp)) =

√
εpσ2(

√
εp) =

√
εp

( −1
√
εp

)

= −1.
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ε εσ1 εσ2 εσ3 ε1+σ1 ε1+σ2 ε1+σ1σ3 ε1+σ2σ3

ε2
−1√
ε2

ε2 ε2 −1 ε22 −1 ε22

√
εp −√

εp
−1
√
εp

√
εp −εp −1 −εp −1

√
ε2p

1
√
ε2p

−1
√
ε2p

√
ε2p 1 −1 1 −1

√
εq −√

εq
√
εq

−1
√
εq

−εq εq 1 −1

√
ε2q

1
√
ε2q

√
ε2q

−1
√
ε2q

1 ε2q −ε2q −1

√
εpq

√
εpq

−1
√
εpq

1
√
εpq

εpq −1 1 −εpq

√
ε2pq

1
√
ε2pq

−1
√
ε2pq

−1
√
ε2pq

1 −1 -ε2pq ε2pq

Table 1. Norms in L
+/Q(

√
2).

Let us eliminate some forms of ξ2 such that ξ cannot be in L. Considering L4 =

Q(
√
p,
√
q), we apply the norm NL/L4

= 1 + σ1,

NL/L4
(ξ2) = 2(−1)a(−1)bεbp1(−1)d(εq)

dεepq(−1)uf
√
εp

f√εq
f (−1)gv

= (−1)a+b+d+uf+gv2εbpε
d
qε

e
pq

√
εp

f√εq
f .

Therefore, a+ b+d+uf + gv ≡ 0 (mod 2). One can easily deduce that f = 0. Thus

a+ b+ d+ gv ≡ 0 (mod 2) and

ξ2 = (2 +
√
2)εa2

√
εp

b√ε2p
c√εq

d√εpq
e

4
√
ε2pε2qε2pq

g.

Now we apply the norm NL/L3
= 1 + σ2σ3, where L3 = Q(

√
2,
√
pq). We have

NL/L3
(ξ2) = (2 +

√
2)2ε2a2 (−1)b(−1)c (−1)d(−1)eεepq(−1)tg

√
ε2pq

g

= (2 +
√
2)2ε2a2 (−1)b+c+d+e+tgεepq

√
ε2pq

g.

Using Lemma 2.3, it is easy to deduce that e = g = 0. Thus b + c+ d ≡ 0 (mod 2)

and a+ b+ d ≡ 0 (mod 2). It follows that a = c and

ξ2 = (2 +
√
2)εa2

√
εp

b√ε2p
a√εq

d.

Let us apply NL/L5
= 1 + σ1σ3 with L5 = Q(

√
p,
√
2q). We have

NL/L3
(ξ2) = 2(−1)a(−1)bεbp11 = (−1)a+b2εbp.
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So a + b ≡ 0 (mod 2). Since 2 is not a square in L5, then using Lemma 2.3, one

easily deduces that b = 1 and so a = 1. Since a + b + d ≡ 0 (mod 2), then d = 0.

Therefore,

ξ2 = (2 +
√
2)ε2

√
εp
√
ε2p.

Since Hasse’s unit index QL equals 2 (cf. the proof of the main theorem of [8]), then

by Lemma 2.1, (2+
√
2)ε2

√
εp
√
ε2p is a square and therefore the first statement holds.

(2) For the proof of the second statement we similarly put

ξ2 = lεa2
√
εp

b√ε2p
c√εq

d√εpq
e

4
√
εpεqε2pq

f 4
√
ε2pε2qε2pq

g

with a, b, c, d, e, f ∈ {0, 1}. We proceed as above to eliminate all forms of ξ2 and we
deduce the result by using Lemma 2.2.

Let us eliminate some forms of ξ2 such that ξ cannot be in L. Considering L4 =

Q(
√
p,
√
q), we apply the norm NL/L4

= 1 + σ1,

NL/L4
(ξ2) = l2(−1)a(−1)bεbp1(−1)d(εq)

dεepq(−1)uf
√
εp

f√εq
f (−1)gv

= l2(−1)a+b+d+uf+gvεbpε
d
qε

e
pq

√
εp

f√εq
f .

Therefore, a+ b+d+uf + gv ≡ 0 (mod 2). One can easily deduce that f = 0. Thus

a+ b+ d+ gv ≡ 0 (mod 2) and

ξ2 = lεa2
√
εp

b√ε2p
c√εq

d√εpq
e

4
√
ε2pε2qε2pq

g.

Now we apply the norm NL/L3
= 1 + σ2σ3, where L3 = Q(

√
2,
√
pq). We have

NL/L3
(ξ2) = l2ε2a2 (−1)b(−1)c (−1)d(−1)eεepq(−1)tg

√
ε2pq

g

= l2ε2a2 (−1)b+c+d+e+tgεepq
√
ε2pq

g.

Using Lemma 2.3, it is easy to deduce that e = g = 0. Thus b + c+ d ≡ 0 (mod 2)

and a+ b+ d ≡ 0 (mod 2). It follows that a = c and

ξ2 = lεa2
√
εp

b√ε2p
a√εq

d.

Let us apply NL/L5
= 1 + σ1σ3 with L5 = Q(

√
p,
√
2q). We have

NL/L3
(ξ2) = l(−1)a(−1)bεbp11 = l(−1)a+bεbp.

Therefore, a+ b ≡ 0 (mod 2) and by Lemma 2.3, it is clear that b = 0. Thus, a = 0.

Since a + b + d ≡ 0 (mod 2), this implies that d = 0. Hence Lemma 2.2 gives the

second statement of Theorem 1.1. �
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