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KYBERNET IKA — VOLUME 6 0 ( 2 0 2 4 ) , NUMBER 1 , PAGES 6 0 – 7 5

FINITE-TIME OBSERVABILITY OF PROBABILISTIC
BOOLEAN MULTIPLEX CONTROL NETWORKS

Yuxin Cui, Shu Li, and Yunxiao Shan

This paper investigates the finite-time observability of probabilistic Boolean multiplex con-
trol networks (PBMCNs). Firstly, the finite-time observability of the PBMCNs is converted
into the set reachability issue according to the parallel interconnection technique (a minor
modification of the weighted pair graph method in the literature). Secondly, the necessary and
sufficient condition for the finite-time observability of PBMCNs is presented based on the set
reachability. Finally, the main conclusions are substantiated by providing illustrative examples.

Keywords: finite-time observability, semi-tensor product, probabilistic Boolean multiplex
control networks, set reachability

Classification: 93B07,93C10,93E03

1. INTRODUCTION

In 1969, Kauffman [13, 14] introduced the Boolean networks (BNs) model, which elu-
cidated the underlying mechanism of order generation and pioneered a novel research
domain for investigating complex systems. Through the BNs, the macro-behavior and
micro-mechanism of complex systems are combined, which not only gives us method-
ological enlightenment to study complex systems, but also presents a novel approach to
address the complexity issues in the real world, specifically in systems biology [15, 1],
chemistry [12], engineering [17], social networks [31], etc. Recently, the introduction of
the semi-tensor product (STP) has led to significant advancements in addressing various
theoretical challenges associated with BNs, such as disturbance decoupling [3], stabil-
ity and stabilization [2, 32, 43, 29, 36], reachability [45, 28], controllability [30, 19, 35],
synchronization [48], optimal control [34, 39, 40] and other related problems [37, 7, 10].

Observability, as one of the most important concepts in control theory, has always
been the focus of researchers. At present, there have been many achievements about the
observability of BNs/Boolean control networks (BCNs). For example, the main result
of [16] is that the problem of determining whether a BN/BCN/ABN is observable is
NP-hard. In [46], Zhang et al. successfully addressed the problem of determining the
observability of BCNs using finite automata technology, and in [47], they solved the
observability problem of switched BCNs by employing both finite automata theory and
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formal language theory. Subsequently, inspired by [46] and [47], Cheng et al. [5] pro-
posed an equivalent method to study the observability of BCNs. Driven by the above
researches, Zhu et al. [50] gived some results related to the observability of BCNs based
on the knowledge of graph theory. In [11], Guo et al. gave the necessary and sufficient
conditions of several different types of observability. In [4], Cheng et al. obtained suffi-
cient and necessary conditions for the observability of Boolean control networks by using
set controllability. In fact, in essence, these methods in literature [50],[11],[4] are equiv-
alent to the method proposed by [46]. Li et al. respectively discussed the observability
of BNs/BCNs with impulsive effect, state delay and redundant channels [22, 23, 21]. In
[44], Zhu et al. studied the controllability and observability of sampled-data BCNs, and
gave the necessary and sufficient conditions for controllability and observability. Besides,
some recent developments about BNs/BCNs are shown in [24, 25, 26, 42, 38, 18]. In [49],
Guo et al. investigated the set reachability and observability of probabilistic Boolean
networks (PBNs). In [20], Fornasini et al. addressed the observability and reconfigura-
tion of PBNs within finite time intervals. In [27], Li et al. studied the observability of
PBNs on the premise that the initial state is not clearly known.

Compared to the extensive research conducted on with BNs, BCNs, and PBNs, stud-
ies related to the observability of probabilistic Boolean control networks (PBCNs) are
still in their nascent stage. In [33], several types of observability of PBCNs have been
studied. On this basis, in order to understand the evolution of complex biological systems
with many levels and interactions, multi-layer networks have been proposed as a new
description. It is worth noting that the multi-layer network not only provides a multi-
level model for constructing biochemical systems, but also can better describe richer
interaction structures, and motivated by the work [41] of Wu et.al, we aim to consider
integrally the interaction among nodes across different layers by constructing a global
state layer in this paper. Indeed, numerous distinct signal channels do work in parallel in
cellular biochemical networks. Besides cellular biochemical network, multilayer network
has extensive applications in natural science, social science and information science.
Based on the aforementioned discussion, it becomes evident that studying the observ-
ability of PBMCNs is both meaningful and challenging. Although the literature [33] has
already explored the observability of PBCNs, a significant distinction remains: Even for
the degenerated PBMCNs, their observability differs from the single-layer PBCNs’ due
to the presence of a global state layer in our system, which deviates from conventional
coupling mechanisms.

The following are the primary contributions of this paper:

1) In this paper, the PBMCNs with global state layer is proposed, which can simulate
more complex dynamic systems. The conclusion of this paper is exemplified by a
case study conducted in a chain supermarket.

2) Through parallel interconnection technology, the observability of PBMCNs can
be equivalently converted into the set reachability issue of augmented intercon-
nected PBMCNs, and the necessary and sufficient condition for the finite-time
observability is provided.

The rest of this paper is arranged as follows. In Section 2, necessary preliminaries
used in the paper are provided, the definitions of observability and the necessary and
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sufficient condition for the set reachability of PBMCNs are introduced. In Section 3, the
finite-time observability is investigated by parallel interconnection technology. Section
4 illustrates the proposed approach with a case study on chain supermarket. Finally,
Section 5 provides a brief conclusion.

Notation: Ik: k × k identity matrix. D = {0, 1}: the logic domain, Dk: the set of
k-dimensional column vector with entries logical values 0, 1. ∆k denotes the set of all
of the columns of Ik. δin denotes i-th column of In, δ

0
n denotes n-dimensional vector

[0 0 . . . 0]T , and δn[i1, i2, . . . , im] denotes matrix H with Cols(H) = δisn . [H]i,j is the
element at ith row jth column of matrix H, Coli(H) denotes ith column of matrix H.
Rm denotes the set of m-dimensional column vectors, Ln×m denotes the set of logic
matrices with n ×m dimensions (For a matrix H, if each column of it belongs to ∆n,
then the matrix H is called a logic matrix), Rn×m denotes the set of real matrices with
n × m dimensions. [U : V ]: {U,U + 1, . . . , V }, where U ≤ V and U, V are positive
integers. 0m×n: m× n null matrix.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1. Preliminaries

Some preliminaries from the sequel are provided in this section.

Definition 2.1. [6] Given two matrices X ∈ Rn×m, Y ∈ Rp×q, the semi-tensor product
of X and Y is

X ⋉ Y = (X ⊗ Iα/m)(Y ⊗ Iα/p),

where α is the least common multiple of m and p, ⊗ is the Kronecker product. The
STP of matrices may be regarded as an extension of the standard matrix product, since
X ⋉ Y = XY when m = p.

Lemma 2.2. [6] Let A ∈ Rm, B ∈ Rn, then W[m,n]⋉A⋉B = B⋉A, where W[m,n] is a
swap matrix with indices m and n, and is defined as W[m,n] = [In⊗ δ1m In⊗ δ2m . . . In⊗
δmm ]. Besides, M is an arbitrary matrix, then, AM = (Im ⊗M)A.

Lemma 2.3. [6] Let f(X1, X2, . . . , Xn) : Dn → D be a Boolean function. Then, there
exists a unique matrix Ff ∈ L2×2n , known as the structure matrix of f , such that

f(X1, X2, . . . , Xn) = Ff ⋉n
i=1 xi,

where xi ∈ ∆2, and Coli(Ff ) = f(δi2n), i = 1, 2, . . . , 2n.

Lemma 2.4. [6] If X ∈ ∆k, X
2 = Mr,kX, where Mr,k is a power-reducing matrix with

index k defined as Mr,k = [δ1k ⊗ δ1k δ2k ⊗ δ2k . . . δkk ⊗ δkk ].

Proposition 2.5. [41] For any node i ∈ {1, 2, . . . , n}, if Φin(i) = {ϵ1, ϵ2, . . . , ϵk}(k ⩽ n),
we can find a suitable dimension matrix Πi such that

Πi ⋉n
i=1 xi = xϵ1xϵ2 . . . xϵk ,

where Φin(i) denotes the set of incoming neighbor of node i.
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2.2. Problem formulation

This section introduces the model of PBMCNs, and converts the network to an algebraic
form using the STP approach.

On the premise of the PBMCNs with J layers and N nodes in each layer, the total
number of different nodes is n (N ≤ n ≤ NJ), which is described as

X(t+ 1) = fθ(t)(X(t), U(t)),

X̃(t+ 1) = f̃θ(t)(X(t), U(t)),

Y (t+ 1) = h(X̃(t+ 1)),

(1)

where X(t) = [X1(t), X2(t), . . . , XJN (t)]T ∈ DJN , X̃(t) = [X̃1(t), X̃2(t), . . . , X̃n(t)]
T ∈

Dn, Y (t) = [Y1(t), Y2(t), . . . , Yn(t)]
T ∈ Dn, and U(t) = [U1(t), U2(t), . . . , Um(t)]T ∈

Dm are logical vectors, and Xi, X̃i,Yj ,Uk ∈ D represent the state of i−th node, i−th
global state node, j−th output node, and k−th control input, respectively. Assume
that X̃(0) = X̃(1) and y(0) = y(1). The stochastic switching signal is denoted by
θ(t) ∈ [1:ξ], where ξ denotes the number of candidates for Boolean multiplex control

networks. Furthermore, for any θ(t) = q ∈ [1 : ξ], fq: DJN+m → DJN and f̃q:
DJN+m → Dn denote the logical functions of the qth overall and global subnetwork
of PBMCNs, respectively. In addition, f̃q also known as the canalizing function, and
h : Dn → Dn denotes the output function.

Remark 2.6. The global state X̃(t + 1) of the network (1) was proposed by Wu et
al. [41], whose purpose is to describe the state of the network from the perspective of

systems biology, where X̃(t+ 1) = ⋉n
i=1X̃i(t+ 1), and X̃i(t+ 1) is written as

X̃i(t+ 1) = f̃i(X
li1
i (t),X

li2
i (t), . . . , X

lis
i (t), U1(t), U2(t), . . . , Um(t)). (2)

Here, the state of node i is represented as x
lis
i when the node i appears in the lis−th

layer, and {li1 , li2 , . . . , lis} ⊆ {1, 2, . . . , J}.

Next, let x(t) = ⋉J
l=1x

l(t) represents the vector form ofX(t), where xl(t) = ⋉ail=1x
l
i(t)

represents the overall state of the lth layer, and ail = 1 if node i in the lth layer, xl
i

denotes the state of node i in the lth layer. x̃(t) = ⋉n
i=1x̃i(t), y(t) = ⋉n

j=1yj(t) and

u(t) = ⋉m
k=1uk(t) represent the vector forms of X̃(t), Y (t) and U(t), respectively. Then,

according to Lemma 2.3, PBMCNs (1) can be rewritten as
x(t+ 1) = Lθ(t)u(t)x(t),

x̃(t+ 1) = L̃θ(t)u(t)x(t),

y(t+ 1) = Hx̃(t+ 1),

(3)

where x(t) ∈ ∆2NJ , x̃(t) ∈ ∆2n , y(t) ∈ ∆2n , u(t) ∈ ∆2m , Lj ∈ L2NJ×2m+NJ , j = θ(t) ∈
[1 : ξ] and L̃j ∈ L2n×2m+NJ , j = θ(t) ∈ [1 : ξ] denote the overall and global structure
matrices of j−th sub-network, respectively. H ∈ L2n×2n denotes the output structure
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matrix. Next, we use ϕ(t) := δ
θ(t)
ξ ∈ ∆ξ to denote the vector form of θ(t). As a result,

the PBMCNs (3) can be expressed as
x(t+ 1) = Lϕ(t)u(t)x(t),

x̃(t+ 1) = L̃ϕ(t)u(t)x(t),

y(t+ 1) = Hx̃(t+ 1),

(4)

where L = [L1, L2, . . . , Lξ], L̃ = [L̃1, L̃2, . . . , L̃ξ]. In this study, we apply the algebraic
form (4) to show our method and results. The overall and global state trajectories of sys-
tem under the stochastic switching signal ϕ(t) and control sequence u = {u(t)} are repre-
sented by x(t;x0, ϕ,u) and x̃(t;x0, ϕ,u), respectively. Let y(t;x0, ϕ,u) = Hx̃(t;x0, ϕ,u)
represents the corresponding output.

Assumed that θ(t) has the following probability distribution: Pr{θ(t) = i} = pθi , i ∈
[1 : ξ], where 0 ≤ pθi ≤ 1 and

∑ξ
i=1 p

θ
i = 1. For simplicity, let pθ := [pθ1, p

θ
2, . . . , p

θ
ξ ]

T . The

vector pθ is referred to as a probability distribution vector of θ(t). The one-step overall

transition probability matrix (TPM) P and global TPM P̃ can therefore be expressed
as follows.

P =
∑ξ

i=1 p
θ
iLi = L⋉ pθ,

P̃ =
∑ξ

i=1 p
θ
i L̃i = L̃⋉ pθ,

Here, P and P̃ can be expressed as P = [P1 P2 . . . P2m ] and P̃ = [P̃1 P̃2 . . . P̃2m ],

Pk ∈ R2JN×2JN and P̃k ∈ R2n×2JN denote the kth block of P and P̃ , respectively. Then,
we have

pij = [Pk]ij = Pr{x(t+ 1) = δi2NJ | x(t) = δj
2NJ , u(t) = δk2m}

and

p̃ij = [P̃k]ij = Pr{x̃(t+ 1) = δi2n | x(t) = δj
2NJ , u(t) = δk2m}.

Afterwards, P (k) and P̃ (k) denote the k-step overall and global TPM of PBMCNs

(4), respectively. Consequently, it holds that P (k) = (L ⋉ pθ)k, P̃ (k) = (L̃ ⋉ pθ)k. In
early work [9], the state transfer graph reconstruction technology was used to study the
finite-time set reachability of PBMCNs (4). This method will transform the PBMCNs

(4) into a random logic dynamical systems by the extended indicator matrices D̂Sc
d
and

D̂S̃c
d
, specific descriptions are as follows

D̂Sc
d
:=


DSc

d
02JN×2JN · · · 02JN×2JN

02JN×2JN DSc
d

· · · 02JN×2JN

...
...

. . .
...

02JN×2JN 02JN×2JN · · · DSc
d


2(m+JN)×2(m+JN)

,

D̂S̃c
d
:=


DS̃c

d
02n×2n · · · 02n×2n

02n×2n DS̃c
d

· · · 02n×2n

...
...

. . .
...

02n×2n 02n×2n · · · DS̃c
d


2(m+JN)×2(m+JN)

,
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where DSc
d
and DS̃c

d
are defined as follows

Colj(DSc
d
) :=

{
δj
2JN , if δj

2JN ∈ Sc
d,

δ02JN , otherwise,

Colj(DS̃c
d
) :=

{
δj2n , if δj2n ∈ S̃c

d,
δ02n , otherwise,

where Sc
d and S̃c

d are the complements of overall target subset Sd and global target subset

S̃d. As a result, the one-step overall TPM P̂ and global TPM P̌ are denoted as

P̂ = L⋉ pθ ⋉ D̂Sc
d
= PD̂Sc

d
,

P̌ = L̃⋉ pθ ⋉ D̂S̃c
d
= P̃D̂S̃c

d
.

(5)

Afterwards, in [9], we define Q̂ and Q̌ as η-step overall and global state TPMs,
respectively.

Q̂ =
(
P̂W[2JN ,2m]

)η
W[2mη,2JN ],

Q̌ =
(
P̌W[2JN ,2m]

)(
P̂W[2JN ,2m]

)η−1
W[2mη,2JN ].

(6)

The η-step overall and global TPM of random logic dynamical systems are splited up
into 2mη matrices, Q̂ and Q̌, as follows

Q̂ = [Q̂1, Q̂2, . . . , Q̂2mη ],
Q̌ = [Q̌1, Q̌2, . . . , Q̌2mη ].

(7)

The symbol
∧
s
has the following definition:


Colj(Q̂q)

∧
s
δ02JN = δ02JN ,

Colj(Q̂q)
∧
s
δk2JN = Colj(Q̂q), k ∈ [1 : 2JN ].

Thus, we have 
Colj(Q̌q)

∧
s
δ02n = δ02n ,

Colj(Q̌q)
∧
s
δk2n = Colj(Q̌q), k ∈ [1 : 2n].

Definition 2.7. For the PBMCNs (4), suppose that the initial subset S0 ⊆ ∆2NJ is the
set of initial states, the overall target subset Sd ⊆ ∆2NJ is the set of overall final states,
and the global target subset S̃d ⊆ ∆2n is the set of global final states.

(i) Sd is said to be overall set reachable with probability one from any initial state
x0 ∈ S0 on [0 :η−1] if, one can find a positive integer t≥ 1 and an input sequence
u such that

Pr{∃t ∈ [0:η−1], s.t. x(t;x0, ϕ,u) ∈ Sd} = 1.
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(ii) S̃d is said to be global set reachable with probability one from any initial state
x0 ∈ S0 on [0 :η−1] if, one can find a positive integer t≥ 1 and an input sequence
u such that

Pr{∃t ∈ [0:η−1], s.t. x̃(t;x0, ϕ,u) ∈ S̃d} = 1.

Theorem 2.8. [9] Considering PBMCNs (4), suppose that S0 = {δj
2JN | j ∈ Θ0}, where

Θ0 is a subset of [1 : 2JN ]. Then, the following two statements hold.

(i) Sd is overall set reachable with probability one from S0 on [0 : η − 1] if and only
if there exists an input sequence u such that

Colj

[∧
s

2mη

q=1

Q̂q

]
= δ02JN , ∀j ∈ Θ0.

(ii) S̃d is global set reachable with probability one from S0 on [0 : η − 1] if and only if
there exists an input sequence u such that

Colj

[∧
s

2mη

q=1

Q̌q

]
= δ02n , ∀j ∈ Θ0.

Before giving the theorem of the finite-time observability of PBMCNs (4), we intro-
duce several sigificant definitions.

Definition 2.9. State x0 ̸= x′
0 are distinguishable, if exists an input sequence u and

an integer t ≥ 0 such that y(t;x0, ϕ,u) ̸= y(t;x′
0, ϕ,u).

Definition 2.10. [41] The PBMCNs (4) is considered to be observable with probability
one on [0 : η] if there exists an input sequence u, such that for any two distinct initial
states x0, x

′
0 ∈ ∆2JN , we have Pr{y(η;x0, ϕ,u) ̸= y(η;x′

0, ϕ,u)} = 1.

Remark 2.11. Different from the definition of observability of PBCNs in [33], the out-
put y of the PBMCNs (4) in this paper is related to the global state x̃, i. e. y = h(x̃)
rather than y = h(x) as defined in [33]. Meanwhile, although the output state y = h(x̃)
can be determined by the global state, conversely, the network structure of a PBM-
CNs with global state layer cannot be obtained. Therefore, it is meaningful to study
PBMCNs with global state layers.

3. FINITE-TIME OBSERVABILITY WITH PROBABILITY ONE

The finite-time observability of PBMCNs is studied in this section. First, the finite-time
observability of PBMCNs is equivalently converted into the finite-time set reachability
of an augmented interconnected PBMCNs. Subsequently, we interconnect PBMCNs (4)
with a duplicate 

x′(t+ 1) = Lϕ(t)u(t)x′(t),

x̃′(t+ 1) = L̃ϕ(t)u(t)x′(t),

y′(t+ 1) = Hx̃′(t+ 1),

(8)
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in parallel. By this means, the observability issue can be transformed into a set reach-
ability issue of the interconnected PBMCNs. Afterwards, let τ(t) := x(t) ⋉ x′(t),
τ̃(t) := x̃(t) ⋉ x̃′(t), κ(t) = y(t) ⋉ y′(t) and ϕτ (t) := ϕ(t), then the state-space of
the interconnected PBMCNs is expressed as

τ(t+ 1) = Lτϕτ (t)u(t)τ(t),

τ̃(t+ 1) = L̃τϕτ (t)u(t)τ(t),

κ(t+ 1) = Γτ̃(t+ 1).

(9)

For convenience, let W1 = W[2JN,(2JN+m)×ξ], W2 = W[(2JN+m)×ξ,(2JN+m)×ξ], W3 =

W[(2m)×ξ,(2JN+m)×ξ] and W4 = W[2n,(2JN+m)×ξ]. Then, Lτ , L̃τ and Γ in (9) can be
expressed as

Lτ = LW1LW2W3Mr,(2m)×ξ,

L̃τ = L̃W4L̃W2W3Mr,(2m)×ξ,

Γ = HW[2n,2n]HW[2n,2n].

Notably, for any τ0 = x0 ⋉ x′
0, we have τ(t; τ0, ϕτ ,u) = x(t;x0, ϕ,u) ⋉ x(t;x′

0, ϕ,u),
and τ̃(t; τ0, ϕτ ,u) = x̃(t;x0, ϕ,u) ⋉ x̃(t;x′

0, ϕ,u), where x(t;x′
0, ϕ,u) and x̃(t;x′

0, ϕ,u)
denote the overall and global solutions to PBMCNs (8) starting from x′

0, respectively.
τ(t; τ0, ϕτ ,u) and τ̃(t; τ0, ϕτ ,u) denote the overall and global solutions to PBMCNs (9)
starting from τ0, respectively. The probability distribution vector of ϕτ (t) is also pθ

since ϕ(t) := ϕτ (t), and the one-step overall and global TPMs of PBMCNs (9) can be
calculated by

P τ = Lτ ⋉ pθ,

P̃ τ = L̃τ ⋉ pθ.

For logical matrix H ∈ ∆2n×2n , we define the H-distinguishable subset as follows:

ΩH := {δi22n = x⋉ x′|HP̃x ̸= HP̃x′}.

Meanwhile, we let ΩI = {x ⋉ x′|x ̸= x′}. Further, the H-indistinguishable subset
ΩI\H is defined as follows:

ΩI\H = {δi2JN ⋉ δj
2JN |Coli(HP̃ ) = Colj(HP̃ ) and i < j}.

In other words, every state τ ∈ ΩI\H corresponds to a state pair (x0, x
′
0) of PBMCNs

(4) that satisfies Hx̃0 = Hx̃′
0, that is Hx̃(1;x0, ϕ,u) = Hx̃(1;x′

0, ϕ,u).

Theorem 3.1. Assume that the PBMCNs (4) has two distinct initial states x0, x
′
0 ∈

∆2JN and an input sequence u. Then, x0 and x′
0 are distinguishable by if and only if

one of the following conditions holds:

(i) x0 ⋉ x′
0 ∈ ΩH .

(ii) x0 ⋉ x′
0 ∈ ΩI\H and there exists a positive integer t ≥ 1 such that τ̃(t;x0 ⋉

x′
0, ϕτ ,u) ∈ ΩH .
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P r o o f . (Sufficiency) According to the definition of ΩH , x0 ⋉ x′
0 ∈ ΩH is equivalent

to HP̃x0 ̸= HP̃x′
0, that is y(1) ̸= y(1)′. According to the Definition 2.10, x0 and x′

0

are distinguishable by u. Besides, if x0 ⋉ x′
0 ∈ ΩI\H , and there exists a positive integer

t ≥ 1 such that τ̃(t;x0 ⋉ x′
0, ϕτ ,u) ∈ ΩH , it means that there exists a positive integer

t ≥ 1 such that Hx̃(t;x0, ϕ,u) ̸= Hx̃(t;x′
0, ϕ,u). Then, by the Definition 2.10, x0 and

x′
0 are distinguishable by u.
(Necessity) According to Definition 2.10, one have x0 and x′

0 are distinguishable by
u. That is to say, y(t;x0, ϕ,u) ̸= y(t;x′

0, ϕ,u) at some later instant t ≥ 0. Then, one
have y(0) = y(1) = Hx̃(1;x0, ϕ,u) ̸= Hx̃(1;x′

0, ϕ,u) = y(1)′ = y(0)′. According to the
definition of H-indistinguishable subset ΩH , it can be concluded that x0⋉x′

0 ∈ ΩH . By
the same token, when x0 ⋉ x′

0 ∈ ΩI\H and y(t;x0, ϕ,u) ̸= y(t;x′
0, ϕ,u) for t ≥ 1, this

means that there exists a positive integer t ≥ 1 such that τ̃(t;x0 ⋉ x′
0, ϕτ ,u) ∈ ΩH . □

According to Theorem 2.8, the observability of PBMCNs (4) is now transformed into
the issue of judging whether the solution of PBMCNs (9) starting from τ0 = x0 ⋉ x′

0 ∈
ΩI\H can reach the ΩH at some instant t > 0. Based on this, inspired by the previous
work [9], the following theorem is presented.

Theorem 3.2. Considering PBMCNs (4) and interconnected PBMCNs (9).

(i) PBMCNs (4) is observable with probability one on [0 : η − 1] if and only if the
subset ΩH is global set reachable with probability one from ΩI\H on [0 : η− 1] for
the interconnected PBMCNs (9).

(ii) Assume that ΩH = {δi22n |i ∈ ΘH} and ΩI\H = {δj
22JN |j ∈ ΘI\H}, where ΘH is

a subset of [1 : 22n] and ΘI\H is a subset of [1 : 22JN ]. Then, PBMCNs (4) is
finite-time observable with probability one on [0 : η − 1] iff

Colj

[∧
s

2mη

q=1

Q̌q

]
= δ022n , ∀j ∈ ΘI\H .

P r o o f . First, we prove the sufficiency of (i). Suppose that the subset ΩH is global set
reachable with probability one from ΩI\H on [0 : η− 1] for the interconnected PBMCNs
(9), then for any τ0 ∈ ΩI\H , one have

Pr{∃t ∈ [0 : η − 1], s.t. τ̃(t; τ0, ϕτ ,u) ∈ ΩH} = 1.

That is to say

Pr{∃t ∈ [0 : η − 1], s.t. τ̃(t; τ0, ϕτ ,u) ∈ ΩH}
= Pr{{τ̃0 ∈ ΩH} ∪ {τ̃(1; τ0, ϕτ ,u) ∈ ΩH} ∪ . . .∪

{τ̃(η − 1; τ0, ϕτ ,u) ∈ ΩH}}
= Pr{

⋃η−1
t=0 {x̃(t;x0, ϕ,u)⋉ x̃(t;x′

0, ϕ,u) ∈ ΩH}}
= Pr{

⋃η−1
t=0 {Hx̃(t;x0, ϕ,u) ̸= Hx̃(t;x′

0, ϕ,u)}}
= Pr{Hx̃(η − 1;x0, ϕ,u) ̸= Hx̃(η − 1;x′

0, ϕ,u)}
= Pr{y(η − 1;x0, ϕ,u) ̸= y(η − 1;x′

0, ϕ,u)} = 1.
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Thus, according to the Definition 2.10, the sufficiency holds.
Next, we prove the necessity of (i). For any given states x0, x

′
0 ∈ ∆2JN , we can get

Pr{y(η − 1;x0, ϕ,u) ̸= y(η − 1;x′
0, ϕ,u)}

=Pr{Hx̃(η−1;x0, ϕ,u) ̸=Hx̃(η − 1;x′
0, ϕ,u)}

=Pr{
⋃η−1

t=0 {Hx̃(t;x0, ϕ,u) ̸=Hx̃(t;x′
0, ϕ,u)}}

=Pr{
⋃η−1

t=0 {x̃(t;x0, ϕ,u)⋉x̃(t;x′
0, ϕ,u)∈ΩH}}

=Pr{{τ̃0∈ΩH}∪{τ̃(1; τ0, ϕτ ,u)∈ΩH}∪. . .∪
{τ̃(η − 1; τ0, ϕτ ,u) ∈ ΩH}}

=Pr{∃t ∈ [0 : η − 1], s.t. τ̃(t; τ0, ϕτ ,u)∈ΩH}.

(10)

Thereby, by (10), it can be easily proved that, for any τ0 ∈ ΩI\H , (8) can be equivalently
expressed as

Pr{∃t ∈ [0 : η − 1], s.t. τ̃(t; τ0, ϕτ ,u) ∈ ΩH} = 1.

Thus, the necessity holds.
Finally, we prove the conclusion (ii). Based on the conclusion (i), one has PBMCNs

(4) can achieve the finite-time observability with probability one, if and only if, the
subset ΩH is global set reachable with probability one from ΩI\H on [0 : η − 1] for the
interconnected PBMCNs (9). Thereby, the claim follows claim (ii) of Theorem 2.8. □

Remark 3.3. Compared with [8], the network model studied in this paper is more
complex and can be used to model gene regulatory networks with random uncertainties.

4. EXAMPLE

Example 4.1. Consider a PBMCNs with 3 layers, each layer has 1 nodes, and the total
number of distinct nodes is 3, which is described as

l = 1 : x1
1(t+ 1) =

{
x1
1(t) ∧ u(t),

¬x1
1(t),

l = 2 : x2
2(t+ 1) = ¬x2

2(t) ↔ u(t),

l = 3 : x3
3(t+ 1) =


¬x3

3(t),

0,

x3
3(t) ∨ u(t).

The global state layer is described as
x̃1(t+ 1) = ¬x1

1(t),

x̃2(t+ 1) = x2
2(t),

x̃3(t+ 1) = x3
3(t).
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Then, we can obtain the global TPM

P̃ =


0 0 0 0 0.15 0.4 0.15 0.25
0 0 0 0 0.35 0.1 0.35 0.25

0.15 0.4 0.15 0.25 0 0 0 0
0.35 0.1 0.35 0.25 0 0 0 0
0 0 0 0 0.15 0.4 0.15 0.25
0 0 0 0 0.35 0.1 0.35 0.25

0.15 0.4 0.15 0.25 0 0 0 0
0.35 0.1 0.35 0.25 0 0 0 0

0.15 0.4 0.15 0.25 0 0 0 0
0.35 0.1 0.35 0.25 0 0 0 0
0 0 0 0 0.15 0.4 0.15 0.25
0 0 0 0 0.35 0.1 0.35 0.25

0.15 0.4 0.15 0.25 0 0 0 0
0.35 0.1 0.35 0.25 0 0 0 0
0 0 0 0 0.15 0.4 0.15 0.25
0 0 0 0 0.35 0.1 0.35 0.25

 .

and the overall TPM

P =


0 0 0.15 0.4 0 0 0.15 0.4
0 0 0.35 0.1 0 0 0.35 0.1

0.15 0.4 0 0 0.15 0.4 0 0
0.35 0.1 0 0 0.35 0.1 0 0
0 0 0.15 0.4 0 0 0.15 0.4
0 0 0.35 0.1 0 0 0.35 0.1

0.15 0.4 0 0 0.15 0.4 0 0
0.35 0.1 0 0 0.35 0.1 0 0

0 0 0 0 0.15 0.25 0 0
0 0 0 0 0.35 0.25 0 0
0 0 0 0 0 0 0.15 0.25
0 0 0 0 0 0 0.35 0.25
0.3 0.5 0 0 0.15 0.25 0 0
0.7 0.5 0 0 0.35 0.25 0 0
0 0 0.3 0.5 0 0 0.15 0.25
0 0 0.7 0.5 0 0 0.35 0.25

 .

On the premise of PBMCNs (4), we can obtain ΩI\H and ΩH of the PBMCNs (9) as

ΩI\H = {δ364, δ3964},

ΩH={δ264, δ464, δ564, δ664, δ764, δ864, δ964, δ1164 , . . . , δ6164 , δ6264 , δ6364}.

Then, we are able to obtain

Colj

[∧
s

22

q=1

Q̌q

]
= δ064, ∀j ∈ ΘI\H .

Therefore, ΩH is global reachable with probability one from ΩI\H on [0, 2]. That is
to say, the PBMCNs (4) is finite-time observable.

Example 4.2. We consider using the PBMCNs to simulate a simplified DELI fresh
supermarket chain to illustrate our method and conclusion. The model consists of four
consitituent BMCNs

f1 =

{
l = 1 : (x1

1(t) ∧ u(t), x1
2(t), x

1
1(t) ∧ x1

2(t)),

l = 2 : (x2
1(t), x

2
2(t) ∧ u(t), x2

1(t) ∧ x2
2(t)),

f2 =

{
l = 1 : (x1

1(t) ∧ u(t), x1
2(t), x

1
1(t) ∧ x1

2(t)),

l = 2 : (x2
1(t), 0, x

2
1(t) ∧ x2

2(t)),

f3 =

{
l = 1 := (x1

1(t) ∧ u(t), 0, x1
1(t) ∧ x1

2(t)),

l = 2 : (x2
1(t), x

2
2(t) ∧ u(t), x2

1(t) ∧ x2
2(t)),
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f4 =

{
l = 1 := (x1

1(t) ∧ u(t), 0, x1
1(t) ∧ x1

2(t)),

l = 2 : (x2
1(t), 0, x

2
1(t) ∧ x2

2(t)),

with the probability distribution vector pθ := [0.36, 0.24, 0.24, 0.16]T .

Here, l = 1 and l = 2 represent the DELI supermarket of the northeast and central
regions, respectively. x1

1, x
2
1, x

1
2, x

2
2, and x1

3, x
2
3 represent the fresh quality, price advan-

tage, favorable rate in the northeast China region and the central region, respectively.
u1 represents the path loss caused by fresh food during transportation, and the global
state layer is defined as x̃1(t+ 1), x̃2(t+ 1), x̃3(t+ 1), as follows


x̃1(t+ 1) = x1

1(t+ 1) ∧ x2
1(t+ 1),

x̃2(t+ 1) = x1
2(t+ 1) ∨ x2

2(t+ 1),

x̃3(t+ 1) = x1
3(t+ 1) ∨ x2

3(t+ 1).

In the network, y1 and y2 represent profit growth and brand image. Thus, the output
state layer is described as{

y1(t+ 1) = x̃2(t+ 1),

y2(t+ 1) = x̃1(t+ 1) ∨ x̃3(t+ 1),

where profit growth y1 is affected by price advantage, brand image y2 is affected by the
combination of fresh quality and favorable rate.

Then, using the STP method, the two-layer PBCNs can be converted into the cor-
responding algebraic form. According to the definition of H-distinguishable subset and
H-indistinguishable subset. We can get

ΩI\H={δ24096, δ54096, δ64096, δ94096, δ104096, . . . , δ40924096 , δ
4095
4096}

and

ΩH={δ34096, δ44096, δ74096, δ84096, δ114096, . . . , δ40934096 , δ
4094
4096}.

Then, according to the Theorem 3.1, we may conclude that ΩH is not global reachable
with probability one from ΩI\H . That is to say, the large supermarket chains network
is unobservable.

5. CONCLUSIONS

In this paper, the finite-time observability of PBMCNs was investigated by STP method.
Through parallel interconnection technology, the finite-time observability of PBMCNs
can be transformed into the finite-time set reachability of an augmented interconnected
PBMCNs. On this basis, the theorem of finite-time observability was given. In addition,
two examples were given to illustrate the effectiveness of the results obtained in this
paper.
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