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KYBERNET IKA — VOLUME 6 0 ( 2 0 2 4 ) , NUMBER 1 , PAGES 1 1 0 – 1 2 4

A MODEL AND APPLICATION OF BINARY RANDOM
SEQUENCE WITH PROBABILITIES DEPENDING
ON HISTORY

Petr Volf and Tomáš Kouřim

This paper presents a model of binary random sequence with probabilities depending on
previous sequence values as well as on a set of covariates. Both these dependencies are expressed
via the logistic regression model, such a choice enables an easy and reliable model parameters
estimation. Further, a model with time-depending parameters is considered and method of
solution proposed. The main objective is then the application dealing with both artificial and
real data cases, illustrating the method of model evaluation and its use.

Keywords: recurrent events, discrete time process, binary sequence, varying probabilities,
logistic regression, time-dependent parameters

Classification: 62J12, 62N02, 60G50

1. INTRODUCTION

This contribution presents a model of binary random sequence with probabilities de-
pending on the sequence history. An inspiration may be found in modeling of certain
sports matches development. For instance, let us consider a tennis match. The sequence
of its games can be viewed as a random walk with steps ±1. Thus, a principal character-
istics is here the probability Pt = P (Xt = 1), where the random variable Xt denotes the
result ±1 of tth game. As a rule, this probability depends on a number of factors, both
constant and changing ones, as are for instance the players ranking, their actual form,
circumstances of the match (e. g. the field surface), etc. Hence, a quite natural model
formulation leads us to the logistic regression, meaning that logit Pt = αt+β′z(t), where
z(t) are actual values of covariates and αt stands for a “baseline” term.

In Kouřim [5], analyzing a large set of tennis grand-slams data, it was revealed, how-
ever, that the probability Pt depended also on previous resultsXt−1 (just memory length
1 was considered there). This dependence on the process past values was expressed via
a mechanism modeling the baseline component self-development.

A variant, namely a sequence of values 1 or 0, can model a series of recurrent events
(e. g. failures, repairs in a reliability study). Here, the value 1 denotes an event occur-
rence, 0 then means no event in time interval t. Thus, such a sequence corresponds to
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the discrete time recurrent events counting process model, where both event occurrence
and absence change future event probability.

The case studied here can be viewed from (at least) two different points of view.
The first one is the framework of longitudinal data analysis. The second one consists
in a discrete time variant of survival (or event history) analysis, we have preferred the
second way. One of typical features of longitudinal data analysis is a presence of individ-
ual (or random) effects. This approach, originally derived for linear regression models
framework, is now well developed also for binary longitudinal data (see for instance
Fitzmaurice et al. [3]). On the other hand, the same is possible in the survival analysis
and counting processes setting, through the frailty models (for instance Kalbfleisch and
Prentice [4]), in econometric applications also called “unobserved heterogeneity” (for in-
stance Winkelmann [12]). However, to use this effectively, one needs to have sufficiently
rich data. As we were afraid that it was not the case of the data of our application, that
is why this concept of frailty was not used. Though, formally, there is no problem to
integrate it to logistic model. Instead, the main objective of our modeling is to describe
a case where the probability of event occurrence depends on previous probabilities and
events, and to show a reasonable application of this model. From this point of view,
our model is a discrete time version of “self-exciting” point processes in the sense of
Hawkes [2].

An initial analysis of such models performance was provided in Kouřim and Volf [6].
The properties of models were studied, their limit (large sample) properties were derived
theoretically, while their behavior in small time horizon was examined graphically and
with the aid of simulations. Then, in the next paper of Volf and Kouřim [9], the logistic
form of the model was introduced, though without regression yet. Under this formu-
lation the task of parameter estimation can be solved rather comfortably, namely by
the standard maximum likelihood estimation (MLE) approach, yielding simultaneously
the asymptotic confidence intervals of parameters. Finally, the model studied in the
present contribution enriches the setting considered there, adding the regression part of
the model. Even in a rather general case, when the model parameters are allowed to
be time-dependent, their reliable estimation is performed easily in the generalized linear
model framework.

Let us also mention here several recent papers and monographs dealing with the
models and analysis of discrete random time series. The term “self-excited” discrete
valued process is used quite frequently today, however in a slightly different sense, see
for instance Möller [7] dealing with discrete valued ARMA processes and with their
regime switching caused by the process development (so called SETAR processes). The
paper of Davis and Liu [1] contains a rather broad definition of a discrete-time process
dynamics. Formally, our definition is covered as well. The monograph of Ch. Weiss [11]
offers a thorough overview of models for discrete valued time series, focusing also on
discrete count data and categorical processes. Models are accompanied by a number of
real examples. The problem of process prediction and the test of model fit is discussed
as well.

The rest of this paper is organized as follows: Next section recalls the model for-
mulation. Further, the method of the ML estimation in the framework of the logistic
form of the generalized linear models (GLM) is described and broadened to the case of
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time-dependent model parameters. Methods of both parametric and non-parametric es-
timation of these functional parameters will be proposed and their performance checked.
Model properties and methods of its parameters estimation will first be illustrated with
the aid of a randomly generated example. Finally, a real data case consisting of obser-
vation of recurrent events, namely repeated attacks of a disease, will be presented and
solved. Hence, the main goal of this contribution is to recall the model introduced in
previous papers, extend it to regression case (which is rather straightforward) and to
show its applicability by analyzing a rather interesting real data set.

2. MODEL FORMULATION

Let us consider a sequence of binary random variables Xt, t = 1, 2, 3, . . . attaining values
1, 0 (or 1,−1). It is assumed that the probabilities Pt = P (Xt = 1) follow a logistic
regression model, i. e. that their logits have the following form:

logit Pt = a(t, z(t)) = αt + β′z(t), t = 1, 2, . . . (1)

where αt is a baseline part, β are regression parameters, and z(t) are covariates (ob-
served, possibly K-variate, and allowed to be time-dependent). Further, the baseline
part develops along the scheme proposed and studied already in Volf, Kouřim (2023).
Namely, starting from an initial α1:
1. In the case of steps Xt = 1 or 0:

αt+1 = αt + c1Xt + c2(1−Xt) = αt + c2 +Xt(c1 − c2)

= αt + c2 +Xtd = α1 + tc2 + d

t∑
s=1

Xs. (2)

2. For the walk with steps Xt = 1 or −1:

αt+1 = αt + c1(1 +Xt)/2 + c2(1−Xt)/2 = αt + (c1 + c2)/2 +Xt(c1 − c2)/2

= αt + d1 +Xtd2 = α1 + d1t+ d2

t∑
s=1

Xs. (3)

Notice that the variables αt (and therefore also probabilities Pt) form also a random
sequence and are dependent on the whole history of Xs, s < t. Simultaneously, a two-
variate sequence (Pt, Xt) is Markov, provided the values of covariates are given.

Parameters cj , j = 1, 2 as well as α1 can attain all real values (though values far from
zero are not expected in real cases), hence it is quite natural to test whether they are
significantly different from zero, or whether they are positive (negative), whether c1 = c2,
etc. Notice also that c1 < 0 reduces the probability of success Pt+1 = P (Xt+1 = 1) after
Xt = 1, while the value of c2 shows the reaction of probabilities to the opposite result
(0 or −1). It is seen that the model can be re-parametrized, in case 1 using parameters
c2 and d = c1 − c2, in case 2 with d1 = (c1 + c2)/2, d2 = (c1 − c2)/2.

In the sequel, we shall deal with the first case only, i. e. with the sequences having
values 1 or 0. We shall also, at least for now, assume that parameters β, c1, c2 are
constant, this assumption will be relaxed later.
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2.1. Maximum likelihood estimation

The likelihood function for one process running through times t = 1, 2, . . . , T equals

L =

T∏
t=1

PXt
t · (1− Pt)

(1−Xt) =

T∏
t=1

exp[a(t, z(t))Xt] ·
1

exp(a(t, z(t))) + 1
.

As a rule, N processes are observed, let us denote them Xt,i, t = 1, . . . , Ti, i = 1, . . . N .
The log-likelihood function in logistic model then equals

L =

N∑
i=1

Ti∑
t=1

{Xt,iat,i − ln(exp(at,i) + 1)},

where at,i are the logits of probabilities Pt,i = P (Xt,i = 1) in the ith process and time t.
It follows from (1) that they are

at,i = αt,i + β′ · zi(t) = α1 + c2 · (t− 1) + d · Yt−1,i + β′ · zi(t), (4)

where we denoted Yt,i =
∑t

s=1 Xs,i (Y0,i = 0).
From the form of (4) it is seen that the task of estimation of the whole “parameter”

Θ = (α1, c2, d,β
′) can also be solved in the framework of logistic regression model.

The design matrix entering the logistic maximum likelihood estimation procedure has
NT =

∑N
i=1 Ti rows and K + 3 columns (K is the dimension of covariates z), at each

row (t, i) containing
(1, t− 1, Yt−1,i, z1,i(t), . . . , zK,i(t)).

Hence, the row corresponding to object i and time t depends also on past members of ith
sequence up to time t−1. However, at t the value of ”covariate” Yt−1,i is already known.
Therefore, for each fixed i the relevant likelihood part is again obtained as a product
of components corresponding to different t-s, as they represent conditional distribution
of Xt,i given the past. It means that the likelihood can be written in a standard way,
as a product of components corresponding to different t and i. Notice also that the
large-sample properties are connected here with N → ∞, while lengths of sequences are
assumed to be finite, bounded uniformly. In fact, such a conditioning is common also
in the continuous time survival analysis, where the intensity at t may depend on the
process history up to t−.

From the logistic form of the model it further follows that both the first and second
derivatives of L are tractable and the MLE as well as the asymptotic variance matrix
of estimates can be computed with the aid of a convenient numerical procedure (e. g.
the Newton–Raphson algorithm). Moreover, these algorithms are included standardly
in data-analysis software packages, mostly as a part of methods for generalized linear
models. Numerical examples presented here will utilize the Matlab function glmfit.m.

2.2. Case of time-dependent parameters

In many instances the impact of process history to its future steps could change during
observation period and therefore the time-dependent parameters c1 = c1(t), c2 = c2(t)
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should be considered. Then d = c1 − c2 = d(t) as well. Furthermore, the impact of
covariates can change as well, it means that regression parameters β = β(t) are allowed
to be time-dependent, too. This phenomenon is observed rather frequently in lifetime,
social or demographic studies. It opens a question of a flexible estimation. The problem
is solved quite similarly as in other regression model cases: Either the parameters-
functions are approximated by certain functional types (polynomial, combination of
basic functions, regression splines) or constructed by a smoothing method, similar to
moving window or kernel regression approach. The method described in Murphy and
Sen [8] is of such a type and concerns the Cox regression model. All these approaches
can be adapted easily to the logistic model form, just the number of parameters will be
larger than in a constant-parameters model.

While inserting time-dependent parameters into a standard logistic regression model
is rather straightforward (this model will be utilized, too, for comparison of results of
final real-data example), in the case of our model given by (1) and (2), expression (2)
has to be re-formulated, in the following way:

αt+1 = αt + c1(t) ·Xt + c2(t) · (1−Xt)

= αt + c2(t) + d(t) ·Xt = α1 +

t∑
s=1

c2(s) +

t∑
s=1

d(s) ·Xs. (5)

Here α1 is still an initial value of intercept, while both other parameters c1, c2, as well
as regression parameter(s) β, are allowed to be time-dependent. Then the log-likelihood
has the form (compare it with (4)):

L =

N∑
i=1

Ti∑
t=1

{Xt,iat,i − ln(exp(at,i) + 1)},

where now

at,i = α1 +

t−1∑
s=1

c2(s) +

t−1∑
s=1

d(s) ·Xs,i + β(t)′zi(t), (6)

with a1,i = α1 + β(1)′zi(1).

In order to specify the form of design matrix in the present case, let us as an example
consider just linear parametric functions c2(s), d(s): c2(s) = γ0+γ1 ·s, d(s) = δ0+δ1 ·s;
let also β(s) = β0 + β1 · s. Then

at,i = α1 + γ0(t− 1) + γ1

t−1∑
s=1

s+ δ0

t−1∑
s=1

Xs,i + δ1

t−1∑
s=1

sXs,i + (β0 + β1t)
′zi(t).

Corresponding design matrix has therefore again NT =
∑N

i=1 Ti rows, however now
2K + 5 columns, each row (t, i) containing

(
1, t− 1,

t−1∑
s=1

s,

t−1∑
s=1

Xs,i,

t−1∑
s=1

sXs,i, z
′
i(t), tz

′
i(t)

)
,
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with z′
i(t) = (zi,1(t), . . . , zi,K(t)).

As regards a non-parametric moving window method, it can consist of following steps:
The estimation procedure starts from an initial estimate of parameter α1 (obtained e. g.
from constant model or polynomial model described above). Then other parameters
c2, d, β are estimated repeatedly, like constant parameters, however with data weighted
by a Gauss kernel centered sequentially at M time points Sm, m = 1, 2, ..,M selected
inside [1, T = maxTi]. In such a way, M preliminary rough estimates of parameters,
c2(Sm), d(Sm), β(Sm) are obtained. After that, these rough estimates are smoothed
secondary, again with a Gauss kernel, to obtain smooth curves of c2(t), d(t) and β(t)
given at all t = 1, 2, . . . T . Initial estimate of α1 can be varied in order to obtain maximal
possible value of the log-likelihood. The procedure result depends on the choice of
“window width” parameter, i. e. the standard deviation of Gauss density used as the
kernel function. The implementation to Matlab is rather easy, as the function glmfit.m
is able to work with different weights assigned to each data-point.

3. ARTIFICIAL NUMERICAL EXAMPLE

The objective of examples with randomly generated data is, firstly, to study the behavior
of modeled processes, and, secondly, to examine how well the MLE performs. We shall
present here just one such example, with constant parameters, as, in the next part, the
main goal will be the analysis of quite interesting real data case.

The data of our example were generated from the model with initial a1 = 1, constant
parameters c1 = −0.6, c2 = 0.3 as well as constant (just 1-dimensional) regression
parameter β = 0.5. Covariates were generated as a N × T matrix of random numbers
between 0 and 2, hence in fact they were changing with time. Here N is the number of
sequences, T is the length of each.

Two cases were compared, in the first one just N = 20 walks, each being of length
T = 20, then the second experiment contained a larger set, N = 100, of longer sequences,
T = 100. The ML estimates, together with their standard errors based on approximate
normality of the MLE, are displayed in Table 1.

N, T a1 c2 d β c1 = c2 + d
20, 20 0.8084 0.2409 -0.7666 0.6714 -0.5257

st. dev.: 0.3104 0.0578 0.0801 0.1039 0.1116
100, 100 0.9975 0.2978 -0.8940 0.4831 -0.5962
st. dev.: 0.0796 0.0096 0.0282 0.0391 0.0186

Tab. 1. Estimated parameters and asymptotic standard deviations.

It is seen that even for a case with small number of observations the estimates are
quite reasonable, simultaneously all values are significant statistically. And, as expected,
the results of the larger data case are more precise.
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Figure 1 then shows the development of at and Pt, namely their averages and vari-
ances from generated 100 walks. It is seen that both stabilize rather quickly, which is
the consequence of negative c1 and positive c2 reducing Pt+1 after event Xt = 1 and
increasing it after Xt = 0.
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Fig. 1. Sample means and variances of at and Pt.

4. REAL DATA EXAMPLE

The data were analyzed originally already in 1980 and concern to patients with superfi-
cial bladder tumors. They are in detail described in Kalbfleisch and Prentice [4], Ch. 9.
The data set contains records of N = 86 patients. Just some of them had repeated
tumors occurrence, the observation started after the first tumors were removed. The
time was measured in months, maximal length of record was 64 months, while maximal
time of repeated tumor occurrence was 53. One patient with very short time of observa-
tion (just several days, without recurrence) was not included to present analysis, hence
records of 85 persons was examined.

The patients were randomly separated to 2 groups, 38 were treated by the thiotepa,
they had together 45 recurrences, while 47 patients were assigned to placebo, in this
group 87 recurrence times were observed, i. e. 132 recurrences together, in average 1.553
relatively to one person (1.1842 in the first group, 1.8511 in the second). Number of
observed repetitions varied from 0 (19 in the placebo group, 20 in the other group) to
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maximal number 9 (one case). Just in 8 cases there were 5 or more recurrence times,
while the 4th repetition occurred 14 times. Therefore, probably, another statistical
analysis in Wei et al. [10] took maximally 4 repetitions into account. Except the
covariate Z1 = 0 for placebo and Z1 = 1 for the treatment, there were other 2 discrete
covariates, Z2 and Z3 corresponding, respectively, to the number of initial tumors and
the size of the largest initial tumor.

We shall first repeat briefly results presented in Kalbfleisch and Prentice [4], consid-
ering continuous time setting. Their basic model was the Cox one, with indicated three
covariates constant in time. Let us recall here that the Cox model specifies the form of
hazard rate of new event occurrence at time t for object i as

hi(t) = h0(t) · exp(β′zi(t)),

where h0(t) is a common, baseline hazard rate, β are regression parameters and zi(t)
are values of covariates corresponding to object i at time t−.

Further, the model was enhanced by terms expressing possible changes of hazard
rate after each disease attack: The hazard rate was multiplied by the term exp(γj) for
subjects experiencing jth recurrence (i. e. the repetition of attack), at time ti,j . Again,
just consequences of first four recurrences were modeled, leading in fact to four new
covariates – indicators vi,j(t) = 1[t > ti,j ] for the ith subject. Thus, the hazard rate of
a new tumor occurrence for subject i at time t was

hi(t) = h0(t) · exp(β′zi) · exp(γ′vi(t)), (7)

where zi = (zi,1, zi,2, zi,3)
′, vi(t) = (vi,1(t), vi,2(t), vi,3(t), vi,4(t))

′ were values of covari-
ates described above, and β, γ were corresponding Cox model regression parameters,
i. e. 3 and 4 dimensional vectors. In fact, parameters γj of model (7) correspond to
changes of additional parameters estimated in Kalbfleisch and Prentice [4]. We think
that this incremental form has a better interpretation, reflecting the impact of each
tumor repetition separately.

Table 2 shows the results. The first two lines are results of our re-analysis of model
(7), lines 3 and 4 are taken directly from Table 9.3 of Kalbfleisch and Prentice [4].
The question of main interest was whether the impact of the medication, i. e. the first
covariate, was provable, in other words, whether the parameter α1 was statistically
significant. And it is seen from Table 2 that there is not a definite answer, at leas nor
in these models framework.

Covariate Z2, the number of initial tumors, was proved to increase significantly the
risk of recurrences, while Z3, the size of tumors, not. Further, the risk of further inci-
dences appear to be increasing after the first or second recurrence, the influence of next
repetitions does not seem to be significant (it is necessary to take also into account a
rather small number of cases with more than 3 recurrences).

In fact, first two models have slightly different interpretation. While in the sim-
pler model parameter β1 characterizes a common impact of the therapy to all repeated
events, in the full model this is combined with possible consequences of already occurred
tumor repetition. The result of estimation in a simpler model containing just involved
3 covariates Z1, Z2, Z3 (rows 3–4 of Table 2) supports the significance of Z1. Rows 5–6
of Table 2 contain again results of own analysis taking into account just the first tumor
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β1 β2 β3 γ1 γ2 γ3 γ4
estimate -0.2882 0.1590 -0.0043 0.5129 1.1397 -0.3057 0.0925
st. dev. 0.1958 0.0490 0.0676 0.2580 0.3054 0.3558 0.3819
estimate -0.524 0.201 -0.040
st. dev. 0.187 0.044 0.065
estimate -0.5176 0.2360 0.0679
st. dev. 0.3158 0.0761 0.1012

Tab. 2. Estimated parameters and asymptotic standard deviations:

full model (rows 1,2), model with just Z1 − Z3 (rows 3,4), model for

the first recurrence (rows 5,6).

occurrence. It is seen that, again, from this point of view, the impact of Z1 is not signif-
icant. This result actually corresponds to one of results of Wei et al. [10], they studied
separately the occurrence of j−th repetitions, for j = 1, 2, 3, 4.

Thus, the main question to be answered is the influence of covariate Z1. A conjecture
is that the impact of the medication is delayed, in the Cox model setting it means that
the parameter β1 may be time-dependent. In fact, we have not seen such an analysis
up to now. As the main theme of the present study is the presentation of a binary
sequence model, in fact a discrete-time counting process model, we shall deal with this
question using first a standard logistic regression model, then the model proposed here
in Section 2.
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Fig. 2. Graphs of cumulative hazard functions estimated separately
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95% confidence bands).
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4.1. Logistic regression with time-dependent parameters

Figure 2 displays Nelson – Aalen (NA) estimates of plain cumulative hazard functions
(CHR), separately in both groups (therapy or placebo), with 95% confidence bands
around them derived from the Kolmogorov-Smirnov statistics. It could be assumed that
the values of other covariates were distributed randomly across subjects selected for
therapy or placebo due to randomization.

Let us recall briefly the NA estimator form: Let R(t) be a number of objects still at
risk (of event occurrence) just before time t, ∆i(t) = 1 if object i experiences the event
at time t, ∆i(t) = 0 otherwise. Then the CHR estimate equals

H(t) =

N∑
i=1

∑
s≤t

∆i(s)

R(s)
.

From Figure 2 it is seen that estimated CHR for placebo group (dashed curve) lies
above the estimated CHR of the treatment group. However, evidently, confidence bands
overlap. It is also seen that from the beginning both curves almost coincide, which could
be interpreted again in the sense that the impact of Z1 to first (early) repetitions is not
strong, however is increasing later, reducing further recurrences. Simultaneously, this
can also lead to doubts about suitability of proportional odds assumption of constant
parameters logistic regression. There are essentially two ways how to overcome the non-
proportionality of odds. Either another type of model could be taken into account, or,
still in the framework of logistic model, at least the parameter for Z1 should vary in time.
We shall adopt the second approach, starting from a basic logistic model. Namely, let
P (t, z) = P (X(t) = 1|Z = z) fulfil

P (t, z) =
exp(α+ β′z)

exp(α+ β′z) + 1
, (8)

where, after an initial analysis in constant parameters model providing a starting point,
both the baseline component α as well as regression parameters β will be allowed to
vary in time.

In the sequel, two indicators of model quality will be used. First, the p-values of
tests of hypotheses whether a certain parameter is significant (i. e. significantly different
from zero). These tests are based on asymptotic normal distribution of estimates in
the MLE setting, and are used as a primary tool for models reduction. Then, the
Akaike Information Criterion (AIC) will be used for an additional model ordering, as
the models contain different numbers of parameters or are of different types. Namely,
AIC=−2L + 2K, where K is the number of model parameters, L is the value of log-
likelihood.

Constant parameters. In the standard logistic regression model taking into account
all three covariates, obtained parameters estimates as well as corresponding p-values are
displayed in first two rows of Table 3. It is seen that β3 is not significant, while β1, β2

are, therefore the covariate Z3 has been omitted. The result is in further two rows of
the table. The last column contains achieved values of the log-likelihood and the AIC.
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Further, to have a comparison with results displayed in Table 2, a model extension
considering an incremental impact of recurrent events was added, similarly like in (7).
Thus, additional covariates were vi,j(t) = 1[t > ti,j ] for the jth recurrence observed on
ith subject. Just first two disease repetitions, i. e. j = 1, 2, were taken into account. The
results are also a part of Table 3. It was revealed that just the first recurrence impact
was significant. It is seen that the model has a slightly better fit (in the sense of the
log-likelihood and AIC) than the standard model, however still worse than models with
time-dependent parameters (see bellow), and also than the constant parameters model
in part 4.2.

α β1 β2 β3 γ1 γ2 L / AIC
estimate -3.2915 -0.4545 0.1831 -0.0482 -458.302
p-value < 0.0001 0.0267 0.0003 0.5023 924.604

estimate -3.4059 -0.4547 0.1908 -458.535
p-value < 0.0001 0.0269 0.0001 923.069

estimate -3.5176 -0.3523 0.1558 -0.0483 0.3717 0.2051 -455.177
p-value < 0.0001 0.0939 0.0037 0.5461 0.1351 0.4322 922.355

estimate -3.6170 -0.3615 0.1631 0.4755 -455.764
p-value < 0.0001 0.0848 0.0016 0.0193 919.528

Tab. 3. Estimated parameters and p-values of tests of their

significance: standard logistic model (rows 1,2), reduced model with

Z1, Z2 (rows 3,4), extended model reflecting the impact of first two

recurrences, full in rows 5,6, and optimized, rows 7,8.

Cubic polynomials for parameters. In this model, even the intercept component
may depend on time. Therefore, “parameters” α and β1 were modeled as cubic poly-
nomials, while the use of polynomial for β2 did not improve the fit significantly. The
dependence on Z3 was omitted again. Thus, the full model had 9 parameters, obtained
AIC=915.121 was rather high, while L = −448.561 was achieved. Moreover, some com-
ponents in this model were not significant statistically. After model reduction, till all
p-values were smaller than 0.05, an optimal model had

α(t) = −2.9978− 0.0008 · t2, with p-values < 0.0001, 0.0022, respectively,
β1 = −0.1976 · t+ 0.0118 · t2 − 0.0002 · t3, with p-values 0.0031, 0.0106, 0.0293,
and β2 = 0.1789, with p-value 0.0002.

While L = −449.037 was slightly smaller than above, AIC = 910.074 indicated that
this reduced polynomial model should be preferred. Estimated α(t) and β1(t) are dis-
played in Figure 3. This figure contains also the bands consisting of (connected) 95%
point-wise confidence intervals for ’true’ functions values at fixed t-s, computed under the
assumption of asymptotic normality of estimates, with the aid of estimated asymptotic
variance matrix of the ML estimates.

Non-parametric estimation. The next step consisted in non-parametric estima-
tion of model parameters as functions via the smoothing approach described in Sub-
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section 2.2. First, this approach was used in the framework of standard model (8).
Again, impact of Z3 was omitted, estimates - functions are displayed in Figure 4, left
part. Log-likelihood was, naturally, higher, when compared to parametric models above,
L = −439.142.
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Fig. 3. Graphical comparison of cubic models components: α and β1

are from standard logistic model (both with dashed bands connecting

point-wise 95% confidence intervals). Function β11, with dotted bands

around it, is from ‘our’ model (5).

4.2. Results in the model with self-dependent probabilities

Model with constant parameters. The model described in (1), (2), and (4), com-
pared to standard logistic model, had two more parameters, namely c2 and d. First,
all three covariates were considered, the results are displayed in Table 4, rows 1,2. The
impact of Z3 was again non-significant statistically, also the impact of Z1 seemed to be
rather weak.

Results of reduced model without covariate Z3 are shown in rows 3, 4 of Table 4. It
is seen that the results (both higher L and smaller AIC) suggest that the present model
should be preferred to standard logistic model with constant parameters.

Interpretation of parameters values could be the following: c1 = c2 + d is positive, it
means that the event occurrence increases also its future probability, while negative c2
decreases this probability after a time without new event.

Cubic polynomial for β1. The next model contains constant parameters, too, ex-
cept the parameter β1 representing the time-dependent impact of medication on the
event occurrence. Parameter α1 is constant by definition, as it characterizes the initial
probability P1. Further, like in the standard model, use of cubic polynomial for β2 did
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α c2 d β1 β2 β3 L / AIC
estimate -2.8713 -0.0363 0.2142 -0.3677 0.1526 -0.0315 -450.073
p-value < 0.00001 0.0001 0.0156 0.0791 0.0036 0.6636 912.146

estimate -2.9455 -0.0365 0.2160 -0.3661 0.1575 -450.170
p-value < 0.00001 0.0001 0.0146 0.0809 0.0021 910.239

Tab. 4. Estimated parameters and p-values of tests of their

significance: full model (rows 1,2), reduced model with Z1, Z2 only

(rows 3,4).

not improve the fit sufficiently, all its non-constant components were non-significant.
Covariate Z3 was not taken into account.

After removal all statistically non-significant components, the model consisted of
following estimates (corresponding p-values are in brackets):

α1 = −2.8081 (< 0.0001), c2 = −0.0448 (0.0001),

d = 0.2237 (0.0126), β2 = 0.1510 (0.0032),

β1 = −0.1908 · t+ 0.0123 · t2 − 0.000187 · t3, (p-values = 0.0051, 0.0103, 0.0233).

Log-likelihood was = -447.030, model had 7 parameters, hence the AIC = 908.059.
Both values are slightly more favorable than the result of standard model with cubic
components, despite that the standard model had time-dependent intercept parameter.
Figure 3 compares graphically both estimates of β1(t). Notice that the time-development
of dependence on Z1 is quite comparable in both models and supports the conjecture
on delayed effect of the medication.
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In the next attempt the model was enriched by cubic polynomials for parameters
c2, d. However, the model was then evidently over-parametrized, its reduction led us
back to the model preferring constant c2 and d, no further significant improvement was
achieved.

Non-parametric estimation. The last analysis step consisted in a non-parametric
estimation of selected model parameters as functions of time, again via the smoothing
approach described in Subsection 2.2. The starting value α1 was kept constant, while,
initially, the parameters c2 and d were allowed to vary in time. However, their variability
was rather small, hence we report here just their mean values. Covariate Z3 was again
omitted.

Optimal values were: α1 = −2.835, means of c2, d = −0.055, 0.096, respectively,
functions β1, β2 are displayed in Figure 4, right part. These estimates led to likelihood
value L = −437.276, i. e. again slightly better than the value achieved in the standard
logistic model setting.

5. CONCLUSION

This work is a continuation of our recent results on random binary sequences with
varying probabilities. Models proposed in the present paper offer an explicit description
of impact of process history to actual count probabilities. A generalization may consist
of considering a longer memory, we have explored just models with memory 1. On the
other hand, the present model includes also an impact of covariates on probability logits.
The model form makes it easy to utilize logistic regression approach and corresponding
computation procedures. In this framework, certain observable events from the process
history could be taken as covariates, too. The method has been successfully tested on
a set of randomly generated data. Further, the model has also many possible uses in
real life applications. Such a type of random sequence describes especially well processes
where either a single or just a small number of events can significantly affect the process
future development. Such applications can be found in reliability analysis, econometric
studies, and very often in medical data analysis, as shown in the example solved in the
last section.

(Received June 13, 2023)
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