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DENUMERABLE MARKOV STOPPING GAMES
WITH RISK-SENSITIVE TOTAL REWARD CRITERION

Manuel A. Torres-Gomar, Rolando Cavazos-Cadena and
Hugo Cruz-Suárez

This paper studies Markov stopping games with two players on a denumerable state space.
At each decision time player II has two actions: to stop the game paying a terminal reward to
player I, or to let the system to continue it evolution. In this latter case, player I selects an
action affecting the transitions and charges a running reward to player II. The performance of
each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under
mild continuity and compactness conditions on the components of the model, it is proved that
the value of the game satisfies an equilibrium equation, and the existence of a Nash equilibrium
is established.

Keywords: monotone operator, fixed point, equilibrium equation, Nash equilibrium, hit-
ting time, bounded rewards

Classification: 91A10, 91A15

1. INTRODUCTION

This note concerns with discrete-time Markov stopping games evolving on a denumerable
state space. The system is directed by two players, and at each decision time player II
always can choose between two possible actions, namely, to stop the game, or to let the
system to continue its evolution. In this latter case, player I selects an action affecting
the transitions and charges a running reward to player II, whereas if the game is stopped,
player II pays a terminal reward to player I. It is supposed that player I has a nonull
and constant risk sensitivity coefficient, and tries to maximize his total (risk-sensitive)
expected reward, whereas player II tries to minimize it. Besides mild continuity condi-
tions, the main structural conditions on the game concern with the reward structure,
namely, it is supposed that the terminal reward function is nonnegative, and that the
running reward is always larger than a positive constant. In this framework, the main
problems analyzed in this note are as follows:

• to establish an equilibrium equation characterizing the value function of the game,
and

• to establish the existence of a Nash equilibrium.
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In a risk-neutral context, these problems have been recently studied in Mart́ınez-
Cortés (2021) [20], where Markov stopping games with total reward criterion on a finite
state space were analyzed under the assumption that the system has an absorbing state,
a context that generalizes the discounted framework in Cavazos-Cadena and Hernández–
Hernández (2012) [8]. On the other hand, in Cavazos–Cadena et al. (2021) [9] the risk-
neutral total reward criterion was studied under the assumption that the state space is
denumerable and the system has an absorbing state, whereas in Cavazos–Cadena et al.
(2021) [10] this last condition was replaced by the assumption that the Markov chain
induced by any stationary policy of player I is communicating and has an invariant dis-
tribution. More recently, in a risk-sensitive framework the problems posed above were
studied in López-Rivero et al. (2022) [19] under the condition that the system has an ab-
sorbing state which can be reached regardless of the initial point. The results presented in
this paper extend those reported in Cavazos–Cadena and Hernández-Hernández (2012)
[8], where the total expected discounted reward is considered as a performance criterion.
The main difference between the results presented in this paper and those already avail-
able in the literature can be summarized as follows: the conclusions obtained in this
note involve only mild restrictions on the reward structure but, in contrast with other
related works, no restriction is imposed on the transition law.

A starting benchmark in the study of discrete-time Markov models with risk-sensitive
criteria was settled in Howard and Matheson (1972) [16], where controlled Markov chains
on a finite state space were analyzed and, under communication conditions, the optimal
risk-sensitive average cost was characterized in terms of an optimality equation. Those
basic results have been extended to the case of a general transition structure in Cavazos-
Cadena and Hernández-Hernández (2006) [7] for uncontrolled models, and for controlled
models in Alańıs Durán and Cavazos-Cadena (2012) [1]. Controlled Markov decision
processes with finite or denumerable state-space endowed with risk-sensitive criteria have
been studied, for instance, in Bäuerle and Rieder (2014) [3], Borkar and Meyn (2002)
[6], Denardo and Rothblum (2006) [11], Sladký (2009, 2010, 2018) ([23, 24, 25]) whereas
Markov decision processes on a general state space are analyzed, for instance, in Di Masi
and Stettner (1999, 2000, 2007) ([12, 13, 14]) or Jaśkiewicz (2007) [17]. Applications
of risk-sensitive criteria are presented, for example, in the area of mathematical finance
(Bäuerle and Rieder 2011 [2], Bielecki et al. 1999 [5], Pitera and Stettner 2016 [21],
Stettner 1999 [26]), and in large deviations (Balaji and Meyn 2000 [4], Kontoyiannis
and Meyn, 2003 [18]).

The remainder of the paper is organized as follows: In Section 2 the Markov stopping
game is formally defined, the performance criterion is formulated, the concept of Nash
equilibrium is introduced and the main structural conditions are stated as Assumption
2.1. Next, the main conclusions of the paper are presented as Theorem 3.3, a result that
is proved in Section 5 after the necessary preliminaries given in Section 4. The approach
to achieve this goal is to apply results referent to stopping times as well as dynamic
programming techniques. Finally, the paper concludes with some brief comments in
Section 6.

Notation: Given a nonempty setM, the Banach space B(M) consist of all continuous
functions R : M → R whose supremum norm ∥R∥ is finite, where ∥R∥ := supk∈M |R(k)|,
whereas N stands for the set of nonnegative integers. The indicator function of an
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event A is denoted by I[A] and, even without explicit mention, all relations involving
conditional expectations are valid with probability 1 with respect to the underlying
probability measure. The minimum of the empty set is ∞ and, finally, the following
convention concerning summations will be used:

m∑
t=n

at := 0, m < n. (1)

2. THE MODEL

In this section the dynamic model studied in the paper is formally introduced. A Markov
stopping game with two players labeled I and II is given by G = (S,A, {A(x)}x∈S , R,G, P ),
a mathematical structure whose components have the following meaning: The (nonempty)
denumerable set S is the state space and is endowed with the discrete topology, the metric
space A is the action set and, for each x ∈ S, A(x) ⊂ A is the nonempty class of admissi-
ble actions at x for player I. The next components, R ∈ B(K) and G ∈ B(S) are the run-
ning and terminal reward functions, respectively, where K : = {(x, a) | a ∈ A(x), x ∈ S}
is the class K of admissible pairs. Finally, P = [px,y(a)] is the controlled transition
law on S given K, so that px,y(a) ≥ 0 and

∑
y∈S px,y(a) = 1 for each (x, a) ∈ K. The

evolution of the dynamic system is as follows: Each player observes the state of the
system at each time t ∈ N, say Xt = x ∈ S, and player II must select one of two actions:
To stop the system paying a terminal reward G(x) to player I, or to let the system to
continue its evolution. In this latter case, using the observed state Xt = x as well the
record of previous states and actions, player I selects and applies an action (control)
At = a ∈ A(x), an intervention which has two consequences: (a) player I gets a reward
R(x, a) from player II, and (b) the system jumps to Xt+1 = y ∈ S with probability
px y(a); this is the Markov property of the decision process. The following structural
assumption will be enforced.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.

(ii) For every x, y ∈ S, the mappings a 7→ R(x, a) and a 7→ px,y(a) are continuous in
a ∈ A(x).

(iii) G(x) ≥ 0 for ech x ∈ S.

(iv) There exists δ > 0 such that R(x, a) ≥ δ for every (x, a) ∈ K.

Decision Strategies. Consider the model G defined above and, for each t = 0, 1, ...
define the space Ht of possible histories up to time t as H0 := S and Ht := Kt ×S when
t > 0. A generic element of Ht is a vector of the form ht = (x0, a0, . . . , xi, ai, . . . , xt)
where ai ∈ A(xi) and xi ∈ S. Then a control policy is a sequence π = {πt} of stochastic
kernels, that is, for each t ∈ N and ht ∈ Ht, πt(·|ht) is a probability measure on A
concentrated on A(xt), and the mapping ht 7→ πt(B|ht), ht ∈ Ht, is Borel measurable
for each Borel subset B ⊂ A. The class of all policies constitutes the family of admissible
strategies for player I and is denoted by P. Thus, when player I drives the system using
π, the control At applied at time t belongs to B ⊂ A with probability πt(B|ht), where
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ht is the observed history of the process up to time t. Given the policy π ∈ P and the
initial state X0 = x, the distribution of the state-action process {(Xt, At)} is uniquely
determined (Hernández-Lerma 1988 [15], Puterman 1994 [22]); such distribution is de-
noted by Pπ

x which is defined on the Borel σ-field of the space H :=
∏∞

t=0 K, and the
corresponding expectation operator is denoted by Eπ

x . Next, define F :=
∏

x∈S A(x) and
notice that F is a compact metric space, which consists of all functions f : S → A such
that f(x) ∈ A(x) for each x ∈ S. A policy π is stationary if there exists f ∈ F such
that πt({f(xt)}|ht) = 1, and in this case π and f are naturally identified, a convention
allowing to write F ⊂ P. Next, let the σ-algebra Ft be defined by

Ft : = σ(X0, A0, . . . , Xt−1, At−1, Xt), t ∈ N, (2)

and define T as the class of all stopping times τ : H → N ∪ {∞} with respect to the
filtration {Ft}, that is, for each nonnegative integer t, the event [τ = t] belongs to Ft.
T corresponds to the space of strategies for player II.

Exponential Utility. Throughout the remainder it is supposed that player I has a
constant risk-sensitivity coefficient λ ̸= 0, which means that a random reward Y is
assessed via the expectation of Uλ(Y ), where the utility function Uλ : R → R is defined
by

Uλ(x) := sign(λ)eλx, x ∈ S; (3)

observe that Uλ(·) is a strictly increasing function and that the following relation holds

Uλ(x+ y) = eλxUλ(y), x, y ∈ R; (4)

as usual, set Uλ(∞) := ∞ if λ > 0 and Uλ(∞) : = 0 if λ < 0. When choosing
between two random rewards W and Y , player I prefers Y if E[Uλ(W )] < E[Uλ(Y )],
and is indifferent between both rewards when E[Uλ(W )] = E[Uλ(Y )]. The certainty
equivalent of Y (with respect to Uλ) is the constant Eλ(Y ) ∈ R ∪ {−∞,∞} satisfying
Uλ(Eλ(Y )) = E[Uλ(Y )], so that player I is indifferent between receiving a random reward
Y or the corresponding certainty equivalent Eλ(Y ); observe that

Eλ(Y ) := log(E[eλY ])/λ. (5)

Performance Criterion. Given the initial state X0 = x ∈ S, suppose that players
I and II drive the system using strategies π ∈ P and τ ∈ T , respectively. The total
(random) reward obtained by player I until the system is halted at time τ by player II
is given by

I[τ < ∞]

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)
+ I[τ = ∞]

τ−1∑
t=0

R(Xt, At)

and the corresponding certainty equivalent is the performance index Vλ(x;π, τ) associ-
ated with the pair (π, τ) ∈ P × T at state x ∈ S, that is,

Vλ(x;π, τ) : =
1

λ
log
(
Eπ

x

[
I[τ < ∞]eλ(

∑τ−1
t=0 R(Xt,At)+G(Xτ )) + I[τ = ∞]eλ

∑∞
t=0 R(Xt,At)

])
;

(6)
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see (5). Observe that the nonnegativity of R and G yield that

Vλ(x;π, τ) ≥ 0, (7)

and that (6) is equivalent to

Uλ(Vλ(x;π, τ)) = Eπ
x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)
I[τ < ∞]

]
(8)

+ Eπ
x

[
Uλ

( ∞∑
t=0

R(Xt, At)

)
I[τ = ∞]

]
.

Given that player II employs the strategy τ and the initial state is x, player I tries to use
a policy π̃ such that Vλ(x; π̃, τ) = supπ∈P Vλ(x;π, τ), which is a function of x and τ , say
φ(x; τ). In this work it is supposed that the main objective of player II is to minimize
the utility gained by player I, and then player II will try to use a stopping time τ̃ such
that φ(x; τ̃) is as close as possible to infτ∈T φ(x; τ), which is the (upper-)value function
of the game and is explicitly determined by

V ∗
λ (x) : = inf

τ∈T

[
sup
π∈P

Vλ(x;π, τ)

]
, x ∈ S. (9)

Interchanging the order in which the supremum and the infimum are taken, the following
lower-value function of the game is obtained:

V
λ,∗(x) : = sup

π∈P

[
inf
τ∈T

Vλ(x;π, τ)

]
, x ∈ S. (10)

Since supπ∈P Vλ(x;π, τ) ≥ Vλ(x;π, τ) ≥ infτ∈T Vλ(x;π, τ), these definitions immedi-
ately lead to

V ∗
λ (·) ≥ Vλ,∗(·). (11)

The remainder of the paper is dedicated to establish the existence of a Nash equilibrium,
an idea that is introduced below.

Definition 2.2. A pair (π∗, τ∗) ∈ P × T is a Nash equilibrium if for every state x ∈ S
the following relation holds:

Vλ(x;π, τ
∗) ≤ Vλ(x;π

∗, τ∗) ≤ Vλ(x;π
∗, τ), π ∈ P, τ ∈ T . (12)

It follows that if the strategies π∗ and τ∗ actually used by players I and II form a
Nash equilibrium, then if player II keeps on using strategy τ∗, then the first inequality in
(12) yields that player I does not have any incentive to switch to other policy. Similarly,
the second inequality in (12) implies that if player I keeps on using π∗, then player II
does not have any motivation to change the strategy τ∗ in use. Also, note that if (π∗, τ∗)
is a Nash equilibrium, then (12) implies that

V ∗
λ (·) ≤ sup

π
Vλ(·;π, τ∗) ≤ Vλ(·;π∗, τ∗) ≤ inf

τ
Vλ(x;π

∗, τ) ≤ Vλ,∗(·),



6 M. TORRES-GOMAR, R. CAVAZOS-CADENA, AND H. CRUZ-SUÁREZ

where the left- and right-most inequalities are due to (9) and (10), respectively, so that
via (11), it follows that the upper and lower value functions are equal and coincide
with Vλ(·;π∗, τ∗), and in this case this function is the value of the game. As already
mentioned, the main objective of the paper is to establish the existence of a Nash
equilibrium, and the result in this direction will stated in the following section.

3. MAIN THEOREM

In this section the main result of this note is stated. To this end the notation in [19]
will be followed closely.

Definition 3.1. The space [[0, G]] ⊂ C(S) is defined by

[[0, G]] : = {h ∈ C(S) | 0 ≤ h(x) ≤ G(x)}, (13)

whereas the operator Tλ : [[0, G]] → [[0, G]] is defined as follows: For each W ∈ [[0, G]] and
x ∈ S,

Tλ[W ](x) : = U−1
λ

min

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +W (y))


 . (14)

Using that R and G are nonnegative and that Uλ(·) is increasing, it is not difficult
to prove that Tλ transforms [[0, G]] into itself, as well as to show that the following
monotonicity property holds:

W,W1 ∈ [[0, G]] and W ≤ W1 =⇒ Tλ[W ] ≤ Tλ[W1]. (15)

A most important property of Tλ, which was established in López–Rivero et al. (2022)
[19], states that Tλ is continuous when [[0, G]] is endowed with the topology of pointwise-
convergence.

Lemma 3.2. Under Assumption 2.1, suppose that the sequence {Vn} ⊂ [[0, G]] con-
verges pointwise to V , that is,

lim
n→∞

Vn(y) = V (y), y ∈ S.

In this case, V ∈ [[0, G]] and

lim
n→∞

Tλ[Vn](x) = Tλ[V ](x), x ∈ S.

This result was established as Theorem 4.1 in [19], where the argument relies only
on the properties stated in Assumption 2.1. Next, given λ ̸= 0, define the sequence
{Wλ,n : S → R}n∈N as follows:

Wλ,0 = 0, Wλ,n+1 = Tλ[Wλ,n], n ∈ N. (16)

Since R and G are nonnegative, from (13) – (15) it is not difficult to see that

0 ≤ Wλ,n(x) ≤ Wλ,n+1(x) ≤ G(x), x ∈ S, n ∈ N, (17)
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so that, for each x ∈ S, {Wλ,n(x)} converges to a point in [0, G(x)]. Set

W ∗
λ (x) = lim

n→∞
Wλ,n(x) ∈ [0, G(x)], x ∈ S. (18)

Taking the limit as n goes to ∞ in both sides of the second equality in (16), via Lemma
3.2 it follows that

W ∗
λ = Tλ[W

∗
λ ], (19)

that is W ∗
λ is a fixed point of Tλ. Notice that via Definition 3.1, the above display is

equivalent to

Uλ(W
∗
λ (x)) = min

Uλ(G(x)), sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +W ∗
λ (y))

 , x ∈ S. (20)

Moreover, using Assumption 2.1, the inclusion W ∗
λ ∈ [[0, G]] and the boundedness of G

together imply that there exists a policy f∗ ∈ F such that,∑
y∈S

px,y(f
∗(x))Uλ(R(x, f∗(x)) +W ∗

λ (y))

= sup
a∈A(x)

∑
y∈S

px,y(a)Uλ(R(x, a) +W ∗
λ (y))

 , x ∈ S. (21)

Now, define the subset S∗ of the state space by

S∗ : = {x ∈ S |W ∗
λ (x) = G(x)}, (22)

and let τ∗ be the hitting time of set S∗, that is,

τ∗ : = min{n ∈ N |Xn ∈ S∗}, (23)

so that τ∗ is a stopping time with respect to the filtration {Ft} in (2), and then τ∗

belongs to the space T of admissible strategies for player II. With this notation, the
main conclusion of this note can be stated as follows.

Theorem 3.3. Under Assumption 2.1 the following assertions (i) – (iii) hold.

(i) For every x ∈ S, and π ∈ P

Vλ(x;π, τ
∗) ≤ W ∗

λ (x).

(ii) For every x ∈ S, and τ ∈ T ,

Vλ(x; f
∗, τ) ≥ W ∗

λ (x).

(iii) W ∗
λ (·) = Vλ(·; f∗, τ∗), and the pair (f∗, τ∗) ∈ F× T is a Nash equilibrium .

This theorem will be established in the following section. Throughout the remainder
Assumption 2.1 is enforced.
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4. PROOF OF THE MAIN RESULT

This section contains the main tools that will be used to establish Theorem 3.3. The two
main results are stated separately in two lemmas below using the notation in (16) – (23).

Lemma 4.1. For every x ∈ S

Vλ(x;π, τ
∗) ≤ W ∗

λ (x), π ∈ P. (24)

P r o o f . For each x ∈ S \ S∗, note that W ∗
λ (x) < G(x), by (22). Thus, using (20) it

follows that

Uλ(W
∗
λ (x)) = sup

ã∈A(x)

∑
y∈S

px,y(ã)Uλ(R(x, ã) +W ∗
λ (y))

≥
∑
y∈S

px,y(a)Uλ(R(x, a) +W ∗
λ (y)), x ∈ S \ S∗, a ∈ A(x).

Now let π = {πk} ∈ P be arbitrary. Integrating with respect to π0(·|x) it follows that

Uλ(W
∗
λ (x)) ≥

∑
y∈S

∫
A(x)

px,y(a)Uλ(R(x, a) +W ∗
λ (y))π0(da|x)

= Eπ
x [Uλ(R(X0, A0) +W ∗

λ (X1))] , π ∈ P, x ∈ S \ S∗,

and via the Markov property it follows that

Uλ(W
∗
λ (Xn)) (25)

≥ Eπ
Xn

[Uλ(R(Xn, An) +W ∗
λ (Xn+1))]

= Eπ
x [Uλ(R(Xn, An) +W ∗

λ (Xn+1))| Fn] on the event [Xn ∈ S \ S∗], n ∈ N.

Next, it will be shown that for every x ∈ S and π ∈ P,

Uλ(W
∗
λ (x)) ≥

n∑
k=0

Eπ
x

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗
λ (Xk)

)
I[τ∗ = k]

]
(26)

+ Eπ
x

[
Uλ

(
n−1∑
k=0

R(Xk, Ak) +W ∗
λ (Xn)

)
I[τ∗ > n]

]
, n ∈ N.

To establish this assertion consider the following two cases:

Case 1: x ∈ S∗.

In this case, using that Pπ
x [X0 = x] = 1 it follows from (23) that τ∗ = 0 Pπ

x -a. s., and
then the right-hand-side of (26) simplifies to

Eπ
x

[
Uλ

(
0−1∑
t=0

R(Xt, At) +W ∗
λ (X0)

)
I[τ∗ = 0]

]
= Eπ

x [Uλ (W
∗
λ (X0))] = Uλ(W

∗
λ (x))

so that (26) is equivalent to the true statement Uλ(W
∗
λ (x)) ≥ Uλ(W

∗
λ (x)).
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Case 2: x ∈ S \ S∗.

In this context, it will be shown, by induction, that (26) is valid for every π ∈ P.
Observing that Pπ

x [τ
∗ = 0] = 0 = 1− Pπ

x [τ
∗ > 0], by (23), for n = 0 (26) simplifies to

Uλ(W
∗
λ (x)) ≥ Eπ

x

[
Uλ

(
0−1∑
k=0

R(Xk, Ak) +W ∗
λ (X0)

)
I[τ∗ > 0]

]
= Eπ

x [Uλ (W
∗
λ (X0)) I[τ

∗ > 0]] = Uλ(W
∗
λ (x))

showing that the claim is valid for n = 0. Suppose now that (26) holds for some n ∈ N,
and observe that

(a)
∑n−1

k=0 R(Xk, Ak) +W ∗
λ (Xn) and I[τ∗ > n] are Fn-measurable, by (2), as well as

(b) I[τ∗ > n] = [Xk /∈ S∗, 0 ≤ k ≤ n] ⊂ [Xn /∈ S∗]. Thus

Eπ
x

[
Uλ

(
n−1∑
k=0

R(Xk, Ak) +W ∗
λ (Xn)

)
I[τ∗ > n]

∣∣∣∣∣Fn

]

= Uλ

(
n−1∑
k=0

R(Xk, Ak) +W ∗
λ (Xn)

)
I[τ∗ > n] (by (a))

= eλ
∑n−1

k=0 R(Xk,Ak)I[τ∗ > n]Uλ (W
∗
λ (Xn)) (by (4))

≥ eλ
∑n−1

k=0 R(Xk,Ak)I[τ∗ > n]Eπ
x [Uλ(R(Xn, An) +W ∗

λ (Xn+1))| Fn]

= Eπ
x

[
Uλ

(
n∑

k=0

R(Xk, Ak) +W ∗
λ (Xn+1)

)
I[τ∗ > n]

∣∣∣∣∣Fn

]

where the inequality was obtained combining (25) with property (b), and (4) together
with property (a) were used in the last step. Thus,

Eπ
x

[
Uλ

(
n−1∑
k=0

R(Xk, Ak) +W ∗
λ (Xn)

)
I[τ∗ > n]

]

≥ Eπ
x

[
Uλ

(
n∑

k=0

R(Xk, Ak) +W ∗
λ (Xn+1)

)
I[τ∗ > n]

]

= Eπ
x

[
Uλ

(
n∑

k=0

R(Xk, Ak) +W ∗
λ (Xn+1)

)
I[τ∗ = n+ 1]

]

+ Eπ
x

[
Uλ

(
n∑

k=0

R(Xk, Ak) +W ∗
λ (Xn+1)

)
I[τ∗ > n+ 1]

]

and combining this relation with the induction hypothesis it follows that (26) holds with
n + 1 instead of n, completing the induction argument, so that (26) is also valid when
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x ∈ S \ S∗. To conclude, using that W ∗
λ is nonnegative, notice that (26) implies that

Uλ(W
∗
λ (x)) ≥

n∑
k=0

Eπ
x

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗
λ (Xk)

)
I[τ∗ = k]

]
(27)

+ Eπ
x

[
Uλ

(
n−1∑
k=0

R(Xk, Ak))

)
I[τ∗ > n]

]
, x ∈ S, π ∈ P.

Observe now that, by monotone convergence, as n → ∞
n∑

k=0

Eπ
x

[
eλ(

∑k−1
t=0 R(Xt,At)+W∗

λ (Xk))I[τ∗ = k]
]
→

∞∑
k=0

Eπ
x

[
eλ(

∑k−1
t=0 R(Xt,At)+W∗

λ (Xk))I[τ∗ = k]
]

=

∞∑
k=0

Eπ
x

[
eλ(

∑k−1
t=0 R(Xt,At)+W∗

λ (Xτ∗ ))I[τ∗ = k]
]

=

∞∑
k=0

Eπ
x

[
eλ(

∑k−1
t=0 R(Xt,At)+G∗

λ(Xτ∗ ))I[τ∗ = k]
]

= Eπ
x

[
e
λ
(∑τ∗−1

t=0 R(Xt,At)+G∗
λ(Xτ∗ )

)
I[τ∗ < ∞]

]
,

where the the second equality is due to the fact that W ∗
λ (Xτ∗) = G(Xτ∗) on the event

[τ∗ < ∞]. Via (3) the above convergence is equivalent to

lim
n→∞

n∑
k=0

Eπ
x

[
Uλ

(
k−1∑
t=0

R(Xt, At) +W ∗
λ (Xk)

)
I[τ∗ = k]

]
(28)

= Eπ
x

[
Uλ

(
τ∗−1∑
t=0

R(Xt, At) +G(Xτ∗)

)
I[τ∗ < ∞]

]
.

On the other hand, using that R is nonnegative, the monotonicity of Uλ yields that

lim
n→∞

Uλ

(
n−1∑
k=0

R(Xk, Ak))

)
= Uλ

( ∞∑
k=0

R(Xk, Ak)

)
,

and combining this convergence with I[τ∗ > n] ↘ I[τ∗ = ∞] as n → ∞, it follows that

lim
n→∞

Uλ

(
n−1∑
k=0

R(Xk, Ak))

)
I[τ∗ > n] = Uλ

( ∞∑
k=0

R(Xk, Ak))

)
I[τ∗ = ∞]. (29)

Now, assume that λ > 0. In this context Uλ(·) is nonnegative, and via Fatou’s lemma
it follows that

lim inf
n→∞

Eπ
x

[
Uλ

(
n−1∑
k=0

R(Xk, Ak))

)
I[τ∗ > n]

]
≥ Eπ

x

[
Uλ

( ∞∑
k=0

R(Xk, Ak))

)
I[τ∗ = ∞]

]
.

(30)



Risk-sensitive Markov stopping games 11

On the other hand, if λ is negative it follows that
∣∣∣Uλ

(∑n−1
k=0 R(Xk, Ak))

)∣∣∣ ≤ 1, since

R is nonnegative, and then

lim
n→∞

Eπ
x

[
Uλ

(
n−1∑
k=0

R(Xk, Ak))

)
I[τ∗ > n]

]
= Eπ

x

[
Uλ

( ∞∑
k=0

R(Xk, Ak))

)
I[τ∗ = ∞]

]
,

by dominated convergence, so that (30) also holds in this case. Now, taking the inferior
limit as n goes to ∞ in (27), via (28) and (30) it follows that

Uλ(W
∗
λ (x)) ≥ Eπ

x

[
Uλ

(
τ∗−1∑
t=0

R(Xt, At) +G∗
λ(Xτ∗)

)
I[τ∗ < ∞]

]

+ Eπ
x

[
Uλ

( ∞∑
k=0

R(Xk, Ak))

)
I[τ∗ = ∞]

]
= Uλ(V (x;π, τ∗)), x ∈ S, π ∈ P;

where (8) was used to set the equality, and the conclusion follows using the strict mono-
tonicity of Uλ(·). □

Lemma 4.2. For every x ∈ S and τ ∈ T assertions (i) and (ii) hold:

(i) For each n ∈ N,

Uλ(W
∗
λ (x)) ≤ Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +W ∗
λ (Xτ )

)
I[τ ≤ n]

]
(31)

+ Ef∗

x

[
Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ ≥ n+ 1]

]
.

(ii) W ∗
λ (x) ≤ Vλ(x; f

∗, τ).

P r o o f . Combining (20) and (21) it follows that

Uλ(W
∗
λ (x)) ≤

∑
y∈S

px,y(f
∗(x))Uλ(R(x, f∗(x)) +W ∗

λ (y)), x ∈ S, (32)

a relation that via the Markov property leads to

Uλ(W
∗
λ (Xn)) ≤ Ef∗

x [Uλ(R(Xn, An) +W ∗
λ (Xn+1))| Fn] , x ∈ S, n ∈ N. (33)

Next, (31) will be verified by induction. Let x ∈ S and τ ∈ T be arbitrary. Since τ
attains values in N∪ {∞}, combining convention (1) with the equality P f∗

x [X0 = x] = 1
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it follows that

Uλ(W
∗
λ (x)) = Uλ(W

∗
λ (X0))I[τ = 0] + Uλ(W

∗
λ (X0))I[τ ≥ 1]

= Uλ

(
0−1∑
t=0

R(Xt, At) +W ∗
λ (X0)

)
I[τ = 0] + Uλ(W

∗
λ (X0))I[τ ≥ 1]

≤ Uλ

(
0−1∑
t=0

R(Xt, At) +W ∗
λ (X0)

)
I[τ = 0]

+ I[τ ≥ 1]Ef∗

x [Uλ(R(X0, A0) +W ∗
λ (X1))| F0]

= Uλ

(
0−1∑
t=0

R(Xt, At) +W ∗
λ (Xτ )

)
I[τ = 0]

+ Ef∗

x [Uλ(R(X0, A0) +W ∗
λ (X1))I[τ ≥ 1]| F0] , P f∗

x -a. s.

where (33) with n = 0 was used to set the inequality, and the inclusion [τ ≥ 1] ∈ F0

was used in the last step. Taking the expectation with respect to P f∗

x , the above display
yields the case n = 0 of (31). Next, assume that n ∈ N is such that (31) is valid, and
observe that

Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ ≥ n+ 1]

= Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ = n+ 1]

+ Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ ≥ n+ 2]

whereas, using (4),

Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ ≥ n+ 2]

= eλ
∑n

t=0 R(Xt,At)I[τ ≥ n+ 2]Uλ (W
∗
λ (Xn+1))

≤ eλ
∑n

t=0 R(Xt,At)I[τ ≥ n+ 2]Ef∗

x [Uλ(R(Xn+1, An+1) +W ∗
λ (Xn+2))| Fn+1]

= Ef∗

x

[
Uλ

(
n+1∑
t=0

R(Xt, At) +W ∗
λ (Xn+2)

)
I[τ ≥ n+ 2]

∣∣∣∣∣Fn+1

]

where (33) with n + 1 instead of n was used to set the inequality, and the second
equality was obtained combining (4) with the fact that eλ

∑n
t=0 R(Xt,At)I[τ ≥ n + 2] is
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Fn+1-measurable. These two last displays together imply that

Ef∗

x

[
Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ ≥ n+ 1]

]

≤ Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +W ∗
λ (Xτ )

)
I[τ = n+ 1]

]

+ Ef∗

x

[
Uλ

(
n+1∑
t=0

R(Xt, At) +W ∗
λ (Xn+2)

)
I[τ ≥ n+ 2]

]
,

and combining this relation with the induction hypothesis it follows that (31) holds with
n+ 1 instead of n, completing the induction argument.

(ii) Consider the following exhaustive cases:

Case 1: λ > 0, so that the increasing function Uλ(·) is nonnegative.
In this context, observe that following facts (a) and (b):

(a) Notice that Uλ(
∑∞

k=0 R(Xk, Ak)) = ∞, by Assumption 2.1(iv). Thus, if P f∗

x [τ =
∞] > 0 then

Ef∗

x

[
Uλ

( ∞∑
k=0

R(Xk, Ak)

)
I[τ = ∞]

]
= ∞;

in this case ∞ = Vλ(x; f
∗, τ), by (8), and it follows that

Vλ(x; f
∗, τ) ≥ W ∗

λ (x). (34)

(b) If Ef∗

x

[
Uλ

(∑τ−1
k=0 R(Xk, Ak)

)
I[τ < ∞]

]
= ∞ then, using that G(·) ≥ 0,

Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) +G(Xτ )

)
I[τ < ∞]

]

≥ Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak)

)
I[τ < ∞]

]
= ∞

and via (8) it follows that (34) also holds.

By (a) and (b), to establish (34) in the general case, it is now sufficient to assume that

P f∗

x [τ = ∞] = 0 and Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak)

)
I[τ < ∞]

]
< ∞. (35)

Under these conditions, the monotone convergence theorem yields that, as n → ∞,

Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) +W ∗
λ (Xτ )

)
I[τ ≤ n]

]
(36)

↗ Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) +W ∗
λ (Xτ )

)
I[τ < ∞]

]
.
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Next, observe that (4) and (35) together imply that

Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) +W ∗
λ (Xτ )

)
I[τ < ∞]

]

≤ Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) + ∥W ∗
λ∥

)
I[τ < ∞]

]

≤ eλ∥W
∗
λ∥Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak)

)
I[τ < ∞]

]
< ∞,

and then (36) immediately yields that

Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) +Wλ(Xτ )

)
I[τ ≥ n+ 1]

]
(37)

= Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) +Wλ(Xτ )

)
I[τ < ∞]

]

− Ef∗

x

[
Uλ

(
τ−1∑
k=0

R(Xk, Ak) +Wλ(Xτ )

)
I[τ ≤ n]

]
→ 0 as n → ∞.

On the other hand, using (4) repeatedly, observe that

0 ≤ Ef∗

x

[
Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ ≥ n+ 1]

]

≤ Ef∗

x

[
Uλ

(
n∑

t=0

R(Xt, At) + ∥W ∗
λ∥

)
I[τ ≥ n+ 1]

]

≤ eλ∥W
∗
λ∥Ef∗

x

[
Uλ

(
n∑

t=0

R(Xt, At)

)
I[τ ≥ n+ 1]

]

≤ eλ∥W
∗
λ∥Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At)

)
I[τ ≥ n+ 1]

]

≤ eλ∥W
∗
λ∥Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)
I[τ ≥ n+ 1]

]
,

where the third inequality is due to the fact that Uλ

(∑τ−1
t=0 R(Xt, At)

)
≥ Uλ (

∑n
t=0 R(Xt, At))

on the event [τ ≥ n + 1], and the fourth inequality is due to the nonnegativity of G.
Thus,

Ef∗

x

[
Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)
I[τ ≥ n+ 1]

]
→ 0 as n → ∞.
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Taking the limit as n goes to ∞ in both sides of (31), the above convergence and (36)
together imply that

W ∗
λ (x) ≤ Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +W ∗
λ (Xτ )

)
I[τ < ∞]

]

≤ Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)
I[τ < ∞]

]
where the inequality W ∗

λ (·) ≤ G(·) was used in the last step. Recalling that the condition
that P f∗

x [τ = ∞] = 0 is in force, the above relation and (8) together yield that W ∗
λ (x) ≤

Vλ(x; f
∗, τ).

Case 2: λ < 0, so that |Uλ(·)| is decreasing and Uλ(x) ∈ [−1, 0) when x ∈ [0,∞),
by (3).

In this context, Assumption 2.1(iv) yields that∣∣∣∣∣Uλ

(
τ−1∑
k=0

R(Xk, Ak) +W (Xτ )

)∣∣∣∣∣ = eλ(
∑τ−1

k=0 R(Xk,Ak)+W (Xτ ))

≤ eλ∥W∥ (eλδ)n+1
on the event [τ ≥ n+ 1],

and it follows that

Ef∗

x

[∣∣∣∣∣Uλ

(
n∑

t=0

R(Xt, At) +W ∗
λ (Xn+1)

)∣∣∣∣∣ I[τ ≥ n+ 1]

]
≤ eλ∥W

∗
λ∥ (eλδ)n+1 → 0 as n → ∞.

On the other hand, observe that
∣∣∣Uλ

(∑τ−1
t=0 R(Xt, At) +W ∗

λ (Xτ )
)∣∣∣ ≤ 1, since R and

W ∗
λ are nonnegative, and the the dominated convergence theorem implies that

lim
n→∞

Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +W ∗
λ (Xτ )

)
I[τ ≤ n]

]

= Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +W ∗
λ (Xτ )

)
I[τ < ∞]

]
Taking the limit as n goes to ∞ in (31) the two last displays together imply that

Uλ(W
∗
λ (x)) ≤ Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +W ∗
λ (Xτ )

)
I[τ < ∞]

]

≤ Ef∗

x

[
Uλ

(
τ−1∑
t=0

R(Xt, At) +G(Xτ )

)
I[τ < ∞]

]
where the second inequality is due to the inclusion W ∗

λ ∈ [[0, G]]. Finally, observe that
Assumption 2.1(iv) implies that Uλ (

∑∞
t=0 R(Xt, At)) = 0, and combining this equality

with the above display and (8) it follows that Uλ(W
∗
λ (x)) ≤ Uλ(Vλ(x, f

∗, τ)), so that
W ∗

λ (x) ≤ Vλ(x, f
∗, τ). □
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5. PROOF OF THE MAIN RESULT

After the preliminaries in the previous section, Theorem 3.3 can be established as follows.

P r o o f o f t h e Th e o r em 3.3 Notice that parts (i) and (ii) follows from Lemmas 4.1
and 4.2, respectively. Next, parts (i) and (ii) together lead to

Vλ(·;π, τ∗) ≤ W ∗
λ (·) ≤ Vλ(·; f∗, τ), (π, τ) ∈ P × T ,

and setting (π, τ) = (f∗, τ∗) it follows that W ∗
λ (·) = Vλ(·; f∗, τ∗), so that (f∗, τ∗) is a

Nash equilibrium, by Definition 2.2. □

6. CONCLUSION

In this work, Markov stopping games on a denumerable state space were studied. The
performance of a pair of strategies was measured by the risk-sensitive total reward crite-
rion, and the problem of establishing the existence of a Nash equilibrium was analyzed.
Apart from standard continuity-compactness requirements, the basic conditions on the
system concern with the reward structure: The terminal reward G is nonnegative, and
the running reward R attains values in a compact interval contained in (0,∞). The
main result of the paper, stated in Theorem 3.3, establishes that the value of the game
is the fixed point W ∗

λ of the operator Tλ in Definition 3.1, and that W ∗
λ determines a

Nash equilibrium. Extending the results in this work to more general frameworks seems
to be an interesting problem.
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[24] K. Sladký: Risk-sensitive Ramsey growth model. In: Proce. 27th International Con-
ference Mathematical Methods in Economics 2010 (M. Houda and J. Friebelová, eds.),
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Autónoma de Puebla, Ave. San Claudio y Rı́o Verde, Col. San Manuel CU, Puebla,
PUE, 72570. México.
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