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Abstract. The main goal of this paper is to introduce hybrid positive implicative and
hybrid implicative (pre)filters of EQ-algebras. In the following, some characterizations of
this hybrid (pre)filters are investigated and it is proved that the quotient algebras induced by
hybrid positive implicative filters in residuated EQ-algebras are idempotent and residuated
EQ-algebra. Moreover, the relationship between hybrid implicative prefilters and hybrid
positive implicative prefilters are discussed and it is shown that these concepts coincide in
good involutive EQ-algebras. Finally, it is proved that the quotient EQ-algebra respect
to a hybrid positive implicative filter is involutive if and only if the hybrid filter is hybrid
implicative filter.
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1. Introduction

Recently Novák in [10] introduced a special algebra which is called EQ-algebra.

The first motivation for studying this algebra comes from fuzzy type theory (FTT)

(see [9]) that generalizes the system of classical type theory (see [1]), in which the

sole basic connective is equality. Analogously, the basic connective in FTT should

be fuzzy equality. Another motivation is from the equational style of proof in logic.

EQ-algebras are interesting and important for studying and researching. In fact, EQ-

algebras generalize non-commutative residuated lattices (see [3]). From the point of

view of logic, the main difference between residuated lattices and EQ-algebras lies

in the way the implication operation is obtained. While in residuated lattices it is

obtained from (strong) conjunction, in EQ-algebras it is obtained from equivalence.

Consequently, the two kinds of algebras differ in several essential points despite

their many similar or identical properties. After the introduction of fuzzy sets by

c© The author(s) 2023. This is an open access article under the CC BY-NC-ND licence cbnd

DOI: 10.21136/MB.2023.0049-22 105

https://creativecommons.org/licenses/by-nc-nd/4.0
http://dx.doi.org/10.21136/MB.2023.0049-22


Zadeh (see [13]), this theory has been applied in different areas of computer and

management sciences and computer engineering. Molodtsov in [8] introduced the

concept of soft set to deal with uncertainties with avoiding the difficulties that appear

with the usual theoretical approaches. The notion of hybrid structure was introduced

by Jun, Song and Muhiuddin (see [5]) as a parallel circuit of fuzzy and soft sets. The

notion of hybrid structure was introduced into a set of parameters on an initial

universe set and it was applied to BCK/BCI algebras and linear spaces. Moreover,

hybrid ideals in semigroups were introduced by Anis et al. in [2]. This motivated

us to introduce the new kinds of hybrid (pre)filtres of EQ-algebras and study some

properties of them.

2. Preliminaries

In this section, we give some fundamental definitions and results. For more details,

refer to the references.

Definition 2.1 ([11]). An EQ-algebra is an algebra (L,∧,⊙,∼, 1) of type

(2, 2, 2, 0) satisfying the following axioms:

(E1) (L,∧, 1) is a ∧-semilattice with top element 1. We set x 6 y if and only if

x ∧ y = x,

(E2) (L,⊙, 1) is a commutative monoid and ⊙ is isotone with respect to 6,

(E3) x ∼ x = 1 (reflexivity axiom),

(E4) ((x ∧ y) ∼ z)⊙ (s ∼ x) 6 z ∼ (s ∧ y) (substitution axiom),

(E5) (x ∼ y)⊙ (s ∼ t) 6 (x ∼ s) ∼ (y ∼ t) (congruence axiom),

(E6) (x ∧ y ∧ z) ∼ x 6 (x ∧ y) ∼ x (monotonicity axiom),

(E7) x⊙ y 6 x ∼ y (boundedness axiom)

for all s, t, x, y, z ∈ L.

Let L be an EQ-algebra. Then for all x, y ∈ L we put

x→ y = (x ∧ y) ∼ x, x̃ = x ∼ 1.

The derived operation→ is called implication. If an EQ-algebra L contains a bottom

element 0, then we may define the unary operation ¬ on L by ¬x = x ∼ 0.

Definition 2.2 ([3], [11]). Let L be an EQ-algebra. Then we say that it is

separated if x ∼ y = 1 implies x = y for all x, y ∈ L, good if x̃ = x for all x ∈ L,

residuated if (x⊙ y)∧ z = x⊙ y if and only if x∧ ((y ∧ z) ∼ y) = x for all x, y, z ∈ L,

and involutive (IEQ-algebra) if ¬¬x = x for all x ∈ L, when L contains a bottom

element 0.
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Lemma 2.3 ([4], [11]). Let L be an EQ-algebra. Then the following properties

hold for all x, y, z ∈ L:

(i) x ∼ y 6 x→ y, y 6 1 → y, x⊙ y 6 x ∧ y 6 x, y,

(ii) x→ y 6 (x ∧ z) → (y ∧ z),

(iii) (x→ y) 6 (y → z) → (x→ z) and (x→ y) 6 (z → x) → (z → y),

(iv) if x 6 y, then x→ y = 1 and y → x = x ∼ y,

(v) if x 6 y, then z → x 6 z → x and y → z 6 x→ z,

(vi) (x ∼ y) 6 (x ∧ z) ∼ (y ∧ z),

(vii) if L is separated, then x→ y = 1 if and only if x 6 y,

(vii) if L is good, then x⊙ (x→ y) 6 y,

(viii) if L is good, then x→ (y → z) = y → (x→ z).

Definition 2.4 ([6]). Let L be an EQ-algebra and ∅ 6= F ⊆ L. Then

(i) F is called a prefilter of L if it satisfies:

(F1) 1 ∈ F ,

(F2) if x ∈ F , x→ y ∈ F , then y ∈ F for all x, y ∈ L.

(ii) A prefilter F is said to be a filter if it satisfies:

(F3) If x→ y ∈ F , then (x⊙ z) → (y ⊙ z) ∈ F for all x, y, z ∈ L.

Prefilters and filters coincide in residuated EQ-algebas.

In the following, we shall use I for the unit interval, X for the set of parameters

and P(U) for the power set of an initial universe set U .

Definition 2.5 ([5]). A hybrid structure in X over U is defined to be a mapping

ϕ̃λ := (ϕ̃, λ) : X → P(U) × I, x→ (ϕ̃(x), λ(x)),

where ϕ̃ : X → P(U) and λ : X → I are mappings. Moreover, the set ϕ̃λ[α, t] :=

{x ∈ X : ϕ̃(x) ⊇ α, λ(x) 6 t} is called [α, t]-hybrid cut of ϕ̃λ.

Definition 2.6 ([12]). Let L be an EQ-algebra. Then

(i) a hybrid structure ϕ̃λ in L over U is called a hybrid prefilter of L over U if it

satisfies the followings for any x, y ∈ L:

(HPF1) ϕ̃(1) ⊇ ϕ̃(x), λ(1) 6 λ(x),

(HPF2) ϕ̃(y) ⊇ ϕ̃(x→ y) ∩ ϕ̃(x), λ(y) 6 λ(x→ y) ∨ λ(x).

(ii) ϕ̃λ is called a hybrid filter of L over U if for any x, y, z ∈ L

(HF) ϕ̃(x⊙ z → y ⊙ z) ⊇ ϕ̃(x→ y), λ(x ⊙ z → y ⊙ z) 6 λ(x → y).

Theorem 2.7 ([12]). Let ϕ̃λ be a hybrid structure of EQ-algebra L over U . Then

the following statements are equivalent:

(i) ϕ̃λ is a hybrid (pre)filter of L over U .

(ii) For any α ∈ P(U) and t ∈ I, the nonempty subsets ϕ̃λ(α) and ϕ̃λ(t) are

(pre)filters of L.
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Note that the concepts of hybrid prefilters and hybrid filters coincide when EQ-

algebra L is residuated.

Proposition 2.8 ([12]). Let ϕ̃λ be a hybrid prefilter of EQ-algebra L over U .

Then for any x, y, z ∈ L:

(i) if x 6 y, then ϕ̃(y) ⊇ ϕ̃(x), λ(y) 6 λ(x),

(ii) ϕ̃(x→ z) ⊇ ϕ̃(x→ y) ∩ ϕ̃(y → z), λ(x→ z) 6 λ(x→ y) ∨ λ(y → z).

Consider hybrid filter ϕ̃λ of EQ-algebra L over U and define a binary relation ≡ϕ̃λ

on L as follows:

x ≡ϕ̃λ
y if and only if ϕ̃(x ∼ y) = ϕ̃(1), λ(x ∼ y) = λ(1).

Then ≡ϕ̃λ
is a congruence relation on L. We denote the equivalence class x w.r.t

≡ϕ̃λ
by [x]ϕ̃λ

([x] for short). Furthermore, we define quotient algebra L/ϕ̃λ :=

{[x] : x ∈ L} and the operations ⊓, ≃, ⊗ for [x], [y] ∈ L/ϕ̃λ as follows:

[x] ⊓ [y] := [x ∧ y], [x] ≈ [y] := [x ∼ y], [x]⊗ [y] := [x⊙ y].

The top element is [1] and [x] 6 [y] if and only if [x] ⊓ [y] = [x] if and only if

x ∧ y ≡ϕ̃λ
x if and only if

ϕ̃(x ∧ y ∼ x) = ϕ̃(1) and λ(x ∧ y ∼ x) = λ(1)

if and only if

ϕ̃(x→ y) = ϕ̃(1) and λ(x → y) = λ(1).

Theorem 2.9 ([12]). Let ϕ̃λ be a hybrid filter of EQ-algebra L over U . Then

(L/ϕ̃λ,⊓,≈,⊗, [1]) is a separated EQ-algebra which is called quotient EQ-algebra

respect to ϕ̃λ and the mapping f : L → L/ϕ̃λ defined by f(x) = [x] is an EQ-

epimorphism.

N o t e 2.10. From now on, in this paper we let L be an EQ-algebra, unless stated

otherwise.
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3. Hybrid positive implicative (pre)filters of EQ-algebras

In this section, hybrid positive implicative (pre)filters of EQ-algebras are intro-

duced and some related results are provided.

Definition 3.1. Let ϕ̃λ be a hybrid prefilter of L over U . Then ϕ̃λ is called

a hybrid positive implicative prefilter of L over U if it satisfies the following for all

x, y, z ∈ L:

(HPI) ϕ̃(x → z) ⊇ ϕ̃(x → (y → z)) ∩ ϕ̃(x → y) and λ(x → z) 6 λ(x → (y → z)) ∨

λ(x → y).

Moreover, if ϕ̃λ is a hybrid filter of L over U and satisfies (HPI), then ϕ̃λ is called

a hybrid positive implicative filter of L over U .

Theorem 3.2. Let ϕ̃λ be a hybrid prefilter of L over U . Then the following

statements are equivalent:

(i) ϕ̃λ is a hybrid positive implicative perfilter of L over U ,

(ii) ϕ̃((x∧ (x → y)) → y) = ϕ̃(1) and λ((x∧ (x → y)) → y) = λ(1) for any x, y ∈ L.

P r o o f. (i) ⇒ (ii): Since by Lemma 2.3 (i) for any x, y ∈ L, x ∧ (x → y) 6 x,

x → y, we get that (x ∧ (x → y)) → x = 1 and (x ∧ (x → y)) → (x → y) = 1 and

since ϕ̃λ is a hybrid positive implicative prefilter of L over U , we conclude that

ϕ̃((x ∧ (x→ y)) → y) ⊇ ϕ̃((x ∧ (x→ y)) → (x→ y)) ∩ ϕ̃((x ∧ (x→ y)) → x)

= ϕ̃(1) ∩ ϕ̃(1) = ϕ̃(1)

and

λ((x ∧ (x→ y)) → y) 6 λ((x ∧ (x→ y)) → (x→ y)) ∨ λ((x ∧ (x→ y)) → x)

6 λ(1) ∨ λ(1) 6 λ(1).

Therefore, by Definition 2.6, ϕ̃((x∧(x → y)) → y) = ϕ̃(1) and λ((x∧(x → y)) → y) =

λ(1) for any x, y ∈ L.

(ii)⇒ (i): Since by Lemma 2.3 (ii) for any x, y, z ∈ L, x→ y 6 (x∧x) → (x∧y) =

x → (x ∧ y) and x → (y → z) 6 (x ∧ y) → y ∧ (y → z), by Proposition 2.8 (i), we

conclude that

ϕ̃(x→ (x ∧ y)) ⊇ ϕ̃(x→ y) and λ(x → (x ∧ y)) 6 λ(x→ y),

ϕ̃((x ∧ y) → y ∧ (y → z)) ⊇ ϕ̃(x→ (y → z))

and

λ((x ∧ y) → y ∧ (y → z)) 6 λ(x→ (y → z)).
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Now, by (ii) and Proposition 2.8 (ii), we have:

ϕ̃(x→ z) ⊇ ϕ̃(x→ (y ∧ (y → z))) ∩ ϕ̃((y ∧ (y → z)) → z)

= ϕ̃(x→ (y ∧ (y → z))) ∩ ϕ̃(1) = ϕ̃(x→ (y ∧ (y → z)))

⊇ ϕ̃(x→ (x ∧ y)) ∩ ϕ̃((x ∧ y) → (y ∧ (y → z)))

⊇ ϕ̃(x→ y) ∩ ϕ̃(x→ (y → z))

and
λ(x→ z) 6 λ(x→ (y ∧ (y → z))) ∨ λ((y ∧ (y → z)) → z)

6 λ(x→ (y ∧ (y → z))) ∨ λ(1) 6 λ(x→ (y ∧ (y → z)))

6 λ(x→ (x ∧ y)) ∨ λ((x ∧ y) → (y ∧ (y → z)))

6 λ(x→ y) ∨ λ(x → (y → z)).

Therefore, ϕ̃λ is a hybrid positive implicative perfilter of L over U . �

Corollary 3.3. If ϕ̃λ is a hybrid positive implicative prefilter of L over U , then

(i) ϕ̃((1 → x) → x) = ϕ̃(1) and λ((1 → x) → x) = λ(1) for any x ∈ L,

(ii) ϕ̃((x⊙(x → y)) → y) = ϕ̃(1) and λ((x⊙(x → y)) → y) = λ(1) for any x, y ∈ L.

P r o o f. (i) It follows from Theorem 3.2, by considering x = 1 and y = x.

(ii) Since by Lemma 2.3 (i) and (v), x ⊙ (x → y) 6 x ∧ (x → y) and so (x ∧

(x → y)) → y 6 (x ⊙ (x → y)) → y for any x, y ∈ L, by Proposition 2.8 (i) and

Theorem 3.2, we conclude that

ϕ̃((x⊙ (x→ y)) → y) ⊇ ϕ̃((x ∧ (x→ y)) → y) = ϕ̃(1),

and

λ((x ⊙ (x→ y)) → y) 6 λ((x ∧ (x→ y)) → y) = λ(1).

Therefore, by Definition 2.6,

ϕ̃((x ⊙ (x→ y)) → y) = ϕ̃(1) and λ((x ⊙ (x→ y)) → y) = λ(1)

for any x, y ∈ L. �

E x am p l e 3.4. Let L = {0, a, b, 1} be a chain 0 < a < b < 1 with Cayley tables

as follows:

⊙ 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

∼ 0 a b 1
0 1 0 0 0
a 0 1 a a
b 0 a 1 1
1 0 a 1 1

Table 1.

Routine calculation shows that (L,∧,⊙,∼, 1) is an EQ-algebra, see [6].
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Now, let U = {u1, u2, u3, u4, u5, u6} be an initial universe set and ϕ̃λ = (ϕ̃, λ) be

a hybrid structure in L over U which is given by Table 2.:

L ϕ̃ λ

0 {u1} 0.8

a {u1, u2} 0.6

b U 0.4

1 U 0.1

Table 2. Hybrid structure.

Then by direct calculations we verify that ϕ̃((x ∧ (x → y)) → y) = ϕ̃(1) and λ((x ∧

(x → y)) → y) = λ(1) for any x, y ∈ L and so by Theorem 3.2, ϕ̃λ is a hybrid

positive implicative prefilter of L over U .

Theorem 3.5. Let ϕ̃λ be a hybrid positive implicative filter of L over U . Then

L/ϕ̃λ is a good EQ-algebra.

P r o o f. Let ϕ̃λ be a hybrid positive implicative filter of L over U . Then

by Theorem 2.9, L/ϕ̃λ is a separated EQ-algebra. Moreover, by Corollary 3.3,

ϕ̃((1 → x) → x) = ϕ̃(1) and λ((1 → x) → x) = λ(1) for any x ∈ L. Hence,

[1 → x] ⇒ [x] = [1] and since L/ϕ̃λ is separated, by Lemma 2.3 (vii), we get that

[1] ⇒ [x] = [1 → x] 6 [x] and since by Lemma 2.3 (i), [x] 6 [1] ⇒ [x], we get that

[1] ⇒ [x] = [x] and so [1] ≈ [x] = [x] for any [x] ∈ L/ϕ̃λ. Therefore, L/ϕ̃λ is a good

EQ-algebra. �

Theorem 3.6. Let ϕ̃λ, ψ̃ν be two hybrid prefilters of L over U such that ϕ̃(1) =

ψ̃(1), λ(1) = ν(1) and ϕ̃λ ≪ ψ̃ν . If ϕ̃λ is a hybrid positive implicative prefilter of L

over U , so is ψ̃ν .

P r o o f. Let ϕ̃λ be a hybrid positive implicative prefilter of L over U . Then

by Theorem 3.2 for any x, y ∈ L, ϕ̃((x ∧ (x → y)) → y) = ϕ̃(1) and λ((x ∧

(x→ y)) → y) = λ(1) and since ϕ̃λ ≪ ψ̃ν , we conclude that ψ̃((x∧ (x → y)) → y) ⊇

ϕ̃((x ∧ (x → y)) → y) = ϕ̃(1) = ψ̃(1) and ν(1) = λ(1) = λ((x ∧ (x → y)) → y) 6

ν((x ∧ (x → y)) → y). Hence, by Definition 2.6, we conclude that ψ̃((x ∧

(x → y)) → y) = ψ̃(1) and ν((x ∧ (x → y)) → y) = ν(1) for any x, y ∈ L.

Therefore, by Theorem 3.2, ψ̃ν is a hybrid positive implicative prefilter of L over U .

�

Theorem 3.7. Let ϕ̃λ be a hybrid prefilter of L over U . Then the following

statements are equivalent:

(i) ϕ̃λ is a hybrid positive implicative perfilter of L over U ,

(ii) ϕ̃(x→ y) ⊇ ϕ̃(x→ (x→ y)) and λ(x→ y) 6 λ(x→ (x→ y)) for any x, y ∈ L.
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P r o o f. (i)⇒ (ii): Let x, y ∈ L and ϕ̃λ be a hybrid positive implicative perfilter

of L over U . Then

ϕ̃(x→ y) ⊇ ϕ̃(x→ (x→ y)) ∩ ϕ̃(x→ x)

= ϕ̃(x→ (x→ y)) ∩ ϕ̃(1) = ϕ̃(x→ (x→ y))

and
λ(x → y) 6 λ(x→ (x→ y)) ∨ λ(x→ x)

6 λ(x→ (x→ y)) ∨ λ(1) 6 λ(x→ (x→ y)).

(ii) ⇒ (i): Let x, y, z ∈ L. Then by Lemma 2.3 (iii), (x → y) 6 (y → z) →

(x → z) and x → (y → z) 6 ((y → z) → (x → z)) → (x → (x → z)) and so by

Proposition 2.8 (i),

ϕ̃((y → z) → (x→ z)) ⊇ ϕ̃(x→ y), λ((y → z) → (x→ z)) 6 (x→ y)

and
ϕ̃(((y → z) → (x→ z)) → (x→ (x→ z))) ⊇ ϕ̃(x→ (y → z)),

λ(((y → z) → (x→ z)) → (x→ (x→ z))) 6 λ(x→ (y → z)).

Now, by (ii), we conclude that

ϕ̃(x→ z) ⊇ ϕ̃(x→ (x→ z))

⊇ ϕ̃(((y → z) → (x→ z)) → (x→ (x→ z))) ∩ ϕ̃((y → z) → (x→ z))

⊇ ϕ̃(x→ (y → z)) ∩ ϕ̃(x→ y)

and

λ(x → z) 6 λ(x→ (x→ z))

6 λ(((y → z) → (x→ z)) → (x→ (x→ z))) ∨ λ((y → z) → (x→ z))

6 λ(x→ (y → z)) ∨ λ(x → y).

Therefore, ϕ̃λ is a hybrid positive implicative perfilter of L over U . �

Corollary 3.8. If ϕ̃λ is a hybrid positive implicative prefilter of L over U , then

for any x, y ∈ L,

ϕ̃(x→ y) ⊇ ϕ̃(x ∼ (x→ y)) and λ(x → y) 6 λ(x ∼ (x→ y)).

P r o o f. It follows from Lemma 2.3 (i) and Theorem 3.7. �
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Definition 3.9. Let ϕ̃λ be a hybrid prefilter of L over U . Then we say that ϕ̃λ

has weak hybrid exchange principle if for any x, y, z ∈ L, it satisfies

ϕ̃(x→ (y → z)) ⊇ ϕ̃(y → (x→ z)) and λ(x → (y → z)) 6 λ(y → (x→ z)).

E x am p l e 3.10. Let ϕ̃λ be a hybrid filter in Example 3.4. Then ϕ̃λ has weak

hybrid exchange principle. Note that in this example, L is not a good EQ-algebra

because 1 ∼ b = 1.

Theorem 3.11. Let ϕ̃λ be a hybrid prefilter of L over U and satisfy the weak

hybrid exchange principle. Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid positive implicative perfilter of L over U ,

(ii) ϕ̃((x → y) → (x→ z)) ⊇ ϕ̃(x→ (y → z)) and λ((x → y) → (x → z)) 6 λ(x →

(y → z)) for any x, y, z ∈ L.

P r o o f. (i) ⇒ (ii): Let x, y, z ∈ L. Then by Lemma 2.3 (iii) and (v), we have

(x → y) → y 6 (y → z) → ((x → y) → z) and so x → ((x → y) → y) 6 x →

((y → z) → ((x → y) → z)). Hence, by (i), Proposition 2.8 (i) and condition weak

exchange principle we have:

ϕ̃((x→ y) → (x→ z)) ⊇ ϕ̃(x→ ((x→ y) → z))

⊇ ϕ̃(x→ ((y → z) → ((x→ y) → z))) ∩ ϕ̃(x→ (y → z))

⊇ ϕ̃(x→ ((x→ y) → y)) ∩ ϕ̃(x→ (y → z))

⊇ ϕ̃((x→ y) → (x→ y)) ∩ ϕ̃(x→ (y → z))

= ϕ̃(1) ∩ ϕ̃(x→ (y → z)) = ϕ̃(x→ (y → z))

and

λ((x→ y) → (x→ z)) 6 λ(x→ ((x→ y) → z))

6 λ(x→ ((y → z) → ((x→ y) → z))) ∨ λ(x→ (y → z))

6 λ(x→ ((x→ y) → y)) ∨ λ(x→ (y → z))

6 λ((x→ y) → (x→ y)) ∨ λ(x→ (y → z))

= λ(1) ∨ λ(x→ (y → z)) = λ(x→ (y → z)).

(ii) ⇒ (i): Since ϕ̃λ is a hybrid prefilter of L over U , by (ii) we conclude that

ϕ̃(x→ z) ⊇ ϕ̃((x→ y) → (x→ z)) ∩ ϕ̃(x→ y) ⊇ ϕ̃(x→ (y → z)) ∩ ϕ̃(x→ y)

and

λ(x→ z) 6 λ((x → y) → (x→ z)) ∨ λ(x→ y) 6 λ(x→ (y → z)) ∨ λ(x→ y).

Therefore, ϕ̃λ is a hybrid positive implicative perfilter of L over U . �
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Note that by Lemma 2.3 (viii), in any good EQ-algebra, for any x, y, z ∈ L,

x → (y → z) = y → (x → z). So if L is a good EQ-algebra, then every hybrid

prefilter has weak hybrid exchange principle. Therefore, by Theorem 3.2, Theo-

rem 3.7 and Theorem 3.11, we conclude the following corollary:

Corollary 3.12. Let L be a good EQ-algebra and ϕ̃λ be a hybrid prefilter of L

over U . Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid positive implicative perfilter of L over U .

(ii) ϕ̃((x∧ (x → y)) → y) = ϕ̃(1) and λ((x∧ (x → y)) → y) = λ(1) for any x, y ∈ L.

(iii) ϕ̃(x→ y) ⊇ ϕ̃(x→ (x→ y)) and λ(x→ y) 6 λ(x→ (x→ y)) for any x, y ∈ L.

(iv) ϕ̃((x → y) → (x→ z)) ⊇ ϕ̃(x→ (y → z)) and λ((x → y) → (x → z)) 6 λ(x →

(y → z)) for any x, y, z ∈ L.

Proposition 3.13 ([4]). The following properties are equivalent:

(i) an EQ-algebra L is residuated;

(ii) the EQ-algebra L is good and for any x, y, z ∈ L,

(∗) (x⊙ y) → z 6 x→ (y → z).

Theorem 3.14. Let L be an EQ-algebra and satisfy (∗), ϕ̃λ be a hybrid filter

of L over U . Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid positive implicative perfilter of L over U ,

(ii) ϕ̃(x → x ⊙ x) = ϕ̃((x ⊙ (x → y)) → y) = ϕ̃(1) and λ(x → x ⊙ x) = λ((x ⊙

(x→ y)) → y) = λ(1) for any x, y ∈ L.

P r o o f. (i)⇒ (ii): Let ϕ̃λ be a hybrid positive implicative perfilter of L over U .

Then by Corollary 3.3 (ii),

ϕ̃((x ⊙ (x→ y)) → y) = ϕ̃(1) and λ((x ⊙ (x→ y)) → y) = λ(1)

for any x, y ∈ L.

Moreover, since x ⊙ x → x ⊙ x = 1 and by condition (∗), 1 = x ⊙ x → x ⊙ x 6

x→ (x→ (x ⊙ x)), by Proposition 2.8 (i), we get that

ϕ̃(x→ (x→ (x⊙ x))) ⊇ ϕ̃(1) and λ(x → (x→ (x⊙ x))) 6 λ(1).

Hence, by Theorem 3.7, ϕ̃(x→ (x⊙x)) ⊇ ϕ̃(x→ (x→ (x⊙x))) and λ(x→ (x⊙x)) 6

λ(x→ (x→ (x⊙x))). Therefore, ϕ̃(x→ (x⊙x)) = ϕ̃(1) and λ(x → (x⊙x)) = λ(1).
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(ii) ⇒ (i): Let x, y, z ∈ L. Then by Proposition 2.8 (ii), we have

ϕ̃(x→ z) ⊇ ϕ̃(x→ (y ⊙ (y → z))) ∩ ϕ̃((y ⊙ (y → z)) → z)

⊇ ϕ̃(x→ (x⊙ x)) ∩ ϕ̃((x⊙ x) → (y ⊙ (y → z))) ∩ ϕ̃((y ⊙ (y → z)) → z)

⊇ ϕ̃(1) ∩ ϕ̃((x⊙ x) → (y ⊙ (y → z))) ∩ ϕ̃(1)

= ϕ̃((x ⊙ x) → (y ⊙ (y → z)))

⊇ ϕ̃((x ⊙ x) → x⊙ y) ∩ ϕ̃((x⊙ y) → (y ⊙ (y → z)))

⊇ ϕ̃(x→ y) ∩ ϕ̃(x→ (y → z))

and

λ(x → z) 6 λ(x→ (y ⊙ (y → z))) ∨ λ((y ⊙ (y → z)) → z)

6 λ(x→ x⊙ x) ∨ λ((x ⊙ x) → (y ⊙ (y → z))) ∨ λ((y ⊙ (y → z)) → z)

6 λ(1) ∨ λ((x ⊙ x) → (y ⊙ (y → z))) ∨ λ(1)

= λ((x ⊙ x) → (y ⊙ (y → z)))

6 λ((x ⊙ x) → (x⊙ y)) ∨ λ((x ⊙ y) → (y ⊙ (y → z)))

6 λ(x→ y) ∨ λ(x→ (y → z)).

Therefore, ϕ̃λ is a hybrid positive implicative perfilter of L over U . �

Theorem 3.15. Let L be an EQ-algebra and satisfy (∗), ϕ̃λ be a hybrid filter

of L over U . Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid positive implicative perfilter of L over U ,

(ii) L/ϕ̃λ is a residuated and idempotent EQ-algebra.

P r o o f. (i)⇒ (ii): Let ϕ̃λ be a hybrid positive implicative perfilter of L over U .

Then by Theorem 2.9, L/ϕ̃λ is a good algebra and since by condition (∗), for any

x, y, z ∈ L, x⊙ y → z 6 x→ (y → z), we conclude that

ϕ̃((x⊙ y → z) → (x→ (y → z))) = ϕ̃(1)

and

λ((x ⊙ y → z) → (x→ (y → z))) = λ(1).

Hence, [x] ⊗ [y] ⇒ [z] 6 [x] ⇒ ([y] ⇒ [z]) and so L/ϕ̃λ satisfies (∗). Thus, by

Proposition 3.13, L/ϕ̃λ is a residuated EQ-algebra. Moreover, since by Theorem 3.14,

ϕ̃(x → x ⊙ x) = ϕ̃(1) and λ(x → x ⊙ x) = λ(1), for any x ∈ L we conclude that

[x] 6 [x⊙ x] = [x]⊗ [x] and since [x]⊗ [x] 6 [x], we get that [x]2 = [x]⊗ [x] = [x] for

any [x] ∈ L/ϕ̃λ. Therefore, L/ϕ̃λ is an idempotent EQ-algebra.
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(ii) ⇒ (i): If L/ϕ̃λ is a residuated and idempotent EQ-algebra, then by Porpo-

sition 3.13, it is a good EQ-algebra and so by Lemma 2.3 (vii), [x ⊙ (x → y)] =

[x]⊗ ([x] ⇒ [y]) 6 [y] and since L/ϕ̃λ is idempotent, we get that [x]
2 = [x]⊗ [x] = [x]

for any [x], [y] ∈ L/ϕ̃λ. Hence, ϕ̃(x → x ⊙ x) = ϕ̃(1), ϕ̃((x ⊙ (x → y)) → y) = ϕ̃(1)

and λ((x⊙ (x→ y)) → y) = λ(1), λ(x→ x⊙ x) = λ(1) for any x, y ∈ L. Therefore,

by Theorem 3.14, ϕ̃λ is a hybrid positive implicative perfilter of L over U . �

Corollary 3.16. Let L be a resiudated EQ-algebra and ϕ̃λ be a hybrid filter of L

over U . Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid positive implicative perfilter of L over U ,

(ii) ϕ̃((x ∧ y) → z) ⊇ ϕ̃((x⊙ y) → z) and λ((x ∧ y) → z) 6 λ((x ⊙ y) → z) for any

x, y, z ∈ L,

(iii) ϕ̃((x∧ (x → y)) → y) = ϕ̃(1) and λ((x∧ (x → y)) → y) = λ(1) for any x, y ∈ L,

(iv) ϕ̃(x→ y) ⊇ ϕ̃(x→ (x→ y)) and λ(x→ y) 6 λ(x→ (x→ y)) for any x, y ∈ L,

(v) ϕ̃((x → y) → (x→ z)) ⊇ ϕ̃(x→ (y → z)) and λ((x → y) → (x → z)) 6 λ(x →

(y → z)) for any x, y, z ∈ L,

(vi) ϕ̃(x→ x⊙ x) = ϕ̃(1) and λ(x→ x⊙ x) = λ(1) for any x, y ∈ L,

(vii) L/ϕ̃λ is a residuated and idempotent EQ-algebra.

P r o o f. (i)⇒ (ii): Since L is residuated, by Proposition 3.13 and Lemma 2.3 (ii),

we conclude that x ⊙ y → z 6 x → (y → z) 6 x ∧ y → (y ∧ (y → z)). Hence, by

Proposition 2.8 (i) and (ii) and Theorem 3.2 we have:

ϕ̃((x ∧ y) → z) ⊇ ϕ̃((x ∧ y) → (y ∧ (y → z))) ∩ ϕ̃((y ∧ (y → z)) → z)

= ϕ̃((x ∧ y) → (y ∧ (y → z))) ∩ ϕ̃(1) = ϕ̃((x ∧ y) → (y ∧ (y → z)))

⊇ ϕ̃((x ⊙ y) → z)

and

λ((x ∧ y) → z) 6 λ((x ∧ y) → (y ∧ (y → z))) ∨ λ((y ∧ (y → z)) → z)

= λ((x ∧ y) → (y ∧ (y → z))) ∨ λ(1) = λ((x ∧ y) → (y ∧ (y → z)))

6 λ((x ⊙ y) → z).

(ii) ⇒ (i): Since L is residuated, by Proposition 3.13 and Lemma 2.3 (iv) and (viii),

we conclude that (x ⊙ (x→ y)) → y = 1. Now, by (ii) for any x, y ∈ L, we have:

ϕ̃((x ∧ (x→ y)) → y) ⊇ ϕ̃((x ⊙ (x→ y)) → y) = ϕ̃(1),

λ((x ∧ (x→ y)) → y) ⊇ λ((x ⊙ (x→ y)) → y) = ϕ̃(1).

Hence, ϕ̃((x ∧ (x → y)) → y) = ϕ̃(1) and λ((x ∧ (x → y)) → y) = λ(1) and so by

Theorem 3.2, ϕ̃λ is a hybrid positive implicative perfilter of L over U . �
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Definition 3.17. The characterstic hybrid structure in L over U is denoted

by χ̃{1},λ and is defined by the following:

χ̃{1},λ := (χ̃{1}, λ{1}) : L→ P(U) × I,

χ̃{1}(x) :=

{
U if x = 1,

∅ otherwise,

λ{1}(x) :=

{
0 if x = 1,

1 otherwise.

Theorem 3.18. Let L be a residuated EQ-algebra. Then the following statements

are equivalent:

(i) L is an idempotent EQ-algebra,

(ii) every hybrid filter of L over U is a hybrid positive implicative filter,

(iii) χ̃{1},λ is a hybrid positive implicative filter of L over U .

P r o o f. (i) ⇒ (ii): Let L be an idempotent residuated EQ-algebra and ϕ̃λ

be a hybrid filter of L over U . Then for any x ∈ L, x → x ⊙ x = 1 and so

ϕ̃(x → (x⊙ x)) = ϕ̃(1) and λ(x → (x⊙ x)) = λ(1). Hence, by Corollary 3.16, ϕ̃λ is

a hybrid positive implicative filter of L over U .

(ii) ⇒ (iii): We prove that χ̃{1},λ is a hybrid filter of L over U . By definition

of χ̃{1},λ, we have χ̃{1}(1) = U ⊇ χ̃{1}(x) and λ{1}(1) = 0 6 λ{1}(x) for any

x ∈ L. If y = 1, then for any x ∈ L, χ̃{1}(y) = U ⊇ χ̃{1}(x → y) ∩ χ̃{1}(x) and

λ{1}(y) = 0 6 λ{1}(x→ y) ∨ λ{1}(x). If x = 1 and y 6= 1, then for any y ∈ L,

χ̃{1}(y) = ∅ ⊇ χ̃{1}(1 → y) ∩ χ̃{1}(1) = ∅ ∩ U = ∅

and

λ{1}(y) = 0 6 λ{1}(1 → y) ∨ λ{1}(1) = 0 ∨ 1 = 0.

If x, y 6= 1, then

χ̃{1}(y) = ∅ ⊇ χ̃{1}(x→ y) ∩ χ̃{1}(x) = χ̃{1}(x→ y) ∩ ∅ = ∅

and

λ{1}(y) = 0 6 λ{1}(x→ y) ∨ λ{1}(1) = λ{1}(x→ y) ∨ 0 = λ{1}(x→ y).

Therefore, χ̃{1},λ is a hybrid perfilter of L over U . Now, we show that χ̃{1},λ is a

filter of L over U . Let x, y, z ∈ L. If x⊙ z → y ⊙ z = 1, then

χ̃{1}(x⊙z → y⊙z) = U ⊇ χ̃{1}(x→ y) and λ{1}(x⊙z → y⊙z) = 0 6 λ{1}(x→ y).
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If x ⊙ z → y ⊙ z 6= 1, then x ⊙ z 
 y ⊙ z and so x 
 y, since if x 6 y, by (E2), we

get that x⊙ z 6 y ⊙ z, which is impossible. Hence, x 
 y and so x→ y 6= 1. Thus,

χ̃{1}(x⊙z → y⊙z) = χ̃{1}(x→ y) = ∅ and λ{1}(x⊙z → y⊙z) = λ{1}(x→ y) = 0.

Therefore, χ̃{1},λ is a hybrid filter of L over U and so by (ii), a hybrid positive

implicative of L over U .

(iii) ⇒ (i): Since χ̃{1},λ is a hybrid positive implicative of L over U , by Corol-

lary 3.16, we conclude that L/χ̃{1},λ is a residuated and idempotent EQ-algebra and

so for any [x] ∈ L/χ̃{1},λ, [x]⊗ [x] = [x]. Now, we consider two cases for any x ∈ L:

Case (I): If [x] 6= [1], then [x]⊗ [x] = [x] and so

χ̃{1}(x→ x⊙ x) = χ̃{1}(1) = U.

Hence, by definition of χ̃{1}, we conclude that x→ x⊙ x = 1.

Case (II): If [x] = [1], then [x]⊗ [x] = [1] and

χ̃{1}(x⊙ x) = χ̃{1}(1 → x⊙ x) = χ̃{1}(1) = U.

Now, by Proposition 2.8 (ii), we have:

χ̃{1}(x→ x⊙ x) ⊇ χ̃{1}(x→ 1) ∩ χ̃{1}(1 → x⊙ x)

= χ̃{1}(1) ∩ χ̃{1}(1) = χ̃{1}(1) = U.

Hence, by definition of χ̃{1}, we conclude that x → x ⊙ x = 1. Therefore, for any

x ∈ L we have x→ x⊙x = 1 and since by Lemma 2.3 (i), x⊙x→ x = 1, we conclude

that x⊙ x = x for any x ∈ L. Therefore, L is an idempotent EQ-algebra. �

4. Hybrid implicative (pre)filters in EQ-algebras

In this section we introduce the concept of hybrid implicative (pre)filters in EQ-

algebras and we give some related results.

Definition 4.1. Let ϕ̃λ be a hybrid structure in L over U . Then ϕ̃λ is called a

hybrid implicative prefilter of L over U if for any x, y, z ∈ L, it satisfies the followings:

(HPF1) ϕ̃(1) ⊇ ϕ̃(x), λ(1) 6 λ(x),

(HIF) ϕ̃(x) ⊇ ϕ̃(z → ((x→ y) → x))∩ ϕ̃(z), λ(x) 6 λ(z → ((x → y) → x))∨λ(z).

Moreover, ϕ̃λ is called a hybrid implicative filter of L over U if it satisfies (HF).
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E x am p l e 4.2. Let L = {0, a, b, c, d, 1}, where 0 6 a, b 6 c 6 1, 0 6 b 6 d 6 1,

but a, b and respective c, d are incomparable. The production and fuzzy equality

are defined as follows:

⊙ 0 a b c d 1
0 0 0 0 0 0 0
a 0 a 0 a 0 a
b 0 0 0 0 b b
c 0 a 0 a b c
d 0 0 b b d d
1 0 a b c d 1

Table 3.

∼ 0 a b c d 1
0 1 d c b a 0
a d 1 b c 0 a
b c b 1 d c b
c b c d 1 b c
d a 0 c b 1 d
1 0 a b c d 1

Table 4.

→ 0 a b c d 1
0 1 1 1 1 1 1
a d 1 d 1 d 1
b c c 1 1 1 1
c b c d 1 d 1
d a a c c 1 1
1 0 a b c d 1

Table 5.

Then (L,∧,⊙,∼, 1) is an EQ-algebra (see [7]). Now, let U = {u1, u2, u3, u4, u5, u6}

be an initial universe set and ϕ̃λ = (ϕ̃, λ) be a hybrid structure in L over U , which

is given by Table 6.:

L ϕ̃ λ

0 {u2} 0.7

a {u1, u2} 0.7

b {u2} 0.7

c {u1, u2} 0.7

d {u2, u3} 0.4

1 U 0.2

Table 6. Hybrid structure.

Then by direct calculations we verify that ϕ̃λ is a hybrid implicative filter of L over U .

Proposition 4.3. Let ϕ̃λ be a hybrid implicative prefilter of L over U . If x 6 y,

then ϕ̃(y) ⊇ ϕ̃(x) and λ(x) 6 λ(y) for any x, y ∈ L.

P r o o f. Let x, y ∈ L such that x 6 y. Then by Lemma 2.3 (iv), x→ y = 1 and

since by Lemma 2.3 (i) and (v), y 6 (y → y) → y and x → y 6 x → ((y → y) → y),

we get that x → ((y → y) → y) = 1. Now, since ϕ̃λ is a hybrid implicative prefilter

of L over U , we conclude that

ϕ̃(y) ⊇ ϕ̃(x→ ((y → y) → y)) ∩ ϕ̃(x) = ϕ̃(1) ∩ ϕ̃(x) = ϕ̃(x),

λ(y) 6 λ(x→ ((y → y) → y)) ∨ λ(x) = λ(1) ∨ λ(x) = λ(x). �

Proposition 4.4. Every hybrid implicative prefilter of L over U is a hybrid pre-

filter.

P r o o f. It follows from Lemma 2.3 (i) and Proposition 4.3. �

119



Theorem 4.5. Let ϕ̃λ be a hybrid prefilter of L over U . Then the following

statements are equivalent:

(i) ϕ̃λ is a hybrid implicative prefilter of L over U ,

(ii) ϕ̃(x) ⊇ ϕ̃((x→ y) → x) and λ(x) 6 λ((x → y) → x) for any x, y ∈ L.

P r o o f. (i) ⇒ (ii): Assume that ϕ̃λ is a hybrid implicative prefilter of L over U

and x, y ∈ L. Since by Lemma 2.3 (i), (x → y) → x 6 1 → ((x → y) → x), by

Proposition 2.8 (i), we conclude that

ϕ̃(x) ⊇ ϕ̃(1 → ((x→ y) → x)) ∩ ϕ̃(1) = ϕ̃(1 → ((x → y) → x)) ⊇ ϕ̃((x→ y) → x),

λ(x) 6 λ(1 → ((x→ y) → x)) ∨ λ(1) = λ(1 → ((x→ y) → x)) 6 λ((x→ y) → x).

(ii) ⇒ (i): Since ϕ̃λ is a hybrid prefilter of L over U , by (ii) for any x, y, z ∈ L we

get that

ϕ̃(x) ⊇ ϕ̃((x→ y) → x) ⊇ ϕ̃(z → ((x→ y) → x)) ∩ ϕ̃(z),

λ(x) 6 λ((x→ y) → x) 6 λ(z → ((x→ y) → x)) ∨ λ(z).

Therefore, ϕ̃λ is a hybrid implicative prefilter of L over U . �

Theorem 4.6. Let ϕ̃λ be a hybrid implicative prefilter of L over U . Then ϕ̃λ is

a hybrid positive implicative prefilter of L over U .

P r o o f. Since by Lemma 2.3 (i) and (v), x ∧ (x → y) 6 x and x → y 6

(x ∧ (x → y)) → y and since x ∧ (x → y) 6 x → y, we get that x ∧ (x → y) 6

(x ∧ (x → y)) → y. Hence, ((x ∧ (x → y)) → y) → y 6 (x ∧ (x → y)) → y and so

(((x ∧ (x → y)) → y) → y) → ((x ∧ (x → y)) → y) = 1. Now, since ϕ̃λ is a hybrid

implicative prefilter of L over U , by Theorem 4.5, we conclude that

ϕ̃((x ∧ (x→ y)) → y) ⊇ ϕ̃((((x ∧ (x→ y)) → y) → y) → ((x ∧ (x→ y)) → y))

= ϕ̃(1)

and

λ((x ∧ (x→ y)) → y) 6 λ((((x ∧ (x→ y)) → y) → y) → ((x ∧ (x→ y)) → y))

= λ(1).

Hence,

ϕ̃((x ∧ (x→ y)) → y) = ϕ̃(1) and λ((x ∧ (x→ y)) → y) = λ(1).

Therefore, by Theorem 3.2, ϕ̃λ is a hybrid positive implicative prefilter of L over U .

�
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Theorem 4.7. Let ϕ̃λ be a hybrid positive implicative prefilter of L over U with

hybrid weak exchange principle. Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid implicative prefilter of L over U ,

(ii) ϕ̃((y → x) → x) ⊇ ϕ̃((x → y) → y) and λ((y → x) → x) 6 λ((x → y) → y) for

any x, y ∈ L.

P r o o f. (i) ⇒ (ii): Since by Lemma 2.3 (iii), for any x, y ∈ L, (x → y) → y 6

(y → x) → ((x→ y) → x), by Proposition 2.8 (i), we get that

ϕ̃((y → x) → ((x→ y) → x)) ⊇ ϕ̃((x→ y) → y)

and

λ((y → x) → ((x→ y) → x)) 6 λ((x→ y) → y)

and since ϕ̃λ has hybrid weak exchange principle, we conclude that

ϕ̃((x→ y) → ((y → x) → x)) ⊇ ϕ̃((y → x) → ((x→ y) → x))

and

λ((x → y) → ((y → x) → x)) 6 λ((y → x) → ((x→ y) → x)).

Moreover, by Lemma 2.3 (i) and (v), we have x 6 (y → x) → x and ((y → x) → x) →

y 6 x → y. Hence, (x → y) → ((y → x) → x) 6 (((y → x) → x) → y) →

((y → x) → x) and so by Proposition 2.8 (i), we get

ϕ̃((((y → x) → x) → y) → ((y → x) → x)) ⊇ ϕ̃((x → y) → ((y → x) → x)),

λ((((y → x) → x) → y) → ((y → x) → x)) 6 λ((x → y) → ((y → x) → x)).

Now, since ϕ̃λ is a hybrid implicative prefilter of L over U , by Theorem 4.5, we

conclude that

ϕ̃((y → x) → x) ⊇ ϕ̃((((y → x) → x) → y) → ((y → x) → x))

⊇ ϕ̃((x→ y) → ((y → x) → x))

⊇ ϕ̃((y → x) → ((x→ y) → x)) ⊇ ϕ̃((x→ y) → y)

and

λ((y → x) → x) 6 λ((((y → x) → x) → y) → ((y → x) → x))

6 λ((x→ y) → ((y → x) → x))

6 λ((y → x) → ((x→ y) → x)) 6 λ((x→ y) → y).
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(ii) ⇒ (i): Since by Lemma 2.3 (i), (iii) and (v), for any x, y ∈ L, y 6 x → y,

(x → y) → x 6 y → x and (x → y) → x 6 (x → y) → ((x → y) → y), by

Proposition 2.8 (i), we conclude that

ϕ̃(y → x) ⊇ ϕ̃((x→ y) → x), λ(y → x) 6 λ((x→ y) → x)

and

ϕ̃((x→ y) → ((x→ y) → y)) ⊇ ϕ̃((x→ y) → x),

λ((x → y) → ((x→ y) → y)) 6 λ((x → y) → x).

Now, since ϕ̃λ is a hybrid prefilter of L over U , by (ii) and Theorem 3.7, we have

ϕ̃(x) ⊇ ϕ̃((y → x) → x) ∩ ϕ̃(y → x) ⊇ ϕ̃((x→ y) → y) ∩ ϕ̃(y → x)

⊇ ϕ̃((x→ y) → ((x→ y) → y)) ∩ ϕ̃(y → x)

⊇ ϕ̃((x→ y) → x) ∩ ϕ̃((x→ y) → x) = ϕ̃((x→ y) → x)

and

λ(x) 6 λ((y → x) → x) ∨ λ(y → x) 6 λ((x→ y) → y) ∨ λ(y → x)

6 λ((x → y) → ((x→ y) → y)) ∨ λ(y → x)

6 λ((x → y) → x) ∨ λ((x→ y) → x) = λ((x → y) → x).

Therefore, by Theorem 4.5 ϕ̃λ is a hybrid implicative prefilter of L over U . �

Theorem 4.8. Let ϕ̃λ, ψ̃ν be two hybrid prefilters of L over U such that ϕ̃(1) =

ψ̃(1), λ(1) = ν(1) and ϕ̃λ ≪ ψ̃ν . If ϕ̃λ is a hybrid implicative prefilter of L over U

with hybrid weak exchange principle, then ψ̃ν is a hybrid implicative prefilter of L

over U .

P r o o f. For any x, y ∈ L let u = (x→ y) → x. Then by Lemma 2.3 (i) and (v),

x 6 u→ x and so

(u→ x) → y 6 x→ y and so u = (x→ y) → x 6 ((u → x) → y) → x.

Hence, u → (((u → x) → y) → x) = 1 and since ϕ̃λ has hybrid weak exchange

principle, we get that

ϕ̃(((u → x) → y) → (u→ x)) ⊇ ϕ̃(u→ (((u→ x) → y) → x)) = ϕ̃(1),

λ(((u → x) → y) → (u→ x)) 6 λ(u → (((u→ x) → y) → x)) = λ(1).
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Now, since ϕ̃λ is a hybrid implicative prefilter, we conclude that

ϕ̃(u→ x) ⊇ ϕ̃(((u→ x) → y) → (u→ x)) ⊇ ϕ̃(1),

λ(u→ x) 6 λ(((u → x) → y) → (u→ x)) 6 λ(1).

Hence, ϕ̃(u → x) = ϕ̃(1) and λ(u → x) = λ(1) and since ϕ̃λ ≪ ψ̃ν , we get that

ψ̃(u → x) ⊇ ϕ̃(u → x) = ϕ̃(1) = ψ̃(1) and ν(u → x) 6 λ(u → x) = λ(1) = ν(1).

Hence, ψ̃(u→ x) = ψ̃(1) and ν(u → x) = ν(1). Finally, since ψ̃ν is a hybrid prefilter

of L over U , we conclude that

ψ̃(x) ⊇ ψ̃(u→ x) ∩ ψ̃(u) = ψ̃(1) ∩ ψ̃(u) = ψ̃((x→ y) → x)

and

ν(x) 6 ν(u → x) ∨ ν(x) 6 ν(1) ∨ ν(x) = ν(u) 6 ν((x → y) → x).

Therefore, by Theorem 4.5, ψ̃ν is a hybrid implicative prefilter of L over U . �

Theorem 4.9. Let L be an EQ-algebra with bottom element 0 and ϕ̃λ be a hybrid

prefilter of L over U . Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid implicative prefilter of L over U ,

(ii) ϕ̃(x) ⊇ ϕ̃(¬x→ x) and λ(x) 6 λ(¬x → x) for any x ∈ L.

P r o o f. (i) ⇒ (ii): Let ϕ̃λ be a hybrid implicative prefilter of L over U and

x ∈ L. Then by Theorem 4.5,

ϕ̃(x) ⊇ ϕ̃((x→ 0) → x) = ϕ̃(¬x → x), λ(x) 6 λ((x → 0) → x) = λ(¬x → x).

(ii) ⇒ (i): Since by Lemma 2.3 (v),

(x→ y) → x 6 (x→ 0) → x = ¬x→ x,

by (ii) and Proposition 2.8 (i), we have:

ϕ̃(x) ⊇ ϕ̃(¬x → x) ⊇ ϕ̃((x→ y) → x), λ(x) 6 λ(¬x → x) 6 λ((x→ y) → x).

Therefore, by Theorem 4.5, ϕ̃λ is a hybrid implicative prefilter of L over U . �

Theorem 4.10. Let L be a good EQ-algebra and ϕ̃λ be a hybrid prefilter of L

over U . Then the following statements are equivalent:

(i) ϕ̃λ is a hybrid implicative prefilter of L over U ,

(ii) ϕ̃(x → z) ⊇ ϕ̃(x → (¬z → y)) ∩ ϕ̃(y → z) and λ(x → z) 6 λ(x → (¬z → y)) ∨

λ(y → z) for any x, y, z ∈ L.
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P r o o f. (i)⇒ (ii): Since by Lemma 2.3(iii) and (v), for any x, y, z ∈ L, y → z 6

(x → y) → (x → z), ¬z → (x → y) 6 ((x → y) → (x → z)) → (¬z → (x → z)) and

¬z → (x→ z) 6 ¬(x→ z) → (x→ z), by Proposition 2.8 (i), we get that

ϕ̃((x→ y) → (x→ z)) ⊇ ϕ̃(y → z), λ((x→ y) → (x→ z)) 6 λ(y → z)

and

ϕ̃(((x→ y) → (x→ z)) → (¬z → (x→ z))) ⊇ ϕ̃(¬z → (x→ y)),

λ(((x → y) → (x→ z)) → (¬z → (x→ z))) 6 λ(¬z → (x→ y))

and

ϕ̃(¬(x→ z) → (x→ z)) ⊇ ϕ̃(¬z → (x→ z)),

λ(¬(x → z) → (x→ z)) 6 λ(¬z → (x→ z)).

Now, since ϕ̃λ is a hybrid implicative prefilter of L over U , by Lemma 2.3 (viii) and

Theorem 4.9, we conclude that

ϕ̃(x→ z) ⊇ ϕ̃(¬(x→ z) → (x→ z)) ⊇ ϕ̃(¬z → (x→ z))

⊇ ϕ̃(((x→ y) → (x→ z)) → (¬z → (x→ z))) ∩ ϕ̃((x→ y) → (x→ z))

⊇ ϕ̃(¬z → (x→ y)) ∩ ϕ̃(y → z) ⊇ ϕ̃(x→ (¬z → y)) ∩ ϕ̃(y → z)

and

λ(x→ z) 6 λ(¬(x→ z) → (x→ z)) 6 λ(¬z → (x→ z))

6 λ(((x→ y) → (x→ z)) → (¬z → (x→ z))) ∨ λ((x→ y) → (x→ z))

6 λ(¬z → (x→ y)) ∨ λ(y → z) 6 λ(x→ (¬z → y)) ∨ λ(y → z).

(ii) ⇒ (i): Since L is a good EQ-algebra, by (ii) we get that

ϕ̃(x) = ϕ̃(1 → x) ⊇ ϕ̃(1 → (¬x→ x)) ∩ ϕ̃(x→ x)

= ϕ̃(¬x→ x) ∩ ϕ̃(1) = ϕ̃(¬x→ x)

and

λ(x) = λ(1 → x) 6 λ(1 → (¬x → x)) ∨ λ(x→ x)

6 λ(¬x → x) ∨ λ(1) = λ(¬x → x).

Therefore, by Theorem 4.9, ϕ̃λ is a hybrid implicative prefilter of L over U . �
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Theorem 4.11. Let L be an EQ-algebra with bottom element 0 and ϕ̃λ be a

hybrid positive implicative prefilter of L over U . Then the following statements are

equivalent:

(i) ϕ̃λ is a hybrid implicative prefilter of L over U ,

(ii) ϕ̃(x) ⊇ ϕ̃(¬¬x) and λ(x) 6 λ(¬¬x) for any x ∈ L.

P r o o f. (i) ⇒ (ii): Since by Lemma 2.3 (v), for any x ∈ L, ¬¬x = ¬x → 0 6

¬x → x, by Proposition 2.8 (i), we have ϕ̃(¬x → x) ⊇ ϕ̃(¬¬x) and λ(¬x → x) 6

λ(¬¬x) and since ϕ̃λ is a hybrid implicative prefilter of L over U , by Theorem 4.9,

we get that ϕ̃(x) ⊇ ϕ̃(¬x → x) and λ(x) 6 λ(¬x → x). Hence, ϕ̃(x) ⊇ ϕ̃(¬¬x) and

λ(x) 6 λ(¬¬x).

(ii) ⇒ (i): Since by Lemma 2.3 (v), for any x ∈ L, ¬x → x 6 (x → 0) →

(¬x → 0) = ¬x → (¬x → 0), by Proposition 2.8 (i), we get that ϕ̃(¬x →

(¬x → 0)) ⊇ ϕ̃(¬x → x) and λ(¬x → (¬x → 0)) 6 λ(¬x → x). Now, since ϕ̃λ is a

hybrid positive implicative prefilter of L over U , by Theorem 3.7, we conclude that

ϕ̃(¬x→ 0) ⊇ ϕ̃(¬x→ (¬x→ 0)), λ(¬x → 0) 6 λ(¬x→ (¬x→ 0)).

Hence,

ϕ̃(¬x→ 0) ⊇ ϕ̃(¬x→ x) and λ(¬x→ 0) 6 λ(¬x → x)

and since by (ii), ϕ̃(x) ⊇ ϕ̃(¬¬x) = ϕ̃(¬x→ 0) and λ(x) 6 λ(¬¬x) = λ(¬x→ 0), we

get that ϕ̃(x) ⊇ ϕ̃(¬x→ x) and λ(x) 6 λ(¬x → x). Therefore, by Theorem 4.9, ϕ̃λ is

a hybrid implicative prefilter of L over U . �

Corollary 4.12. Let L be a good involutive EQ-algebra. Then the concepts of

hybrid positive implicative prefilters and hybrid implicative prefilters coincide.

P r o o f. It follows from Theorem 4.5 and Theorem 4.6. �

Theorem 4.13. Let L be a good EQ-algebra with bottom element 0 and ϕ̃λ

be a hybrid positive implicative prefilter of L over U . Then L/ϕ̃λ is an involutive

EQ-algebra if and only if ϕ̃λ is a hybrid implicative prefilter of L over U .

P r o o f. Let L/ϕ̃λ be an involutive EQ-algebra. Then ¬¬[x] = [¬¬x] = [x] for

any [x] ∈ L/ϕ̃λ and so ϕ̃(¬¬x) = ϕ̃(1) and λ(¬¬x) = λ(1). Now, since ϕ̃λ is a hybrid

prefilter, we have:

ϕ̃(x) ⊇ ϕ̃(¬¬x → x) ∩ ϕ̃(¬¬x) = ϕ̃(1) ∩ ϕ̃(¬¬x) = ϕ̃(¬¬x)

and

λ(x) 6 λ(¬¬x → x) ∨ λ(¬¬x) = λ(1) ∨ λ(¬¬x) = λ(¬¬x).
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Therefore, by Theorem 4.11, ϕ̃λ is a hybrid implicative prefilter of L over U . Con-

versely, by Lemma 2.3 (i), (iii) and (viii), for any x ∈ L, we have

x 6 ((x→ 0) → 0) → x and so (((x → 0) → 0) → x) → 0 6 x→ 0.

Hence,

(x→ 0) → (((x→ 0) → 0) → x) 6 ((((x→ 0) → 0) → x) → 0)

→ (((x→ 0) → 0) → x).

Moreover, since

1 = 0 → x 6 ((x→ 0) → 0) → ((x→ 0) → x) = (x→ 0) → (((x → 0) → 0) → x),

we conclude that

¬(¬¬x → x) → (¬¬x→ x) = ((((x→ 0) → 0) → x) → 0) → (((x → 0) → 0) → x)

= 1.

Now, since ϕ̃λ is a hybrid implicative prefilter of L over U , by Theorem 4.11, we get

that

ϕ̃(¬¬x → x) ⊇ ϕ̃(¬(¬¬x → x) → (¬¬x→ x)) = ϕ̃(1),

λ(¬¬x → x) 6 λ(¬(¬¬x → x) → (¬¬x→ x)) = λ(1).

Hence, ϕ̃(¬¬x → x) = ϕ̃(1) and λ(¬¬x → x) = λ(1) and so ¬¬[x] = [¬¬x] = [x].

Therefore, L/ϕ̃λ is an involutive EQ-algebra. �

5. Conclusion

The results of this paper are devoted to study the notion of hybrid positive im-

plicative and hybrid implicative (pre)filters of EQ-algebras. By defining these no-

tions, some characterizations of them were studied and some related properties of

them were investigated. There are still some questions: How to define the notions

of hybrid obstinate and fantastic (pre)filters of EQ-algebras? What is the relation

between hybrid obstinate and hybrid fantastic (pre)filters and other types hybrid

(pre)filters of EQ-algebras? These could be topics for further research.
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