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DATA TRANSFORMATION TECHNIQUE IN THE DATA
INFORMATIVITY APPROACH
VIA ALGEBRAIC SEQUENCES

Yuki Tanaka and Osamu Kaneko

The data-informativity approach in data-driven control focuses on data and their matching
model sets for system design and analysis. The approach offers a new mathematical formulation
different from model-based control and is expected to progress. In model-based control, the
introduction of equivalent transformations has made system analysis and design easier and
facilitated theoretical development. In this study, we focus on data transformations and their
transformation of matching model sets. We first introduce an algebraic sequence representing
the relationship between the data and model set, and using this algebraic approach, we utilize
propositions from homology theory, such as kernel universality, to analyze data and model
transformations. This technique is significant not only mathematically but also in engineering.
Further, we demonstrate how this technique can be applied to derive controllability judgments
for data informativity-based analysis. Finally, we prove that design problems can be reduced
to analysis problems involving controller inclusion.

Keywords: data-driven control, data informativity-based analysis, analysis and design
problems, algebraic sequence, homology theory

Classification: 93A99, 15A06

1. INTRODUCTION

In systems and control theory, given a set of data, there are two major methods for
performing system analysis and controller design. One is constructing a mathematical
model through system identification [6], followed by analyzing and designing the sys-
tem based on model-based control. The model-based control is a reasonable method
once the model is determined, and it is equipped with a wide variety of mathematical
tools. However, it is often difficult to conduct experiments for system identification. In
addition, the actual dynamics of the system cannot be represented because the system
information is simplified as a model. The other method involves using the data directly
for the control design and analysis, which is referred to as data-driven control [3, 4, 9].
This method is more suited to actual systems than model-based control.
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In model-based control, the mathematical model of a dynamical system using differ-
ential equations is used to view the behavior of a system as a solution for the differential
equations. Model-based control has been studied and utilized historically for a long
time, and it includes various basic mathematical techniques such as equivalence trans-
formation. The equivalence transformation technique is useful in various scenarios, such
as for proving controllability and observability (left figure in Fig. 1).

A key challenge in data-driven control is obtaining important theoretical results that
have already been clarified in the model-based control framework using only the data
with theoretical guarantees. For this issue, the result called Willems’s fundamental
lemma [19] has been developed and applied to various problems such as stabilization
and optimal control [7]. In addition, the notion of data informativity has been proposed
in recent years for formulating control problems and investigating system properties in
the data-driven framework to show that the system exhibited by a model consistent
with the data has desirable properties [13]. Since its proposal, this framework has been
applied to various aspects of system control theory [2, 14, 15, 16, 17, 18].

The study based on the data informativity framework considers the entire set of
models that can satisfy the given data. Thus, it can present a new mathematical view
of the relationship between models and data different from that of model-based con-
trol. In model-based control, the theory and application areas have been broadened
because of basic mathematical techniques such as equivalent transformations. The data-
informativity approach can be improved in terms of the richness of mathematical tools.
One of them involves a transformation method that simplifies system analysis and design
while preserving system properties such as controllability and observability, which play
the role of the equivalent transformation of model-based control (right figure in Fig. 1).

Fig. 1. Comparison of model-based control and data informativity

approach.
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In terms of the data informativity framework, there are few studies on the relation-
ship between the transformation of data and the transformation of the set of models that
satisfy the corresponding data except the conference paper published by the authors [12].
In [12], the authors formulated a data transformation, although in a limited form, and
showed that controllability and observability are preserved. However, the limited formu-
lation of the data transformation restricts the applicability of the transformation. In this
paper, we provide a new relevant result on the relationship between the data transfor-
mation and model set change. We present the relationship between data and model sets
in the data informativity-based approach using an algebraic sequence. This algebraic
representation allows us to use fundamental propositions from homology algebra such as
kernel universality. This data transformation technique is important considering both
theoretical and practical points of view. In the theoretical sense, we show that the results
of the controllability analysis problem in the data-informativity framework described in
[13] can be derived using our data transformation technique. Further, we illustrate that
design problems, which were discussed in [13], can be attributed to analytical problems
of the closed-loop system involving controllers.

1.1. Notation

We adopt the following notations in this study. Let R, Rq, and Rp×q represent the
set of real numbers, set of real vectors of size q, and set of real matrices of size p × q,
respectively. The set consisting of all n×m matrices is denoted byMn,m. When n = m,
Mn,m is denoted by Mn. We denote the transpose of a matrix A by AT . Let I represent
the identity matrix. Let A = (aij) ∈ Mn,m. Then, A[p : q, r : s] denotes the submatrix
of A consisting of the p th, p+ 1, . . . , q th rows and the r th, r + 1, . . . , s columns. For
a vector space V , idV denotes the identity map, idV : V → V . For a vector v, its
Hermitian transpose is denoted by v∗. Given a general matrix M , we denote the vector
of the ith column by Mi.

2. PRELIMINARIES

2.1. Fundamentals of the homological algebraic approach

The notation utilized in homological algebra and the basic results used in this study,
following [1, 5, 8, 10], are explained. The application of the idea of homological algebra
to the data informativity framework was considered in [11] and [12]. Let k be a field.
In this study, k is assumed to be R or C. For k-linear spaces V,W and a k-linear map
f : V →W , the kernel of f is

Ker(f) = {v ∈ V : f(v) = 0}.

We say f is injective when Ker(f) = {0}. To emphasize that f is injective, we write

f : 0 → V →W.

Ker(f) represents a subspace of V , and the inclusion map

ψ : 0 → Ker(f) → V
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is defined. The image of f is the set Im(f) := f(V ), which is a subspace of W . The
Cokernel of f is

Cok(f) :=W/Im(f).

It is surjective when Cok(f) = 0. To emphasize that f is surjective, we write

f : V →W → 0.

If f is both injective and surjective, then f is called an isomorphism. When we want to
emphasize that f is an isomorphism, we write

f : V
∼−→W.

A general morphism, which is not necessarily linear, is called bijective if it is both
surjective and injective.

An algebraic sequence of k-linear spaces and k-linear maps

. . .→ Vi−1
fi−→ Vi

fi+1−−−→ Vi+1 → . . . (1)

is called an exact sequence if each fi satisfies Ker(fi+1) = Im(fi). In this paper, we
focus on the exact sequence

0 → Ker(f)
ψ−→ V

f−→W

obtained from a linear map f : V →W and an inclusion map ψ : 0 → Ker(f) → V .

For two k-linear spaces V and W , the set {k-linear map V → W} forms a k-linear
space and is denoted by Hom(V,W ). For f, g ∈ Hom(V,W ), let f + g be defined by
(f + g)(x) = f(x) + g(x), where x ∈ V . For a ∈ k and f ∈ Hom(V,W ) we define af by
(af)(x) = a · f(x), where x ∈ V . Because f + g and af are linear maps (this indicates
that f + g, af ∈ Hom(V,W )), we can see that Hom(V,W ) denotes a vector space.
This set is called the homomorphism space. Next, we discuss the morphism between
homomorphism spaces induced naturally from a linear map, which plays an important
role in this paper. If a linear space W is fixed, then the linear map f : V → V ′ induces
another linear map,

f∗ : Hom(V ′,W ) → Hom(V,W )
g 7→ g ◦ f .

We present an important lemma for f∗ induced from f .

Lemma 2.1. For a linear map f : V →W , the following conditions are equivalent:

1. f is an isomorphism.

2. For any linear space W ′, f∗ : Hom(W,W ′) → Hom(V,W ′) is an isomorphism.
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P r o o f . We first prove that (A) ⇒ (B). Let f be the inverse map of g. For any
h ∈ Hom(W,W ′), we have g∗ ◦ f∗(h) = h ◦ f ◦ g = h, and for any h′ ∈ Hom(V,W ′), we
have f∗ ◦ g∗(h′) = h′ ◦ g ◦ f = h′. Thus, g∗ is the inverse map of f∗, and (B) is satisfied.

Subsequently, we prove (B) ⇒ (A). LetW ′ = V . Then, there exists a map g :W → V
such that f∗(g) = g ◦f = idV (where idV denotes the identity map on V ). Let W ′ =W .
Consequently, we obtain f∗(f ◦ g) = f ◦ g ◦ f = f = f∗(idW ). Therefore, f ◦ g = idW ,
which implies that g is the inverse map of f . Thus, (A) is satisfied. □

Finally, we present the following lemma on the morphism based on the universality
of the kernel [5].

Lemma 2.2. The kernel (Ker, i) of the linear map f : V → W satisfies the following
universality (where i : Ker(f) → V is an inclusion map).

1. f ◦ i = 0.

2. For any vector space L and g : L → V satisfying f ◦ g = 0, there exists a unique
map such that h : L→ Ker(f) and g = i ◦ h

L

∃!h
��

g

""

0

$$
Ker(f)

i // V
f // W.

P r o o f . When g : L→ V satisfies f ◦ g = 0, g(x) ∈ Ker(f) for all x ∈ L. Hence, there
exists a unique y ∈ Ker(f) such that g(x) = i(y). Let h(x) = y. Then, h : L → Ker(f)
is a homomorphism, and satisfies g = i ◦ h. Conversely, h : L → Ker(f), which satisfies
i ◦ h = g as the only one similar to this. □

In model-based control frameworks, an equivalent transformation focuses on the cor-
respondence of each model. However, in the data-informativity framework, the corre-
spondence of each model set must be considered. To clarify this point, the morphism
induced by the universality of the kernel plays a crucial role in this study.

2.2. Data informativity

Following [13], we formulate and discuss the analysis and design problems related to
the data informativity-based approach to data-driven control. Let Σ denote the class
of models, i. e., a set of predetermined systems that includes the true system. Given a
dataset D, we define ΣD ⊆ Σ as the set of all systems within Σ that can generate these
data. In this paper, Σ is considered the set of all discrete-time input/state systems of
the following format:

x(t+ 1) = Ax(t) +Bu(t), (2a)

y(t) = Cx(t) +Du(t), (2b)
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where x, u, and y denote the state variable, input variable, and output variable, respec-
tively. We represent the matrices composed of time-series data corresponding to input,
state, and output data as follows.

U− := [u(0) u(1) · · · u(T − 1)] ∈ Rℓ×T , (3a)

X := [x(0) x(1) · · · x(T )] ∈ Rn×(T+1), (3b)

X− := [x(0) x(1) · · · x(T − 1)] ∈ Rn×T , (3c)

X+ := [x(1) x(2) · · · x(T )] ∈ Rn×T , (3d)

Y− := [y(0) y(1) · · · y(T − 1)] ∈ Rm×T . (3e)

Here, n represents the dimension of the state variables, and ℓ and m represent the
dimensions of the input and output variables, respectively. For a given data set D
= (X+, X−, U−), the model set ΣD can be described by

ΣD =

{
(A,B) : X+ = [A,B]

[
X−
U−

]}
. (4)

In the case of D = (X+, X−, U−), we define the mapping fD : RT → R2n+ℓ as

fD : RT → R2n+ℓ

r 7→

 X+

X−
U−

 r.
As explained in Section 2.1, fD induces

fD,∗ : Hom(R2n+ℓ,Rn) → Hom(RT ,Rn). (5)

2.2.1. Analysis problems for data-informativity framework

Let P be a system-theoretical property and let ΣP be the set of all systems in the system
set Σ that satisfy the system property P. Examples of system property P are stability,
controllability, observability and dissipativity, etc. We then define the data informativity
of data D concerning the system property P in terms of ΣP as follows.

Definition 2.3. (Data informativity) Data D is said to be informative with respect to
property P if ΣD ⊆ ΣP holds.

Using this definition, the general analysis problem of data-driven control can be formu-
lated as follows in terms of data informativity.

Problem 2.4. (Data informativity analysis problem): Provide a necessary and suffi-
cient condition for data D to be informative for the property P.

For this data informativity analysis problem, we formulate the data informativity for
controllability and discuss the results. We define the system set Σcont as follows.

Σcont := {(A,B) : (A,B) is controllable}. (6)

Using this definition, data informativity for controllability is defined as follows:
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Definition 2.5. Data D = (X+, X−, U−) are said to be informative for controllability
if ΣD ⊆ Σcont.

Using this formulation, the following results are obtained [13].

Proposition 2.6. Data D = (X+, X−, U−) are informative for controllability if and
only if

rank(X+ − λX−) = n ∀λ ∈ C. (7)

2.2.2. Design problem for data-informativity framework

We formulate problems related to the design of data-driven control. The goal of the
design problem is to formulate a data-driven controller such that the closed-loop sys-
tem obtained by interconnecting the ”true” system S and the controller exhibits certain
properties [13]. Let P(K) be a system-theoretical property parametrized by the con-
troller K to be connected. Here, we define the data informativity for the control design
of P as follows.

Definition 2.7. For the system property P and controller K, we denote ΣP(K) =
{(A,B) : A + BK has system property P}. If there exists a controller K such that
ΣD ⊆ ΣP(K), we say that the data D is informative for the property P.

The first step in the design problem of data-driven control is to determine whether
an appropriate controller that satisfies the desired system characteristics for a given set
of data D can be obtained. In other words, we consider the following problem.

Problem 2.8. For the data D, provide the necessary and sufficient conditions for the
existence of a controller K such that the data are informative for property P.

The second step in the design problem of data-driven control involves the design of
an appropriate controller. Here, we consider the following problem.

Problem 2.9. Assuming that the data D is informative for the property P, find a
controller K such that ΣD ⊆ ΣP (K).

3. MAIN RESULT

Data-driven control based on data informativity not only exhibits the advantages of
data-driven control but also suggests a new mathematical view of the relationship be-
tween models and data, which differs from model-based control. In this paper, we
provide isomorphic transformations of time series data in data informative content. By
doing so, the conventional framework of data-driven control based on the data infor-
mativity framework, which considers the relationship between the data and the model
set, is expanded to consider the relationship between the transformation of data and
the transformation of the model set. In addition, we demonstrate an example of the
application of this data transformation technique.
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3.1. Purpose and motivation of this study

In this subsection, we explain the objectives of this paper with specific numerical exam-
ples. This study is motivated by three points.

1 (Providing techniques for converting measured data into easily interpretable data): In
model-based control, the state matrix can be transformed into a more analyzable
form (such as a diagonal or companion matrix) via an equivalence transformation.
Similarly, in the data informativity approach, it is expected that data can be trans-
formed into a form that is easier to interpret by the equivalence transformation in
the context of the data informativity approach.

For example, suppose the following data series D1 is given.

D1 =

[
2 5 13
0 1 5

]
.

We now consider making the data D1 more comprehensible by data transformation.

Data D1

T : Data Transformation

��

oo // ΣD1

Model Set Change

��
Data D2

oo // ΣD2

In this case, the data D1 is transformed by the data transformation

T =

[
1/2 1/2
1/2 −1/2

]
,

and we can get the data

D2 =

[
1/2 1/2
1/2 −1/2

] [
2 5 13
0 1 5

]
=

[
1 3 9
1 2 4

]
.

We can easily obtain

ΣD2
=

{
A : A

[
1 3
1 2

]
=

[
3 9
2 4

]}
=

{[
3 0
0 2

]}
.

In this way, the data can be transformed into an easily understandable form.

2 (Mathematical extensions in the data informativity approach): The data informativity
approach considers data and the data-compatible model sets. This implies a new
mathematical viewpoint that is different from the model-based control. Based on
the new mathematical viewpoint, we formulate the relationship between the trans-
formation of data and the transformation of model sets by providing a technique
of data transformation(Figure 1 in section 1).
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3 (Development of fundamental tools in the data informativity approach): In model-
based control, equivalent transformations are useful in various situations such as
proving controllability and observability and so on. It is expected that the same
kind of technique as the equivalent transformation in model-based control can be
given to be useful in the context of the data informativity approach. In fact, in
[12], data informativity for observability is given as a special case usage of data
transformation in this paper. We show that it is also possible to give proof of data
informativity for controllability.

Another application of the data transformation technique is to solve the controller
design problem of state feedback gains. In the model-based control approach,
when designing K, the condition under which the state matrix A + BK after
implementing state feedback has desired characteristics (e. g., stability) is analyzed.
In other words, we design K by applying the analysis method of the system (A,B)
to the system (A + BK,B). This design framework can be applied to the data
informativity approach as well by the data transformation. In other words, we
show that K can be designed by giving a data transformation representing the
data after state feedback by

D =

 X+

X−
U−

 7→ D(K) :=

 X ′
+

X ′
−

U ′
−

 =

 I 0 0
0 I 0
0 −K I

 X+

X−
U−

 ,
and considering an analysis problem on the data D(K).

3.2. Time-series data transformation in data informativity-based analysis

Proposition 3.1. Suppose that the data D = (X+, X−, U−) and the data D′ = (X ′
+,

X ′
−, U

′
−) exhibit the relation X ′

+,i

X ′
−,i

U ′
−,i

 = α−1

 X+,i

X−,i
U−,i

 , 1 ≤ i ≤ T (8)

by the isomorphism
α : R2n+ℓ ∼−→ R2n+ℓ x1

x2
u

 7→ α

 x1
x2
u

 ,
(9)

where for a matrix M , Mi denotes the vector consisting of the ith column. Then,
there exists a unique isomorphism hα : Ker(fD,∗) → Ker(fD′,∗) such that the following
diagram

Ker(fD,∗)

∃!hα

��

ψ //

⟳

Hom(R2n+ℓ,Rn)

α∗

��
Ker(fD′,∗)

ψ′
// Hom(R2n+ℓ,Rn)

is commutative, where ψ,ψ′ is the inclusion map.
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P r o o f . For the data D = (X+, X−, U−) and D′ = (X ′
+, X

′
−, U

′
−), fD,∗ and fD′,∗

described in Eq.(5) are obtained. Let us consider the algebraic exact sequences

0 → Ker(fD,∗)
ψ→ Hom(R2n+ℓ,Rn)

fD,∗−→ Hom(RT ,Rn)

and

0 → Ker(fD′,∗)
ψ′

→ Hom(R2n+ℓ,Rn)
fD′,∗−→ Hom(RT ,Rn)

derived from fD,∗ and fD′,∗. Since fD′,∗ = (α−1 ◦ fD)∗ = fD,∗ ◦ (α−1)∗ = fD,∗ ◦ (α∗)
−1

and fD′,∗ ◦ (α∗ ◦ ψ) = 0, there exists a unique morphism

hα : Ker(fD,∗) → Ker(fD′,∗)

that makes the diagram

0 // Ker(fD,∗)

∃!hα

��

ψ //

⟳

Hom(R2n+ℓ,Rn)
fD,∗ //

α∗

��
⟳

Hom(RT ,Rn)

id

��
0 // Ker(fD′,∗)

ψ′
// Hom(R2n+ℓ,Rn) //

fD′,∗ // Hom(RT ,Rn)

commutative by the universality of the kernel described in Lemma 2.2. By Lemma 2.1,
α∗ induced by the isomorphism α is also an isomorphism, which indicates that hα is an
isomorphism. □

Next, we consider the relationship among the isomorphism hα, the set of models
ΣD, and ΣD′ . First, we discuss the equivalence relation, the quotient set induced by
the equivalence relation, and the morphisms induced on the quotient set. We identify
Hom(R2n+ℓ,Rn) with Mn,2n+ℓ. Let GLn(R) be the general linear group defined as
follows:

GLn(R) = {g ∈Mn(R) : det(g) ̸= 0}.
We define the action of GLn(R) on Mn,2n+ℓ(= Hom(R2n+ℓ,Rn)) as

GLn(R)×Mn,2n+ℓ → Mn,2n+ℓ

(G , H) 7→ GH
. (10)

Similarly, we define the action of GLn(R) on Mn,T (= Hom(RT ,Rn)). We define the
relation ∼ in Mn,2n+ℓ(= Hom(R2n+ℓ,Rn)) as follows:

H ∼ H ′(∈M2n+ℓ,n) ⇐⇒ ∃G ∈ GLn(R) : H = GH ′. (11)

Evidently, ∼ is an equivalence relation. Similarly, we introduce the equivalence relation
∼′ on Mn,T (= Hom(RT ,Rn)). In the case of H ∼ H ′, as

fD,∗(H) ∼′ fD,∗(H
′)

holds for fD,∗ in Eq.(5), the following equivalence classes

Hom(R2n+ℓ,Rn) := Hom(R2n+ℓ,Rn)/ ∼ (12a)

Hom(RT ,Rn) := Hom(RT ,Rn)/ ∼′ (12b)
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naturally induce

f̄D,∗ : Hom(R2n+ℓ,Rn) → Hom(RT ,Rn). (13)

Moreover, ΣD can be regarded as a subset of Hom(R2n+ℓ,Rn) defined by

ΣD ∋ (A,B) 7→
[
I −A −B

]
∈ Hom(R2n+ℓ,Rn). (14)

From this identification, we obtain ΣD ⊆ Ker(f̄D,∗). In this context, we discuss time-
series data transformation in data informativity-based analysis.

Theorem 3.2. Suppose that data D = (X+, X−, U−) and data D′ = (X ′
+, X

′
−, U

′
−)

satisfy the conditions of Proposition 3.1. Further, let the isomorphism α in Eq.(9) be of
the form

α : R2n+ℓ ∼−→ R2n+ℓ x1
x2
u

 7→

 T11 T12 T13
0 T22 T23
0 T32 T33

 x1
x2
u

 ,
where T11, T12, T22 ∈Mn, T13, T32 ∈Mℓ,n, T23 ∈Mn,ℓ, and T33 ∈Mℓ . The isomorphism
hα induced by the universality of kernel induces the natural bijective morphism

h̄α : Ker(fD,∗) = Ker(f̄D,∗)
∼−→ Ker(f̄D′,∗) = Ker(fD′,∗) (15)

on the quotient set determined by the aforementioned equivalence relation on the general
linear group. Under the identity in Eq.(14), h̄α yields a one-to-one correspondence
between ΣD and ΣD′ .

P r o o f . Let us consider the following commutative diagram.

Ker(fD,∗)
hα //

π1

��
⟳

Ker(fD′,∗)

π2

��
Ker(fD,∗) //h̄α // Ker(fD′,∗)

where π1 : Ker(fD,∗) → Ker(fD,∗) and π2 : Ker(fD′,∗) → Ker(fD′,∗) are natural maps
to each quotient set. Since the map to the quotient set is surjective in general, π1 and
π2 are surjective. Moreover, since hα is an isomorphism we can see h̄α ◦ π1 = π2 ◦ hα is
surjective. Therefore we see h̄α is surjective. Next, we show that h̄α is injective. From
the surjectivity of π1, there exist v, v′ ∈ Ker(fD,∗) satisfying π1(v) = x and π1(v

′) = x′.
From π2 ◦hα(v) = π2 ◦hα(v′) we have hα(v) ∼ hα(v

′). From the configuration of hα we
also know v ∼ v′. Thus x = x′ holds and h̄α is injective. From the above, Eq.(15) can
be shown. This isomorphism h̄α yields a one-to-one correspondence

ΣD −→ ΣD′

[I −A −B] −→ [I −A −B] ◦ α (16)

for ΣD and ΣD′ as a set. □
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Here, we explain a remark. In [12], they are considering equivalent transformations
of data, and α in Theorem 3.2 has the special form T12 = T13 = T23 = T32 = 0 and
T33 = I. Although equivalent transformations have some applications, such as proving
data informativity for observability, we can achieve even more by generalizing α. In
the next section, we will explore the richer range of applications that this generalization
provides.

3.3. Application of the data transformation technique

The transformation of time-series data described in subsection 3.2 expands the data
informative framework to include the relationship among transformations in the data
space and those in the space of the functions acting on each data. In this section, we
demonstrate that the Hautus test (method of investigating controllability, as described
in Proposition 2.6.) in terms of the data informative framework can be proved via data
transformation. This is an example of its application and proves that the design problem
can be attributed to an analytical problem involving controllers.

3.3.1. Proof of the Hautus test in the data informative framework utilizing the pro-
posed data transformation technique

First, let us discuss the necessary condition. Suppose that the data D = (X+, X−, U−)
is data informative for controllability. For α in Eq.(9) in Proposition 3.1, we denote

αλ : R2n+ℓ → R2n+ℓ

v 7→

 I −λI 0
0 I 0
0 0 I

 v , (17)

for any ∀λ ∈ C. In this case, D′ in Proposition 3.1 and Theorem 3.2 yield D′ =
(X+ + λX−, X−, U−) and a one-to-one correspondence,

h̄αλ : Ker(f̄D,∗)
∼−→ Ker(f̄D′,∗)

⊆ ⊆

ΣD −→ ΣD′

. (18)

If Eq.(7) does not hold, then there exists some v ̸= 0 satisfying v∗[X+ + λX−] = 0,
where v∗ represents the Hermitian transpose of vector v. By swapping the coordinates
appropriately, the first component of v may be assumed to be non-zero, and thus

G :=

[
v∗

I[2 : n, 1 : n]

]
may be assumed to be regular. For any (A,B) ∈ ΣD, let (Ā, B̄) be defined as [I − Ā −
B̄] := h̄αλ([I −A −B]) . Using this (Ā, B̄) and v, consider

g̃ :=

[
v∗ 0 0

I[2 : n, 1 : n] −Ā[2 : n, 1 : n] −B̄[2 : n, 1 : n]

]
,
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We define (Ā′, B̄′) as follows:[
Ā′ B̄′ ]

:= G−1

[
0 0

Ā[2 : n, 1 : n] B̄[2 : n, 1 : n]

]
.

We obtain
g̃ = [I − Ā′ − B̄′] ∈ ΣD′ ⊆ Ker(f̄D′,∗).

Let ( ¯̄A, ¯̄B) be defined by [I − ¯̄A − ¯̄B] := h̄−1
αλ ([I −Ā′ −B̄′]). Eq.(18) yields ( ¯̄A, ¯̄B) ∈ ΣD.

Conversely, (Ā′, B̄′) = ( ¯̄A+ λI, ¯̄B), and by the definition of (A′, B′),

rank
([ ¯̄A+ λI ¯̄B

])
= rank

([
Ā′ B̄′ ])

< n.

This contradicts the fact that the data D is data informative for controllability.
Next, we prove the converse. For any (A,B) ∈ ΣD, g(A−λI,B) is defined by

g(A−λI,B) : Rn+ℓ → Rn[
x
u

]
7→

[
A− λI B

] [ x
u

]
.

Let V− := Im[XT
− , U

T
− ]T , Ṽ λ+ := Im[X+ − λX−], where T represents a transpose (not

Hermitian transpose), and consider the following exact sequence:

0 // V−

∃!ϕ
��

//

⟳

Rn+ℓ = V− ⊕ V ⊥
−

//

g(A−λI,B)

�� ⟳

V ⊥
−

//

id
��

0

0 // Ṽ λ+ // // Rn = Ṽ λ+ ⊕ Ṽ λ+
⊥

// Ṽ λ+
⊥

// 0.

By the assumption that rank[X+−λX−] = n, we know that Ṽ λ+
⊥
= 0. Hence, Ṽ λ+ = Rn.

By the definition of Ṽ λ+ ,

Ṽ λ+ ⊆ Im
(
g(A−λI,B)|V−

)
⊆ Rn,

we can see Rn = Im(g(A−λI,B)|V−). From this, we can derive rank[A−λI B] = n, which
implies that the data D = (X+, X−, U−) is data informative for controllability.

3.3.2. Reduction of design problems to analysis problems in the data informativity-
based approach

As a second application of the proposed time-series data transformation technique, we
demonstrate that the design problem can be reduced to an analysis problem involving
controllers in a stepwise manner.

Theorem 3.3. For K ∈ Mn,ℓ, assume that data D = (X+, X−, U−) and D(K) =
(X ′

+, X
′
−, U

′
−) satisfy the relation X ′

+

X ′
−

U ′
−

 =

 I 0 0
0 I 0
0 −K I

 X+

X−
U−


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under the isomorphism

αK : R2n+ℓ → R2n+ℓ

v 7→

 I 0 0
0 I 0
0 K I

 v . (19)

Under this assumption, obtaining a solution to the analytical problem for the data D(K)
is equivalent to obtaining a solution to the design problem for the data D.

P r o o f . By Theorem 3.2, we obtain a one-to-one correspondence

h̄αK
Ker(f̄D,∗)

∼−→ Ker(f̄D(K),∗)
⊆ ⊆

ΣD −→ ΣD(K)

(20)

between subsets ΣD of Ker(f̄D,∗) and subsets ΣD(K) of Ker(f̄D(K),∗). As

ΣD ⊆ ΣP(K)

⇐⇒ for ∀(A,B) ∈ ΣD, (A+BK,B) : P
⇐⇒ for ∀(A,B) ∈ ΣD, h̄αK

({A,B}) : P

, where (A,B) : P indicates that the system (A,B) satisfies the system property P, and
h̄αK

({A,B}) shows that, by Eq.(14), the system (A,B) is regarded as an element of a
homomorphism space and then its projection onto the quotient set is mapped by h̄αK

.
Moreover, Eq.(20), for any (A′, B′) ∈ ΣD(K),

∃!(A,B) ∈ ΣD s.t h̄αK
({A,B}) = (A′, B′).

Hence, we get
ΣD ⊆ ΣP(K) ⇒ ΣD(K) ⊆ ΣP .

To prove the converse, we note that by Eq.(20), for any (A,B) ∈ ΣD,

∃!(A′, B′) ∈ ΣD(K) s.t h̄−1
αK

({A′, B′}) = (A,B).

This indicates
ΣD(K) ⊆ ΣP ⇒ ΣD ⊆ ΣP(K),

This proves the desired result. □

Remark 3.4. In model-based control, K is designed by analyzing the system (A +
BK,B) after feedback. Theorem 3.3 implies that the design problem can be solved by
a solution of the analysis problem for the data (X ′

+, X
′
−, U

′
−) = (X+, X−,−KX− +U−)

after feedback. Thus, in the context of the data informativity approach, a design method
similar to the feedback design method of model-based control can be applied. As a
concrete example, a study that applies this method to the design problem of dissipativity
was proposed in our previous result [11]. The analytical problem of dissipativity was
reported in [16], and based on the results of this analytical problem, Theorem 3.3 is
applied to the design problem of dissipativity in [11] (in [11], the method is applied in a
more concrete form than Theorem 3.3 presented in the discussion of the design problem
of dissipativity).
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4. CONCLUSIONS AND DIRECTIONS OF FUTURE RESEARCH

The study of data-driven control based on data informativity considers the data and the
set of models that satisfy the data, given the data. It offers a new mathematical view
different from that of model-based control and has been applied in various situations in
system control theory. In the context of data-driven control based on data informativity,
this study provides a correspondence between the transformation of data and the trans-
formation of model sets by introducing a new algebraic method. This is an extension
of the scope of the previous framework, which focused on the relationship between data
and the model set that satisfies that data, to include the relationship between transfor-
mations of data and transformations of model sets. This data transformation technique
is meaningful not only from a mathematical perspective but also from an engineering
perspective. As an example, we demonstrate the derivation of controllability judgments
for data informativity-based analysis via transformation theory, and that design prob-
lems and analysis problems, which have been discussed step-wise, can be reduced to
analysis problems in the form of design problems involving controllers. Future direc-
tions of research include possible applications of the data transformation techniques to
control systems other than those described in this paper.

(Received November 25, 2023)
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