
Kybernetika

Yanjun Shen; Chen Ma; Chenhao Zhao; Zebin Wu
Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems
with output measurement noise

Kybernetika, Vol. 60 (2024), No. 2, 244–270

Persistent URL: http://dml.cz/dmlcz/152418

Terms of use:
© Institute of Information Theory and Automation AS CR, 2024

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/152418
http://dml.cz


KYBERNET IKA — VOLUME 6 0 ( 2 0 2 4 ) , NUMBER 2 , PAGES 2 4 4 – 2 7 0

NEURAL NETWORK-BASED FAULT DIAGNOSIS AND
FAULT-TOLERANT CONTROL FOR NONLINEAR
SYSTEMS WITH OUTPUT MEASUREMENT NOISE

Chen Ma, Chenhao Zhao, Yanjun Shen and Zebin Wu

In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are
investigated for a class of nonlinear systems with output measurement noise. Due to the
influence of measurement noise in the output sensor, the output observation error cannot be
accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an
output filter and disturbance estimator are constructed to decrease the negative effects of
measurement noise and observer gain disturbances, and a novel non-fragile neural observer
is designed to estimate the unknown states. A new evaluation function is also introduced to
detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to
ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded
(SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation
of a one-link robot system.

Keywords: fault diagnosis, fault-tolerant control, output measurement noise, non-fragile,
output filter

Classification: 93C10, 94C12

1. INTRODUCTION

The fault-tolerant control (FTC) has received great attention in recent years because
faults often occur in real engineering systems, which may lead to severe economic dam-
ages. FTC is a technology that improves the safety and reliability of a system, and
has high significance for compensating for faults in real-time online. In general, FTC
methods are usually divided into two categories, i. e., the passive FTC [4, 9, 20, 33] and
the active FTC [5–7, 10, 11, 22, 28, 29, 31, 32]. The passive FTC is considered as a ro-
bustness control operation, but its adaptive ability to fault tolerance is limited. The
active FTC is to readjust the controller’s parameters after faults have occurred based on
fault conditions. Neural networks (NNs) have been widely used to solve the active FTC
problems for nonlinear systems with faults due to their approximate ability to unknown
functions [17,19,21,31,32,36,37,39]. In [31], neural networks were used to research the
active FTC problems for a class of switching nonlinear systems. The article [29] studied
the problem of adaptive active FTC for a class of nonlinear systems with an unidentified
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actuator fault. At present, the application of the active FTC in nonlinear systems has
made great achievements. However, few results have been derived for nonlinear systems
when the output sensor is affected by noise.

In practical engineering applications, systems and sensors are usually inevitably af-
fected by disturbance and noise [11, 12, 15, 30, 35]. Noise may be caused by unforeseen
operating conditions or component performance, such as nonlinear drifts and failures
of electronic components. The performance of a nonlinear system may be negatively
affected if the impact of random noise and disturbances is ignored. Moreover, the active
FTC requires fault diagnosis (FD) to obtain fault information. Faults are usually diag-
nosed by the threshold of the output observation error. The authors in [31] constructed
an evaluation function based on the output observation error. In [23], an active fault-
tolerant control framework was specifically proposed for time-varying actuator faults to
enhance the robustness of fault detection. The authors in [8] investigated the problem
of FTC for multi-agent systems with sensor faults.

If the output sensor contains measurement noise, the output observation error will
not be accurately captured. Then, the FD scheme may be ineffective. Therefore, for a
system with output measurement noise, it is worthwhile to investigate the ability of an
FD scheme to tolerate the noise. In addition, gains of observers may drift [3, 16, 18, 30]
because of the unavoidable presence of truncation errors in numerical calculations or
the aging of sensor equipment. In practice, besides the influence of output measurement
noise, observer gain disturbances have also an impact on the accuracy of FD. Such distur-
bances can potentially lead to instability of the closed-loop system. Presently, majority
of research on non-fragile observers design predominantly revolves around the utilization
of linear matrix inequality (LMI) technology [13, 25–27, 34, 40]. While computer-based
verification allows for convenience of LMI conditions, the design methods will become
ineffective if the solvability conditions are not met. Especially, when there exit time-
varying matrix inequalities, the complexity is further heightened. Thus, it is a formidable
challenge to explore alternative approaches of non-fragile observers to effectively atten-
uate the impact of observer gain disturbances.

Based on the above analysis, this paper investigates a non-fragile FTC strategy for
nonlinear systems with output measurement noise. The fault-tolerant scheme is acti-
vated by evaluating the FD condition to determine the occurrence of faults, and the
non-fragile FTC is triggered when faults are detected. The main results of this paper
can be summarized as follows: 1. By introducing an output filter, an extended system is
derived and a non-fragile observer is constructed to overcome the adverse effects on FD
accuracy caused by output measurement noise and observer gain perturbations. 2. Base
on the output observation error threshold of the extended system, a novel FD function
is proposed to enhance the reliability of diagnostic result. Then, the FTC scheme will
be activated when necessary, and ensure that all signals of the closed-loop system are
SGUUB.

The remainder of this paper is organized as follows. The description of the problem
and some assumptions are presented in Section 2. In section 3, fault diagnosis and fault-
tolerant control are addressed for a class of nonlinear systems with output measurement
noise. In Section 4, the validity of the method is verified through a robotic arm simulation
example. Section 5 gives the conclusions of the paper.
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2. PROBLEM FORMULATION AND PRELIMINARIES

Consider a class of nonlinear system with fault as follows
ẋ1 = x2 + f1 (x̄1) + dσ1 (t) ,
...

ẋn = u (t) + fn (x̄n) + β (t− tx) η (x̄n) + dσn (t) ,

y = x1 + dσ0 (t) ,

(1)

where, for i = 1, . . . , n, x̄i = (x1, . . . , xi)
T ∈ Ri are the system state vectors, u (t) is the

control input of the system, y denotes the system output, dσ0 (t) is a bounded unknown
measurement noise in the sensor, dσi (t) are bounded time-varying system disturbances,
fi (x̄i) are unknown continuous functions which satisfy the following assumption.

Assumption 2.1. The nonlinear functions fi(x̄i), i = 1, 2, . . . , n, satisfy the following
conditions∣∣fi (x̄i)− fi

(
ˆ̄xi
)∣∣ ⩽ qi (|x1(t)− x̂1(t)|+ |x2(t)− x̂2(t)|+ · · ·+ |xi(t)− x̂i(t)|) , (2)

for any xi, ˆ̄xi = (x̂1, . . . , x̂i)
T ∈ R, where qi are real numbers.

In this paper, we only consider the sudden fault. η (x̄n) represents a fault function,
tx indicates an unknown time instant when a fault occurs, and β (t− tx) denotes the
time profile of the fault in the following form

β (t− tx) =

{
0, if t < tx,

1, if t ⩾ tx.
(3)

A non-zero FD delay between fault occurrence and diagnosis is unavoidable due to
the existence of response time for FD, i. e. td > tx, where td is the time when the FTC
scheme is activated. In order to guarantee the control performance within a non-zero
FD delay time t ∈ [tx, td], the fault function should satisfy the following assumption.

Assumption 2.2. (Zhao and Polycarpou [38]) For t ∈ [tx, td], the fault function
η(x̄n(t)) satisfies ∥η(x̄n(t))∥ ⩽ v, where v is an unknown positive constant.

The following lemma can be found in [14], and is useful for our main results.

Lemma 2.3. (Koo and Choi [14]) Define two matrices Ã ∈ R(n+1)×(n+1) and P0 ∈
R(n+1)×(n+1) as,

Ã =


−κn+1 1 0 · · · 0

−κnηn (t) 0 1 · · · 0
...

...
...

. . .
...

−κ2η2 (t) 0 0 · · · 1
−κ1η1 (t) 0 0 · · · 0

 , P0 =


a1ℓ 0 0 · · · 0 0

−b2ℓa1ℓ a2ℓ 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · anℓ 0
0 0 0 · · · −bn+1, ℓanℓ an+1, ℓ

 ,
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where ηi (t) , i = 1, 2, . . . , n are unknown continuous functions which satisfy the condi-
tions ηmin

i ⩽ ηi (t) ⩽ ηmax
i , ajℓ, j = 1, 2, . . . , n and bjℓ, j = 2, . . . , n + 1 are positive

constants, and κi, i = 1, 2, . . . , n+ 1 are the observer gains.

The positive constants ajℓ, j = 1, . . . , n+ 1 can be obtained by



an+2, ℓ = 1,

an+1, ℓ = c1,

anℓ =
2an+1, ℓ

bn+1, ℓ
κ0,

ai−1, ℓ =
2aiℓ
biℓ

(
κ0 +

iaiℓ
2ai+1, ℓ

bi+1, ℓ +
iaiℓ

2ai+1, ℓbi+1, ℓ

+
1

2

n∑
j=i

((
bj+2, ℓaj+1, ℓ

aj+2, ℓ
+
jbj+1, ℓajℓ
aj+1, ℓ

) j+1∏
κ=i+1

b2κℓ

) , i = 2, . . . , n,

where c1 and κ0 are two arbitrary positive constants, and bn+2, ℓ = 0.

The positive constants bjℓ, j = 2, . . . , n+ 1 satisfy the following conditions



(
n2
∏j

κ=2 bκℓ max
{(
ηmax
n−i+2 − ηmin

n−i+3

)2
,
(
ηmax
n−i+3 − ηmin

n−i+2

)2})
(α1(·) + α2(·) + α3(·)) < 1, j = 2, . . . , n+ 1,

α1(·) =
(

β2(·)
b3ℓ

+ 2β2ℓ(·)b3ℓ
)2

max
{
(ηmax

n − 1)2, (1− ηmin
n )2

}
,

α2(·) =2

n+1∑
i=3

(
i∏

κ=3

b2κℓ

(
β2(·)
b2ℓ

+ 2βi(·)b2ℓ
)2

max
{(
ηmax
n−i+2 − ηmin

n−i+3

)2
,
(
ηmax
n−i+3 − ηmin

n−i+2

)2})
,

α3(·) = 8
∑n+1

i=3

(∏i
κ=2 b

2
κℓ (βi(·)− βi+1(·))2 max

{(
ηmax
n−i+2 − 1

)2
,
(
1− ηmin

n−i+2

)2})
,

where ηmax
n+1 = ηmin

n+1 = 1, 0 < ηmin
i ⩽ 1, and 1 ⩽ ηmax

i < +∞, i = 1, 2, . . . , n.
βi (bi+1, ℓ, . . . , bn+1, ℓ) , i = 1, . . . , n + 1 satisfy βn+1(·) = 1 and βn+2(·) = 0. Then,
the observer gains κi, i = 1, . . . , n+ 1 are chosen such that


κn+1 = −b2ℓ a1ℓ

a2ℓ
− a1ℓ

2a2ℓb2ℓ
− α0κ0,

κn−i+2 = a1ℓ

aiℓ

(
ai−1, ℓ

a1ℓ
biℓκn−i+3 +

ai−1, ℓ

aiℓ
biℓ
∏i

κ=2 bκℓ −
aiℓ

ai+1ℓ

∏i
κ=2 bκℓ

)
,

i = 2, . . . , n+ 1,

where α0 is a constant.
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Define the positive definite matrix W ∈ R(n+1)×(n+1),

W1, 1 = α0κ0,

W1, i =Wi, 1(η(t)) = (1− ηn−i+2(t))

(
ai−1, ℓ

aiℓ
biℓ

i∏
κ=2

bκℓ −
aiℓ

ai+1, ℓ

i∏
κ=2

bκℓ

)

+ (ηn−i+2(t)− ηn−i+3(t))

(
a1ℓ

2b2ℓa2ℓ

i∏
κ=2

bκℓ +
ai−1, ℓ

aiℓ
biℓ

i∏
κ=2

bκℓ

)
,

Wi, i = κ0,

Wi, j = 0, i ̸= j, i = 2, . . . , n+ 1, j = 2, . . . , n+ 1,

where Wi, j is the element of the ith row and jth column of the matrix W .

Then, the equation ÃTP + PÃ = −PT
0 WP0 holds, where P = PT

0 P0. Since ηi(t) are
continuous and bounded, one has

ÃTP + PÃ ⩽ −λ0I, (4)

where λ0 is a positive constant.

Lemma 2.4. A continuous nonlinear function f (x) defined on a compact Ωx ∈ Rn can
be approximated by NNs, i. e.,

f (x) = ω∗Tφ (x) + ε(x),

where x = (x1, x2, . . . , xp)
T ∈ Rp is the input vector, ε(x) is the approximation error

which satisfies |ε(x)| ⩽ ε∗ and ε∗ is a positive constant. The ideal weight vector ω∗ and
the basis function vector φ (x) are defined as

ω∗ = (ω∗
1 , ω

∗
2 , . . . , ω

∗
r )

T
,

φ (x) = (φ1 (x) , φ2 (x) , . . . , φr (x))
T
,

where r is the number of the NNs nodes, φi (x) are chosen as the commonly used
Gaussian functions

φi (x) = exp

(
− (x− bi)

T
(x− bi)

ν2i

)
, i = 1, 2, . . . , r,

where νi > 0 are the centers of the receptive fields, and bi are the widths of the Gaussian
functions. Let

ω∗ = arg min
ω∈Ωω

[
sup
x∈Ωx

∣∣f (x)− ω̂∗Tφ (x)
∣∣] ,

where ω̂∗ = (ω̂∗
1 , ω̂

∗
2 , . . . , ω̂

∗
r )

T
is the estimate of ω∗, Ωω is a compact set.
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3. MAIN RESULTS

3.1. The design of adaptive observer in fault-free

Consider the nonlinear system (1) in the fault-free case as follows
ẋ1 = x2 + f1 (x̄1) + dσ1 (t) ,
...

ẋn = u (t) + fn (x̄n) + dσn (t) ,

y = x1 + dσ0 (t) .

(5)

Propose a first-order output filter strategy for the nonlinear system (5). Then,

ẋ0 = −x0
γ0

+
y

γ0
, (6)

where γ0 ⩾ ∥P∥
1
2+∥P∥ denotes a positive design constant, P is defined in Lemma 2.3.

From Lemma 2.4 and the first-order output filter strategy (6), the nonlinear sys-
tem (1) can be rewritten as the following extended system,

ẋ0 = x1 − x0

γ0
+ 1−γ0

γ0
x1 + d0 (t) ,

ẋ1 = x2 + ω∗T
1 φ1 (x̄1) + d1 (t) ,

...

ẋn = u (t) + ω∗T
n φn (x̄n) + dn (t) ,

ȳ = x0 (t) ,

(7)

where, for i = 1, . . . , n, fi (x̄i) = ω∗T
i φi (x̄i)+ε (x̄i(t)) , ω

∗
i are the optimal weight values,

ε (x̄i(t)) are the NNs approximation errors, d0 (t) =
dσ0(t)
γ0

and di (t) = dσi (t) + ε (x̄i(t))

satisfy the following assumption, and ȳ represents the output of the extended system (7).

Assumption 3.1. di (t) and ḋi (t) , i = 0, . . . , n are assumed to be bound by positive

real numbers d̄i and
¯̇
di, respectively, i. e.,

|di (t)| ⩽ d̄i,
∣∣∣ḋi (t)∣∣∣ ⩽ ¯̇

di. (8)

A neural network-based adaptive non-fragile state observer is designed as,
˙̂x0 = x̂1 − x̂0

γ0
+ 1−γ0

γ0
x̂1 + d̂0 (t) + lκ0 (x0 − x̂0) ,

˙̂x1 = x̂2 + ω̂∗T
1 φ1

(
ˆ̄x1
)
+ d̂1 (t) + l2(κ1 +∆κ1(t)) (x0 − x̂0) ,

...
˙̂xn = u (t) + ω̂∗T

n φn

(
ˆ̄xn
)
+ d̂n (t) + ln+1(κn +∆κn(t)) (x0 − x̂0) ,

(9)

where x̂i are the observer state variables, κi represent the observer gains obtained from
Lemma 2.3, d̂i (t) are the estimations of di (t), i = 0, 1, . . . , n, ω̂∗

j and ∆κj(t), j =
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1, . . . , n are the estimations of the optimal weight values and the observer gain additive
disturbances, respectively, l ⩾ 1 is the high gain.

Consider the following transformationsκi +∆κi(t) = κi

(
1 + ∆κi(t)

κi

)
,(

1 + ∆κi(t)
κi

)
= θi(t), i = 1, 2, . . . , n.

The observer (9) can be rewritten as
˙̂x0 = x̂1 − x̂0

γ0
+ 1−γ0

γ0
x̂1 + d̂0 (t) + lκ0 (x0 − x̂0) ,

˙̂x1 = x̂2 + ω̂∗T
1 φ1

(
ˆ̄x1
)
+ d̂1 (t) + l2κ1θ1(t) (x0 − x̂0) ,

...
˙̂xn = u (t) + ω̂∗T

n φn

(
ˆ̄xn
)
+ d̂n (t) + ln+1κnθn(t) (x0 − x̂0) ,

(10)

where θi(t) are observer gain multiplicative disturbances satisfying the conditions θmin
i ⩽

θi (t) ⩽ θmax
i with positive real numbers θmin

i and θmax
i .

From (6) and (10), the following error system can be obtained,
ė0 = e1 − e0

γ0
+ 1−γ0

γ0
e1 − lκ0 (t) e0 + d̃0 (t) ,

ė1 = e2 + ω∗T
1 φ̃1

(
ˆ̄x1, x̄1

)
+ ω̃T

1 φ1

(
ˆ̄x1
)
− l2κ1θ1 (t) e0 + d̃1 (t) ,

...

ėn = ω∗T
n φ̃n

(
ˆ̄xn, x̄n

)
+ ω̃T

nφn

(
ˆ̄xn
)
− ln+1κnθn (t) e0 + d̃n (t) ,

(11)

where ei (t) = xi (t)− x̂i (t) , d̃i = di(t)− d̂i (t) , i = 0, 1 , . . . , n, φ̃j

(
ˆ̄xj , x̄j

)
= φj (x̄j)−

φj

(
ˆ̄xj
)
and ω̃j = ω∗

j − ω̂∗
j , j = 1, 2, . . . , n.

The adaptive laws of
˙̂
di (t) , i = 0, 1 , . . . , n are designed as,

˙̂
di (t) = λ3i

(
e0 (t)− λ4id̂i (t)

)
, (12)

where λ3i > 0 and λ4i > 0 are some design parameters.
Consider the following coordinate transformations

ϵi (t) =
xi (t)− x̂i (t)

li
, i = 0, 1, . . . , n. (13)

Combining (11) and (13), one has

ϵ̇ (t) = lAϵ (t) +B + C +D + E + F, (14)

where A =


−κ0 1 · · · 0

−κ1θ1 (t) 0
. . . 0

...
... · · · 1

−κnθn (t) 0 · · · 0

, B =


− ϵ0

γ0

0
...
0

, C =


1−γ0

γ0
ϵ1l

0
...
0

,
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D =


0

1
l ω

∗T
1 φ̃1

(
ˆ̄x1, x̄1

)
...

1
lnω

∗T
n φ̃n

(
ˆ̄xn, x̄n

)
, E =


0

1
l ω̃

T
1 φ1

(
ˆ̄x1
)

...
1
ln ω̃

T
nφn

(
ˆ̄xn
)
, and F =


d̃0 (t)
d̃1(t)

l
...

d̃n(t)
ln

.

3.2. The design of adaptive controller in fault-free

By utilizing the non-fragile state observer as a foundation, the controller for the nonlinear
system is developed through the implementation of backstepping techniques. Define the
following coordinate transformations:{

z0 = x0,

zi = x̂i − αc
i , i = 1, . . . , n,

(15)

where z0 and zi are the error variables, and αc
i , i = 1, . . . , n are the first-order filter

outputs. The first-order filters are designed as

λiα̇
c
i + αc

i = αi−1, α
c
i (0) = αi−1 (0) , i = 1, . . . , n, (16)

where αi−1 and λi are the first-order filter inputs and the designed constants. Define

Υi = αc
i − αi−1, i = 1, . . . , n, (17)

where Υi represent the errors between the inputs and outputs of the first-order filter.
The adaptive laws of ω̂∗

i (t) are designed as follows

˙̂ω∗
i (t) = λ1i

(
λ2iϵ0 (t)φi

(
ˆ̄xi
)
− ω̂∗

i (t)
)
, i = 1, . . . , n, (18)

where λ1i > 1 and λ2i are real constants.

Step 1: Construct the following positive definite function:

Vc0 =
1

2
z20 .

In light of (7) and (15), the time derivative of Vc0 is given as

V̇c0 = z0ż0

= z0

(
−x0 (t)

γ0
+
x1 (t)

γ0
+ d0 (t)

)
= z0

(
−x0 (t)

γ0
+

l

γ0
ϵ1 (t) +

1

γ0
(z1 + Υ1 + α0) + d̃0 (t) + d̂0 (t)

)
. (19)

According to the Young’s inequality, it follows that

z0

(
l

γ0
ϵ1 (t) + Υ1

1

γ0
+

1

γ0
z1 + d̃0 (t)

)
⩽z20

(
l2 + 1

γ20
+

1

4γ20
+ 1

)
+ z21 +

d̃20 (t) + ϵ21 + Υ1
2

4
. (20)
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The virtual control law α0 is inferred as

α0 =

(
−4l2 + 5

4γ0
− ρ0γ0

)
z0 − γ0d̂0 (t) , (21)

where ρ0 > 1 is a design parameter.
Substituting (20) and (21) into (19) yields,

V̇c0 ⩽ −ρ0z20 +
ϵ21
4

+
Υ 2
1

4
+
d̃20
4

+ z21 . (22)

Step j (2 ⩽ j ⩽ n): Construct the following positive definite functions:

Vci =
1

2
zi

2.

In light of (9) and (15), the time derivative of Vci are deduced as

V̇ci = ziżi

= zi

(
zi+1 + Υi+1 + αi + ω̂∗T

i φi

(
ˆ̄xi
)
+ d̂i (t) + li+1κiθi (t) ϵ0 (t)− α̇c

i

)
. (23)

According to the Young’s inequality, it leads to

zi
(
zi+1 + Υi+1 + li+1κiθi (t) ϵ0 (t)

)
⩽
z2i
4

+ z2i+1 + z2i +
Υ 2
i+1

4
+ z2i l

2i+2κ2i θ
max
i

2 +
ϵ0

2 (t)

4
. (24)

The virtual control law αi are derived as

αi =
(
−ρi − l2i+2κ2i θ

max
i

2 − 2
)
zi − ω̂∗T

i φi

(
ˆ̄xi
)
− d̂i (t) + α̇c

i . (25)

where ρi > 0, i = 1, . . . , n− 1 are some design parameters.
Substituting (24) and (25) into (23) yields,

V̇ci ⩽ −ρiz2i + z2i+1 +
ϵ20 (t)

4
+
Υ 2
i+1

4
− z2i . (26)

Step n+ 1: Construct the following positive definite function:

Vcn =
1

2
zn

2. (27)

In light of (9) and (15), the time derivative of Vcn is obtained as

V̇cn =znżn

=zn

(
u (t) + ω̂∗T

n φn

(
ˆ̄xn
)
+ d̂n (t) + ln+1κnθn (t) ϵ0 (t)− α̇c

n

)
. (28)

According to the Young’s inequality, one has

znl
n+1κnθn (t) ϵ0 (t) ⩽ z2nl

2n+2κ2nθ
max 2
i +

ϵ0
2 (t)

4
. (29)
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The controller u (t) is inferred as

u (t) =
(
−ρn − l2n+2κ2nθ

max 2
i − 1

)
zn − ω̂∗T

n φn

(
ˆ̄xn
)
− d̂n (t) + α̇c

n, (30)

where ρn > 0 is a design parameter.

Substituting (29) and (30) into (28) yields,

V̇cn ⩽− ρnz
2
n +

ϵ20 (t)

4
− z2n. (31)

Construct the following function:

V1 =

n∑
i=0

1

2
z2i (t), i = 1, 2, . . . , n.

By combining (22), (26) and (31), the time derivative of V1 is calculated as

V̇1 ⩽− ρ̃ ∥z∥2 + n

4
∥ϵ (t)∥2 +

n∑
i=1

Υ 2
i

4
+

d̃20 (t)

4
, (32)

where z = (z0, . . . , zn)
T ∈ Rn+1 and ρ̃ = min {ρi} , i = 0, 1 , . . . , n.

3.3. Stability analysis in fault-free and fault detection

Theorem 3.2. Consider the fault-free nonlinear system (5) with output measurement
noise satisfying Assumption 3.1. Design the non-fragile nonlinear observer (9), the
controller (30), the virtual controllers (21), (25), the adaptive laws of NNs (18), and
the disturbance observer (12). Then, all signals with the initial conditions defined on a
compact set Ωα are SGUUB.

P r o o f . Construct the following Lyapunov function:

V (t) = V1 (t) + V2 (t) + V3 (t) + V4 (t) + V5 (t) . (33)

where V1 =
∑n

i=0
1
2z

2
i (t), V2 (t) = ϵTPϵ, V3 =

∑n
i=1

1
2 ω̃

T
i ω̃i, V4 =

∑n
i=0

1
2 d̃

2
i (t),

V5 =
∑n

i=1
1
2Υ

2
i .

According to Lemma 2.3 and the Young!s inequality, the time derivative of V2 (t) can
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be derived as

V̇2 (t) =lϵ
T (t)

(
ATP + PA

)
ϵ (t) + 2ϵT (t)P (B + C +D + E + F )

⩽− l ∥ϵ (t)∥2 + 2 ∥ϵ (t)∥ ∥P∥ (∥B∥+ ∥C∥+ ∥D∥+ ∥E∥+ ∥F∥)

⩽− l ∥ϵ (t)∥2 + 1

γ0
∥ϵ (t)∥2 ∥P∥2 + 1

γ0
∥ϵ (t)∥2 + a1n

2φ̄2 ∥ϵ (t)∥2 ∥P∥2 + 1

a1

n∑
i=1

ω̃T
i ω̃i

+ ∥ϵ (t)∥2 ∥P∥2 + n2ω̄2 +
l

2
∥ϵ (t)∥2 + a2n ∥ϵ (t)∥2 ∥P∥2 +

1

a2

n∑
i=0

d̃2i (t)

⩽−
(
l

2
− (

1

γ0
− 1) ∥P∥2 − 1

γ0
− a1n

2φ̄2 ∥P∥2 − a2n ∥P∥2
)
∥ϵ (t)∥2

+

n∑
i=0

1

a2
d̃2i (t) +

n∑
i=1

1

a1
ω̃T
i ω̃i + n2ω̄2, (34)

where a1 and a2 are two positive parameters, ω̄ = max {∥ω∗
i ∥}, and φ̄ = max

{∥∥φi

(
ˆ̄xi
)∥∥}.

Similarly, the derivative of V3 and V4 can be expressed as

V̇3 ⩽
n∑

i=1

(
ω̃T
i

(
−λ1iλ2iϵ0 (t)φi

(
ˆ̄xi
)
− λ1iω̃i + λ1iωi

))
⩽

n∑
i=1

(
− (λ1i − 1) ω̃T

i ω̃i +
λ21iλ

2
2iϵ

2
0 (t) φ̄

2

2
+
λ21iω̄

2

2
)
. (35)

V̇4 =

n∑
i=0

(
d̃i (t) ḋi (t)− d̃i (t)λ3iϵ0 (t)− d̃2i (t)λ3iλ4i + d̃i (t)λ3iλ4idi (t)

)

⩽
n∑

i=0

−
(
λ3iλ4i −

3

2

)
d̃2i +

¯̇
di

2

2
+
λ23iϵ

2
0 (t)

2
+
λ3i

2λ24id̄
2
i

2

 . (36)

In right of (16), (17), and the Young!s inequality, the time derivative of V5 is derived
as

V̇5 ⩽
n∑

i=1

(
−Υ

2
i

λi
− Υiα̇i−1

)

⩽
n∑

i=1

(
−
(

1

λi
− 1

)
Υ 2
i −

α̇2
i−1

4

)
.

Define the set Ωα =
{∑n

i=1
1
2Υ

2
i +

∑n
i=0

1
2 d̃

2
i (t) +

∑n
i=1

1
2 ω̃

T
i ω̃i +

∑n
i=0

1
2z

2
i (t) + ϵTPϵ

⩽ Φ3} in R5n+3. For any Φ3 > 0,
∣∣α̇2

i−1

∣∣ have the maximum ᾱ2
i−1 on the compact Ωα.

Then, it follows that

V̇5 ⩽
n∑

i=1

(
−
(

1

λi
− 1

)
Υi

2 −
ᾱ2
i−1

4

)
. (37)
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According to (32), and (34) – (37), one has

V̇ (t) ⩽−
(
l

2
− 1

γ0
−
(

1

γ0
− 1 + a1n

2φ̄2 + a2n

)
∥P∥2 − (n+ 1)λ21iλ

2
2iφ̄

2 + λ23i
2

−n
4

)
∥ϵ (t)∥2 −

n∑
i=1

(
λ1i − 1− 1

a1

)
ω̃T
i ω̃i −

n∑
i=0

(
λ3iλ4i −

1

a2
− n+ 7

4

)
d̃2i (t)

−
n∑

i=1

(
1

λi
− 5

4

)
Υ 2
i +

n∑
i=1

(
ᾱ2
i−1

4
+
λ21iω̄

2

2

)
+

n∑
i=0

(
¯̇
d2i
2

+
λ23iλ

2
4id̄

2
i

2

)
+ n2ω̄2

The parameters l, γ0, a1, a2, λ1i, λ2i, λ3i and λi are required to satisfy

l

2
− (

1

γ0
− 1) ∥P∥2 − 1

γ0
− a1n

2φ̄2 ∥P∥2 − a2n ∥P∥2 −
(n+ 1)λ21iλ

2
2jφ̄

2 + λ23i
2

− n

4
> 0,

λ1j − 1− 1

a1
> 0, λ1j − 1− 1

a1
> 0, λ3iλ4i −

1

a2
− n+ 7

4
> 0,

1

λi
− 5

4
> 0.

Let Φ2 = min{ l
2 − ( 1

γ0
− 1) ∥P∥2 − 1

γ0
− a1n

2φ̄2 ∥P∥2 − a2n ∥P∥2 −
(n+1)λ2

1iλ
2
2j φ̄

2+λ2
3i

2 −
λ2
3i

2 − n
4 , λ1j − 1 − 1

a1
, λ3iλ4i − 1

a2
− n+7

4 , 1
λi

− 5
4} and Φ3 =

∑n
i=1

(
ᾱ2

i−1

4 + λ1i
2ω̄2

2

)
+∑n

i=0

(
¯̇
d2
i

2 +
λ2
3iλ

2
4id̄

2
i

2

)
+ n2ω̄2. Then,

V̇ (t) ⩽− Φ2V (t) + Φ3, (38)

Since Φ2 is independent of the variable ᾱi−1 and the inequality Φ3 ⩾ Φ3

Φ2
holds by

adjusting the selection of design parameters, then, Φ3

Φ2
+
(
V (0)− Φ3

Φ2

)
e−Φ2 ≤ Φ3 holds.

From (38), we can obtain that

0 ⩽ V (t) ⩽
Φ3

Φ2
+

(
V (0)− Φ3

Φ2

)
e−Φ2t, (39)

which means that Ωα is an invariant set. Moreover, let d = V (0)
m + Φ3

Φ2
> 0, where m is

a parameter. The following discussion will be conducted in two cases.

Case 1: If 0 < m < 1, when t ⩾ 0, the following inequality holds

V (t) ⩽ V (0)e−Φ2 +
Φ3

Φ2
< d.

Case 2: If 1 < m < +∞, when t ⩾ lnm
Φ2

, the following inequality holds

V (t) ⩽ V (0)e−Φ2 +
Φ3

Φ2
⩽ d.

In summary, it can be deduced that there exist two positive real numbers d and
T such that V (t) ⩽ d, when t > T . Therefore, the signals ei, zi, d̂i, ω̂

∗
i and Υi are
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bounded. According to (21), it follows that α0 is bounded. Since Υ1 = αc
1 − α0, it can

be established that αc
1 is also bounded. From z1 = x̂1 − αc

1, it can be obtained that x̂1
is bounded. It implies that x1 is bounded because e1 = x1 − x̂1. Similar reasoning can
be used to prove that αi, i = 1, . . . , n, αc

j , x̂j , and xj , j = 2, . . . , n are also bounded.
The proof is completed. □

In order to detect faults, the following evaluation function is introduced [2],

P (t) =

√
1

T

∫ t+T

t

e0T (τ) e0 (τ) dτ. (40)

Then, the threshold is obtained as

Pth = sup
β(t)≡0

P (t).

Therefore, the fault can be detected using the following decision logic{
P (t) ⩽ Pth, Fault− free,

P (t) > Pth, Faulty.

Remark 3.3. Since only the output is measurable, the FD threshold in this paper
depends the filtered output observation error with measurement noise. Compared with
the existing results [31], when the system is subject to output measurement noise, we can
only obtain the output observation error with measurement noise e1+d0, rather than its
exact value. Therefore, by constructing an extended system through an output low-pass
filter, the output noise is put into the state equation and estimated by a disturbance
observer. Then, the extended system output observation error e0 can be obtained, and
applied to construct the evaluation function. Therefore, the impact of measurement
noise on fault diagnosis accuracy can also be reduced.

Remark 3.4. Due to the unavoidable presence of truncation errors in numerical calcu-
lations or the aging of sensor equipment, gains of an observer may drift [3, 16, 18, 30].
They can lead to fluctuations of the output observation errors, and result in the decrease
in accuracy of fault diagnosis. This problem can be effectively solved by designing a non-
fragile observer based on a time-varying matrix inequality.

3.4. The design of adaptive observer in faulty

According to the evaluation function (40), after the fault has been detected, the fault-
tolerant control strategies are activated. To ensure that all signals of the closed-loop
system are SGUUB, we use NNs to estimate the unknown nonlinear terms and the fault
term.

Consider the nonlinear system (1) in the faulty case, i. e., β (t− tx) = 1,
ẋ1 = x2 + f1 (x̄1) + dσ1 (t) ,
...

ẋn = u (t) + fn (x̄n) + η (x̄n) + dσn (t) ,

y = x1 + dσ0 (t) .

(41)
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Similar to the system (7), the system (41) can also be rewritten as,

ẋ0 = x1 − x0

γc0
+ 1−γc0

γc0
x1 + dc0 (t) ,

ẋ1 = x2 + ω∗T
c1 φ1 (x̄1) + dc1 (t) ,

...

ẋn = u (t) + ω∗T
cn φn (x̄n) +ϖ∗Tψ (x̄n) + dcn (t) ,

ȳ = x0,

(42)

where the unknown nonlinear terms and the fault term are approximated by NNs as
fi (x̄i) = ω∗T

ci φi (x̄i) + εc (x̄i(t)) , i = 1, . . . , n and η (x̄n) = ϖ∗Tψ (x̄n) + εn (x̄n(t)),
ϖ∗ and ω∗

ci, i = 1, . . . , n are the optimal weight values, εc (x̄i(t)) , i = 1, . . . , n − 1

and εn (x̄n(t)) are the NNs approximation errors. γc0 ⩾ ∥Pσ∥
1
2+∥Pc∥

denotes a positive

design constant, dc0 (t) = dσ0(t)
γc0

is the bounded unknown measurement noise in the

output, dci (t) = dσi (t) + εc (x̄i(t)) , i = 1, . . . , n− 1 and dcn (t) = dσn (t) + εc (x̄n(t)) +
εn (x̄n(t)) are the bounded time-varying system disturbances which satisfy the following
assumption.

Assumption 3.5. dci (t) and ḋci (t) , i = 0, . . . , n are assumed to be bound by positive

real numbers d̄ci and
¯̇
dci, respectively, i. e.,

|dci (t)| ⩽ d̄ci,
∣∣∣ḋci (t)∣∣∣ ⩽ ¯̇

dci. (43)

Similar to (10), a neural network-based adaptive non-fragile state observer with fault
is designed as follows

˙̂xc0 = x̂c1 − x̂c0

γc0
+ 1−γc0

γc0
x̂c1 + d̂c0 (t) + lcκc0 (x0 − x̂c0) ,

˙̂xc1 = x̂c2 + ω̂∗T
c1 φc1

(
ˆ̄xc1
)
+ d̂c1 (t) + l2cκc1θc1 (t) (x0 − x̂c0) ,

...
˙̂xcn = u (t) + ω̂∗T

cn φcn

(
ˆ̄xcn
)
+ ϖ̂∗Tψ

(
ˆ̄xcn
)
+ d̂cn (t) + ln+1

c κcnθcn (t) (x0 − x̂c0) ,

(44)

where for i = 0, 1, . . . , n, x̂ci are the observer state variables, κci represent the observer
gains obtained from Lemma 2.3, d̂ci (t) are the estimations of dci (t). For i = 1, 2, . . . , n,
ω̂∗
ci and ϖ̂∗ are the estimations of the optimal weight values, and θci are disturbances

of observer gains satisfying the conditions θmin
ci ⩽ θci (t) ⩽ θmax

ci , where θmin
ci and θmax

ci

are positive parameters. According to (42), we are able to establish the following error
system

ėc0 = ec1 − ec0
γc0

+ 1−γc0

γc0
ec1 − lcκc0ec0 + d̃c0 (t) ,

ėc1 = ec2 + ω∗T
c1 φ̃c1

(
ˆ̄xc1, x̄1

)
+ ω̃T

c1φc1

(
ˆ̄xc1
)
− l2cκc1θc1 (t) ec0 + d̃c1 (t) ,

...

ėcn =ω∗T
cn φ̃cn

(
ˆ̄xcn, x̄n

)
+ ω̃T

cnφcn

(
ˆ̄xcn
)
+ϖ∗T ψ̃

(
ˆ̄xcn, x̄n

)
+ ϖ̃∗Tψ

(
ˆ̄xcn, x̄n

)
− ln+1

c κcnθcn (t) ec0 + d̃cn (t)

(45)
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where eci (t) = xi (t) − x̂ci (t) , d̃ci = dci − d̂ci (t) , i = 0, 1 , . . . , n, φ̃cj

(
ˆ̄xcj , x̄j

)
=

φcj (x̄j) − φcj

(
ˆ̄xcj
)
, ψ̃
(
ˆ̄xcj , x̄j

)
= ψ (x̄j) − ψ

(
ˆ̄xcj
)
, ω̃cj = ωcj

∗ − ω̂∗
cj , j = 1, 2, . . . , n

and ϖ̃ = ϖ∗ − ϖ̂∗. lc ⩾ 1 is the high gain.
The adaptive laws d̂ci (t) , i = 0, 1, . . . , n are designed as

˙̂
dci (t) = λ3ci

(
ec0 (t)− λ4cid̂ci (t)

)
,

where λ3ci > 0 and λ4ci > 0 are the design parameters.
Consider the coordinate transformations as follows

ϵci (t) =
xi (t)− x̂ci (t)

lic
, i = 0, 1, . . . , n. (46)

Integrating (45) and (46), we obtain

ϵ̇c (t) = lcAcϵ (t) +Bc + Cc +Dc + Ec + Fc +Gc +Hc,

where Ac =


−κc0 (t) 1 · · · 0

−κc1θc1 (t) 0
. . . 0

...
... · · · 1

−κcnθcn (t) 0 · · · 0

 , Bc =


− ϵc0

γc0

0
...
0

 , Cc =


1−γc0

γc0
ϵc1l

0
...
0

 ,

Dc =


0

1
lc
ω∗T

c1 φ̃c1

(
ˆ̄xc1, x̄1

)
...

1
lnc
ω∗T

cn φ̃cn

(
ˆ̄xcn, x̄n

)
 , Ec =


0

1
lc
ω̃T
c1φc1

(
ˆ̄xc1
)

...
1

lcn
ω̃T
cnφcn

(
ˆ̄xcn
)
 , Fc =


d̃c0 (t)
d̃c1(t)

lc
...

d̃cn(t)
lcn

 ,

Gc =


0
0
...

1
lcn
ϖ̃Tψ

(
ˆ̄xcn
)
 , Hc =


0
0
...

1
lcn
ϖ∗T ψ̃

(
ˆ̄xcn, x̄n

)
 .

Choose the coordinate transformations as{
zc0 = xc0,

zci = x̂ci − αc
ci, i = 1, . . . , n.

where zc0 and zci are the error variables, and αc
ci, i = 1, . . . , n are the first-order filter

outputs. The first-order filters are designed as follows

λciα̇
c
ci + αc

ci = αc(i−1), α
c
ci (0) = αc(i−1) (0) , i = 1, . . . , n,

where αc(i−1) and λci are the first-order filter inputs and the designed constants. Define

Υci = αc
ci − αc(i−1), i = 1, . . . , n,

where Υci represent the errors between the inputs and outputs of the first-order filters.
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The adaptive laws of ˙̂ω∗
ci (t) and

˙̂ϖ∗ (t) are designed as follows

˙̂ω∗
ci (t) = λ1ci

(
λ2ciϵ0 (t)φci

(
ˆ̄xci
)
− ω̂∗

ci (t)
)
, i = 1, . . . , n, (47)

˙̂ϖ∗ (t) = χ1

(
χ2ϵ0 (t)ψ

(
ˆ̄xcn
)
− ϖ̂∗ (t)

)
, (48)

where λ1ci > 1, λ1ci, χ1 and χ2 are the design parameters.

Since the controller design process and stability analysis with faulty control are similar
to those with fault-free control, the controller and the virtual controller are given as

αc0 =

(
−4l2c + 5

4γ2c0
− ρc0γc0

)
zc0 − γc0d̂c0 (t) , (49)

αci = −ρcizci − zcilc
2i+2κ2ciθ

max
ci

2 − 3zci − ω̂∗T

ci φci

(
ˆ̄xci
)
− d̂ci (t) + α̇c

ci, (50)

i = 1, . . . , n− 1,

uc (t) =
(
−ρcn − l2n+2

c κ2nθ
max
ci

2 − 1
)
zcn − ϖ̂∗Tψ

(
ˆ̄xcn
)
− ω̂∗T

cn φcn

(
ˆ̄xcn
)

(51)

− d̂cn (t) + α̇c
cn.

where ρc0 > 1, ρci > 0, i = 1, . . . , n− 1 and ρcn > 0 are the design parameters.

Theorem 3.6. Consider the nonlinear system (41) with fault and output measurement
noise under Assumption 3.5. Design the non-fragile nonlinear observer (44). Based on
the evaluation function (40), it can be obtained the time instant when a fault occurs.
Then, with the virtual controller (49), (50), and the adaptive laws of NNs and the
disturbance observer (47), (48), a fault-tolerant controller (51) can be designed to ensure
that all signals of the closed-loop system are SGUUB.

Algorithm 1 Procedure of the design parameters selection

1: Configure the radial basis functions by choosing the node number, the center and
the width;

2: Select the observer gains κi such that (4) holds;
3: Select the first-order filters parameters γi and the output filter parameter γ0, and

construct the extended system (1);

4: Select the design parameters χ1, χ2, λ3i, λ4i, λ1i, λ2i for the update laws ˙̂ϖ∗,
˙̂
di, ˙̂ω

∗
i ;

5: Select the design parameters λi, and determine the virtual controllers αi;
6: The threshold Pth is calculated by the algorithm in (40);
7: When a fault is diagnosed, reselect the controller parameters for the FTC

The algorithm of corresponding parameters selection is given by Algorithm 1.
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4. DEMONSTRATIVE EXAMPLE

Consider a one-link robot system as follows:

T p̈+Rṗ+ E sin(p) = τ + τd

Wτ̇ +Qτ = u−Kmṗ (52)

where p, ṗ and p̈ are represent the the link position, velocity and acceleration, respec-
tively, τ is the torque generated by the electrical system, τd represents the torque distur-
bance. T = 1 kg/m2 represents the mechanical inertia. R = 0.1Ntms/rad represents
the coefficient of viscous friction at the joint. E = 10 is a positive constant related
to the load mass and gravity coefficient. W = 1H represents the armature inductance.
Q = 1Ω represents the armature resistance. Km = 0.2Nm/A represents is the back-emf
coefficient. u represents the control input for electric torque.

Consider the case where fault exists in the above system. By introducing the variable
x1 = p, x2 = ṗ and x3 = τ , the system (52) can be rewritten as

ẋ1 = x2 + f1 (x1) + dσ1 (t) ,

ẋ2 = x3 + f2 (x1, x2) + dσ2 (t) ,

ẋ3 = u (t) + f3 (x1, x2, x3) + dσ3 (t) + β (t− tx) η (x1, x2, x3) ,

y = x1 + dσ0,

where the functions f1(x1) = 0.1 sin(x1), f2(x1, x2) = −(R/T )x2 − (E/T ) sin(x1),
f3(x1, x2, x3) = −(Km/W )x2 − (Q/W )x3 + sin(x1x2x3). dσi(t), i = 1, 2, 3 are the
bounded time-varying system disturbances, dσ0 is a bounded unknown measurement
noise in the sensor. y denotes the system output. The fault function is chosen as
η (x1, x2, x3) = 5 + 0.3 sin (x1 + x2 + x3). The time profile of fault is

β (t− tx) =

{
0, if t < tx,

1, if t ⩾ tx.

Assume that the fault occurs at tx = 20 s.
Similar to (41), the following extended system can be obtained,

ẋ0 = x1 − x0

γ0
+ 1−γ0

γ0
x1 + d0 (t) ,

ẋ1 = x2 + ω∗T
1 φ1 (x1) + d1 (t) ,

ẋ2 = x3 + ω∗T
2 φ2 (x1, x2) + d2 (t) ,

ẋ3 = u (t) + ω∗T
3 φ3 (x1, x2, x3) + β (t− tx)ϖ

∗Tψ (x1, x2, x3) + d3 (t) ,

ȳ = x0,

where d0(t) = 0.5 sin(500t), d1(t) = cos(500t), d2(t) = sin(450t), d3 = 0.5 sin(450t).
According to (9), the following non-fragile observer is presented,

˙̂x0 = x̂1 − x̂0

γ0
+ 1−γ0

γ0
x̂1 + d̂0 (t) + lκ0 (x0 − x̂0) ,

˙̂x1 = x̂2 + ω̂∗T
1 φ1 (x̂1) + d̂1 (t) + l2κ1θ1 (t) (x0 − x̂0) ,

˙̂x2 = x̂3 + ω̂∗T
2 φ2 (x̂1, x̂2) + d̂2 (t) + l3κ2θ2 (t) (x0 − x̂0) ,

˙̂x3 =u (t) + ω̂∗T
3 φ3 (x̂1, x̂2, x̂3) + β (t− tx) ϖ̂

∗Tψ (x1, x2, x3) + d̂3 (t)
+ l4κ3θ3 (t) (x0 − x̂0) ,
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Fig. 1. The trajectories of x0 and x̂0 under fault-tolerant control.

where the high observer gain l = 5, the observer gains κ0 = 5, κ1 = 8, κ2 = 10, κ3 = 15,
the observer gain disturbances θ1(t) = 1 + 0.1 cos(t), θ2(t) = 1 + 0.1 sin(t), θ3(t) =

1+ 0.05 cos(t) and θmax = 1.1. Select NN basis functions as φ1(x̂1) = exp[− (x̂1−5+m)2

0.1 ],

φ2(x̂1, x̂2) = exp[− (x̂1−5+m)2+(x̂2−5+m)2

0.1 ], φ3(x̂1, x̂2, x̂3) = exp[− (x̂1−5+m)2+(x̂2−5+m)2

0.1

− (x̂3−5+m)2

0.1 ], ψ(x̂1, x̂2, x̂3) = exp[− (x̂1−5+m)2+(x̂2−5+m)2+(x̂3−5+m)2

10 ], m = 1, . . . , 10.

The parameters of the adaptive laws are chosen as λ11 = λ12 = λ13 = 2/3, λ21 =
λ22 = λ23 = 3, χ1 = 0.01 and χ2 = 1000. The design parameters in virtual con-
trollers αi, i = 0, 1, 2 and u(t) are given as ρ0 = 5, ρ1 = 6, ρ2 = 3 ρ3 = 2 and
γ0 = 1. The parameters of the first-order filters λ1 = 0.8, λ2 = 0.5 and λ3 = 0.001.
The initial values are chosen as (x0(0), x1(0), x2(0), x3(0), x̂0(0), x̂1(0), x̂2(0), x̂3(0)) =
(0, 2, −0.2, 0.3, 0.5, 0.5, −0.2, 0.3).

The main simulation results are presented in Figure 1 – 12. Figure 1 – 4 describe the
trajectories of system states x(t) = (x(0), x(1), x(2), x(3))T and the observer states
x̂(t) = (x̂(0), x̂(1), x̂(2), x̂(3))T under FTC case. Figure 5 – 8 show the trajectories of
system states x(t) and the observer states x̂(t) in the absence of FTC case. The fault
is detected at around 22s with the threshold Pth = 0.04 in Figure 9. Figure 10 and
Figure 11 show the trajectories of the norm of the NN weight vectors. Figure 12 shows
the trajectory of the controller u(t). In order to demonstrate the effectiveness of our
proposed methods, Figure 13 – 15 show the trajectories of the system states and the
observer states obtained by the method in [31] when the system is in the presence of
output measurement noise. Obviously, the states of the system are divergent. It is
also shown in Figure 16 that the trajectories of the evaluation function and threshold
obtained by the method in [31]. The time detected for the fault is 2.5s. Therefore, it is
impossible to initiate FTC strategy rightly when the fault occurs. In summary, based on
the method proposed in this paper, all the signals are SGUUB, even if the fault exists.
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Fig. 2. The trajectories of x1 and x̂1 under fault-tolerant control.

0 10 20 30 40 50 60 70 80 90

-15

-10

-5

0

5

10

Fig. 3. The trajectories of x2 and x̂2 under fault-tolerant control.
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Fig. 4. The trajectories of x3 and x̂3 under fault-tolerant control.
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Fig. 5. The trajectories of x0 and x̂0 without fault-tolerant control.
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Fig. 6. The trajectories of x1 and x̂1 without fault-tolerant control.
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Fig. 7. The trajectories of x2 and x̂2 without fault-tolerant control.
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Fig. 8. The trajectories of x3 and x̂3 without fault-tolerant control.
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Fig. 9. The trajectories of the evaluation function and threshold.
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Fig. 10. The trajectories of ∥ω̂∗
1∥, ∥ω̂∗

2∥, and ∥ω̂∗
3∥ under

fault-tolerant control.
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Fig. 11. The trajectory of ∥ϖ∗∥ under fault-tolerant control.
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Fig. 12. The trajectory of u(t).
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Fig. 13. The trajectories of x1 and x̂1 obtained by the method

in [31].
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Fig. 14. The trajectories of x2 and x̂2 obtained by the method

in [31].
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Fig. 15. The trajectories of x3 and x̂3 obtained by the method

in [31].
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Fig. 16. The trajectories of the evaluation function and threshold

obtained by the method in [31].
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5. CONCLUSIONS

In this paper, we focused on the active FTC problem for a class of nonlinear systems
with measurement noise in the output. Firstly, in order to mitigate the impact of sensor
noise and observer gain disturbances on fault diagnosis accuracy, an extended non-fragile
observer was established. Then, based on the magnitude of the output observation error,
an activation of the FTC scheme was determined. Finally, a neural network adaptive
fault-tolerant controller was constructed to ensure that all signals of the closed-loop
system are SGUUB. The simulation results showed the effectiveness of our proposed
scheme. In the future, we will consider the active FTC problem for a non-strictly
nonlinear system.
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