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Abstract. We consider the Vilenkin orthonormal system on a Vilenkin group G and the
Vilenkin-Fourier coefficients f̂(n), n ∈ N, of functions f ∈ Lp(G) for some 1 < p 6 2.

We obtain certain sufficient conditions for the finiteness of the series
∞∑

n=1
an|f̂(n)|

r, where

{an} is a given sequence of positive real numbers satisfying a mild assumption and 0 <

r < 2. We also find analogous conditions for the double Vilenkin-Fourier series. These
sufficient conditions are in terms of (either global or local) moduli of continuity of f and
give multiplicative analogue of some results due to Móricz (2010), Móricz and Veres (2011),
Golubov and Volosivets (2012), and Volosivets and Kuznetsova (2020).

Keywords: generalized absolute convergence; Vilenkin-Fourier series; modulus of conti-
nuity; multiplicative system
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1. Introduction

In 2006, Gogoladge and Meskhia (see [4]) considered the convergence of the series
∞
∑

n=1
γn̺

r
n(f), 0 < r < 2, where ̺n(f) = (a2n(f)+ b

2
n(f))

1/2, an(f), bn(f) are the coef-

ficients of the Fourier trigonometric series of the function f , and {γn} is a sequence
of positive numbers satisfying certain definite conditions. In 2010, Móricz (see [9])

considered the Walsh orthonormal system on the interval [0, 1) in the Paley enu-

meration and the Walsh-Fourier coefficients f̂(n), n ∈ N, of functions f ∈ Lp[0, 1)
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for some 1 < p 6 2. He found certain best possible sufficient conditions for the

finiteness of the series
∞
∑

n=1
an|f̂(n)|r, where {an} is a given sequence of nonnegative

real numbers satisfying a mild assumption considered by Gogoladge and Meskhia

in [4], and 0 < r < 2. Those sufficient conditions were in terms of (either global

or local) dyadic moduli of continuity of f . In 2011, Móricz and Veres (see [10])

proved analogues of the results proved in [9] for the double Walsh-Fourier series.

In 2012, Golubov and Volosivets (see [6]) obtained several sufficient conditions for

generalized absolute convergence of bounded type single and double Vilenkin-Fourier

series. Those conditions gave a multiplicative analogue of results due to Gogoladze

and Meskhia (see [4]), and Izumi and Izumi (see [8]). They noticed that their re-

sults are analogous of the results obtained by Móricz in [9], and Móricz and Veres

in [10]. They also discussed the sharpness of some of their results. In 1966, Walker

(see [14]) proved Bernstein’s original theorem for Lipschitz functions on Vilenkin

groups without bounded property. In 1992, Yonis (see [15]) used the Walker’s tech-

nique to prove a result for the β-absolute convergence of Vilenkin-Fourier series on

an arbitrary Vilenkin group. Using the technique of Walker, we prove the analogues

of some results of [9], [10], [6], and [13], for single and double Vilenkin-Fourier series

on an arbitrary Vilenkin group

2. Notations and definitions

2.1. Single Vilenkin-Fourier series. Let G be a compact, metrizable, 0-

dimensional, abelian group. Then the dual group X of G is a countable, discrete,

abelian, torsion group. In 1947, Vilenkin developed a part of the Fourier theory

on G. He proved the existence of an increasing sequence {Xn} of finite subgroups
of X and of a sequence {ϕn} of characters in X such that the following hold.
(1) X0 = {χ0}, where χ0(x) = 1 for all x ∈ G.

(2) For each n > 1, Xn/Xn−1 is of prime order pn.

(3) X =
∞
⋃

n=0
Xn.

(4) ϕn ∈ Xn+1 \Xn for all n > 0.

(5) ϕ
pn+1
n ∈ Xn for all n > 0.

Using these ϕn one can enumerate the elements of X as follows. Let m0 = 1 and

let mk =
k
∏

i=1

pi for k > 1. If l > 1 and if l =
s
∑

i=0

aimi, with 0 6 ai < pi+1 if 0 6 i 6 s,

then χl = ϕa0

0 . . . ϕas
s . Then Xk = {χi : 0 6 i < mk}. Next, if Gk is the annihilator

of Xk, that is,

Gk = {x ∈ G : χ(x) = 1 for all χ ∈ Xk},
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then obviously G = G0 ⊃ G1 ⊃ G2 ⊃ . . . ,
∞
⋂

k=0

Gk = {0}, and the Gk’s form a

fundamental system of neighborhoods of zero in G. Further, the index of Gk in G

is mk, and since the Haar measure is translation invariant with m(G) = 1, one has

m(Gk) = 1/mk. The metric on G is then given by

d(x, y) = |x− y| for x, y ∈ G,

where |x| = 0 if x = 0, and |x| = 1/mk+1 if x ∈ Gk \Gk+1 for k = 0, 1, 2, . . .

Furthermore, for each k > 0 there exists an xk ∈ Gk \Gk+1 such that χmk
(xk) =

exp(2πi/pk+1), and each x ∈ G can be represented uniquely by x =
∞
∑

i=0

bixi with

0 6 bi < pi+1 for all i > 0. Also,

Gk =

{

x ∈ G : x =

∞
∑

i=0

bixi, b0 = . . . = bk−1 = 0

}

.

Consequently, each coset of Gk in G can be represented as z + Gk, where z =
k−1
∑

i=0

bixi for some choice of the bi, 0 6 bi < pi+1. We shall denote these z, ordered

lexicographically, by zGq,k, 0 6 q < mk.

Next, let dx or m denote the normalized Haar measure on G. In this section, f

denotes a function from G to C. For f ∈ L1(G) the Fourier series of f is the series

(2.1) S[f ](x) =
∞
∑

k=0

f̂(k)χk(x),

where

f̂(k) =

∫

G

f(t)χk(t) dt, k ∈ N,

is the k-th Vilenkin-Fourier coefficient of f .

If sup
k
pk = p0 < ∞, we refer to G as a bounded group. A group G is said

to be primary if pi = p for all i. If pk = 2 for all k, G is the so-called dyadic

group or Walsh group and the elements of its character group X are the Walsh

functions (see [1]). We denote this group by W . Note that in this case mk = 2k and

Gk = [0, 1/2k) = Wk, say. As usual, the space L
p(G), 1 6 p < ∞, is endowed with

the norm ‖f‖p =
(∫

G |f(t)|p dt
)1/p
.

If S ⊂ G, then oscillation of f over S (see, e.g. [11], Definition 1) is defined as

(2.2) osc(f, S) = sup{|f(x)− f(y)| : x, y ∈ S}.
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For k ∈ N ∪ {0}, the k-th modulus of continuity of f (see, e.g. [11], Definition 2) is
defined as

(2.3)

ω(f, k) = sup{|(Thf − f)(x)| : x ∈ G, h ∈ Gk}, (Thf)(x) := f(x+ h), x ∈ G.

For k ∈ N∪{0}, the k-th local modulus of continuity of f over the coset I = y0+GK

(see, e.g. [3], Definition 2.1) is defined as

(2.4) ω(f, k, I) = sup{|(Thf − f)(x)| : x ∈ I, h ∈ Gk}.

Note that if I = y0 +GK , then x ∈ I if and only if x− y0 ∈ GK , and hence for each

k ∈ N ∪ {0}, it is clear that

(2.5) ω(f, k, I) 6 ω(f, k) and osc(f, zGq,k +Gk) = ω(f, k, zGq,k +Gk).

For k ∈ N∪ {0}, f ∈ Lp(G), and 1 6 p <∞, the k-th integral modulus of continuity
of order p (see, e.g. [12], Definition 2.2) is defined as

(2.6) ω(p)(f, k) = sup{‖Thf − f‖p : h ∈ Gk}.

It is clear that

(2.7) ω(p)(f, k) 6 ω(f, k), k ∈ N ∪ {0}, 1 6 p <∞.

For f ∈ Lp(G), 1 6 p <∞, the best approximation of f (see [6]) is defined as

(2.8) E(p)(f, n) = inf{‖f −Q‖p : Q ∈ Pn}, n ∈ N,

where Pn = {f ∈ L1(G) : f̂(i) = 0, i > n}, n ∈ N. The best approximation and

the modulus of continuity are connected by the inequalities of Efimov (see, e.g. [6],

page 107 or [5], §10.5):

(2.9) 2−1ω(p)(f, n) 6 E(p)(f,mn) 6 ω(p)(f, n).

For a function f ∈ Lp(G), k ∈ N ∪ {0}, and 1 6 p < ∞, the k-th local integral
modulus of continuity of order p of f over the coset I = y0 + GK (see, e.g. [3],

Definition 2.2) is defined as

(2.10) ω(p)(f, k, I) = sup
{( 1

m(I)

∫

I

|(Thf − f)(x)|p dx
)1/p

: h ∈ Gk

}

.
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For k ∈ N ∪ {0} and 1 6 p <∞, it is clear that

(2.11) ω(p)(f, k, I) 6 ω(f, k, I).

For α > 0 if ω(f, k) = O(m−α
k ), then f is said to satisfy a Lipschitz condition of

order α and this class is denoted by Lip (α,G) (see, e.g. [11], Definition 3). The class

Lip (α, p,G) of functions satisfying Lipschitz condition of order α, 0 < α 6 1, in the

mean of order p, 1 6 p <∞ (see [12], Definition 2.3), is defined by

(2.12) Lip (α, p,G) = {f ∈ Lp(G) : ω(p)(f, k) = O(m−α
k )}.

It is clear that

(2.13) Lip (α,G) ⊂ Lip (α, p,G), 1 6 p <∞.

Following Móricz (see [9], page 278) we define the s-bounded fluctuation as follows.

Definition 2.1. A function f is of s-bounded fluctuation for some 0 < s < ∞
on G (in symbols: f ∈ BFs(G)) if

F ls(f,G) := sup
k>0

(mk−1
∑

q=0

(ω(f, k, zGq,k +Gk))
s

)1/s

<∞

and F ls(f,G) is called the total s-fluctuation of f on G.

In view of the equality in (2.5), for s > 1, our Definition 2.1 is equivalent to [11],

Definition 4. Also, it is clear that if f ∈ BFs(G), 0 < s <∞, then f is bounded on G.
Following the definition of Gogoladge and Meskhia (see [4]), Golubov and Volo-

sivets (see [6], page 108) considered the following definition (see also [9], page 279).

Definition 2.2. A sequence {ak} of positive numbers is said to belong to the
class Aγ(G) for some γ > 1 if the inequality

(2.14)

(

∑

k∈DG
µ

aγk

)1/γ

6 κm(1−γ)/γ
µ

∑

k∈DG
µ−1

ak := κm(1−γ)/γ
µ AG

µ−1, µ ∈ N ∪ {0},

is satisfied, where

(2.15) DG
µ := {mµ,mµ + 1, . . . ,mµ+1 − 1} for µ ∈ N ∪ {0}, and DG

−1 := {1},

and the constant κ > 1 does not depend on µ.
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We note that for any bounded group G we have (see, e.g. [13], page 220)

(2.16) Aγ1(G) ⊂ Aγ2(G) for γ1 > γ2.

However, this is not true if G is unbounded (see Lemma 3.1).

2.2. Double Vilenkin-Fourier series. Let G be a Vilenkin group as in Sec-

tion 2.1. Let H be another such Vilenkin group and let the corresponding sequence

of primes be {ql}. Let Y be the dual group of H with characters ψi, i = 0, 1, 2, . . .

and {Yl} be the increasing sequence of finite subgroups of Y as in Section 2.1. Then

Yl = {ψi : 0 6 i < nl}, where nl :=
l
∏

i=1

qi. Let Hl be annihilator of Yl, that is,

(2.17) Hl = {y ∈ H : ψ(y) = 1 for all ψ ∈ Yl}.

The group G×H is called a two-dimensional Vilenkin group. The normalized Haar

measure is denoted by dm(x, y). In this section, f will denote a function from G×H
to C. Also, for y ∈ H , f(·, y) denotes the function onG defined by f(·, y)(x) = f(x, y)

and for x ∈ G, f(x, ·) denotes the function on H defined by f(x, ·)(y) = f(x, y).

The two-dimensional Fourier coefficients of f ∈ L1(G×H) are defined as

f̂(m,n) :=

∫

G×H

f(x, y)χ̄m(x)ψn(y) dm(x, y), m, n ∈ N.

We recall the difference operators ∆1,0, ∆0,1, and ∆1,1, which are defined in the

usual way as follows:

∆1,0f(x, y;h1) := f(x+ h1, y)− f(x, y), ∆0,1f(x, y;h2) := f(x, y + h2)− f(x, y),

and

∆1,1f(x, y;h1, h2) := f(x+ h1, y + h2)− f(x, y + h2)− f(x+ h1, y) + f(x, y).

If W × Z ⊂ G × H , then oscillation of f over W × Z (see, e.g. [13], page 220) is

defined as

osc(f,W × Z) = sup{|f(x, y)− f(w, y)− f(x, z) + f(w, z)| : x,w ∈W, y, z ∈ Z}.

For k, l ∈ N ∪ {0}, the (k, l)-th modulus of continuity of f (see, e.g. [6], page 107) is
defined as

(2.18) ω(f, k, l) = sup{|∆1,1f(x, y;h1, h2)| : h1 ∈ Gk, h2 ∈ Hl}, (x, y) ∈ G×H.
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For k, l ∈ N ∪ {0}, the (k, l)-th local modulus of continuity of f over the set I × J ,

I = z0 +GK , J = w0 +HL is defined as

ω(f, k, l; I × J) = sup{|∆1,1f(x, y;h1, h2)| : (x, y) ∈ I × J, h1 ∈ Gk, h2 ∈ Hl}.

For k, l ∈ N∪{0} and each set I×J , it is easy to verify that ω(f, k, l; I×J) 6 ω(f, k, l)

and

(2.19) osc(f, (zGq1,k +Gk)× (zGq2,l +Hl)) = ω(f, k, l, (zGq1,k +Gk)× (zGq2,l +Hl)).

For k, l ∈ N ∪ {0}, f ∈ Lp(G×H), and 1 6 p <∞, the (k, l)-th integral modulus of
continuity of order p (see [6], page 107) is defined as

(2.20) ω(p)(f, k, l) = sup{‖∆1,1(x, y;h1, h2)‖p : h1 ∈ Gk, h2 ∈ Hl}.

It is clear from the definitions that

(2.21) ω(p)(f, k, l) 6 ω(f, k, l), k, l ∈ N ∪ {0}, 1 6 p <∞.

Following Móricz and Veres (see [10], page 125), the (k, l)-th local integral modulus

of continuity of order p (1 6 p < ∞), of a function f ∈ Lp(G × H), over the set

I × J , I = z0 +GK , J = w0 +HL, k, l ∈ N ∪ {0}, is defined as
(2.22)

ω(p)(f, k, l; I × J)

= sup

{(

1

m(I × J)

∫

I×J

|∆1,1f(x, y;h1, h2)|p dm(x, y)

)1/p

: h1 ∈ Gk, h2 ∈ Hl

}

.

As in the case of one variable, for k, l ∈ N ∪ {0} and 1 6 p < ∞, we have
ω(p)(f, k, l; I × J) 6 ω(f, k, l; I × J).

Now, analogously to one variable we introduce the following. For α, β > 0 if

ω(f, k, l) = O(m−α
k n−β

l ), we say that f satisfies a Lipschitz condition of order (α, β)

and this class is denoted by Lip (α, β;G×H). We define the class Lip (α, β, p;G×H)

of functions satisfying Lipschitz condition of order (α, β), 0 < α, β 6 1, in the mean

of order p, 1 6 p <∞, as

(2.23) Lip (α, β, p;G×H) = {f ∈ Lp(G×H) : ω(p)(f, k, l) = O(m−α
k n−β

l )}.

It is clear that

(2.24) Lip (α, β;G ×H) ⊂ Lip (α, β, p;G ×H), 0 < α, β 6 1, 1 6 p <∞.

Similarly to the case of one variable, following Móricz and Veres (see [10]), we

have the following definition.
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Definition 2.3. Let 0 < s < ∞. We say that a function f is of s-bounded
fluctuation (in symbols: f ∈ BFs(G×H)) if the total s-fluctuation of f on G×H ,

F ls(f,G×H) := sup
k,l>0

(mk−1
∑

q1=0

nl−1
∑

q2=0

(ω(f, k, l, (zGq1,k +Gk)× (zGq2,l +Hl)))
s

)1/s

<∞,

and F ls(f,G×H) is called the total s-fluctuation of f on G×H . In view of (2.19),

we can replace ω(f, k, l, (zGq1,k+Gk)×(zGq2,l+Hl)) by osc(f, (z
G
q1,k

+Gk)×(zGq2,l+Hl))

in the above definition of F ls(f,G×H).

R em a r k 2.1. Likewise the functions on rectangles, if f is such that F ls(f,
G×H) <∞, then it is not necessary that f be measurable or bounded. For example,
let E be a non-measurable subset of G (such a non-measurable set always exists for

any infinite compact abelian group (see [7], 16.13) and hence, in particular, for a

Vilenkin group), and define f(x, y) = χE(x), (x, y) ∈ G×H . Then F ls(f,G×H) =

0 <∞ but f is not measurable, as the set {(x, y) ∈ G×H : f(x, y) > 1} = E×H is a
non-measurable set, because E is a non-measurable set. Further, let f(x, y) = 1/|x|
for 0 6= x ∈ G and f(0, y) = 0 for all y ∈ H , where |·| is as defined in Section 2.1.
Then F ls(f,G × H) = 0 < ∞, but f is not bounded as f(x, y) → ∞ as k → ∞
for x ∈ Gk \ Gk+1. However, if f is such that F ls(f,G × H) < ∞ and for a fixed

(x0, y0) ∈ G×H , F ls(f(x0, ·), H) <∞ and F ls(f(·, y0), H) <∞, then f is bounded.
Indeed, for (x, y) ∈ G×H we have

(2.25) |f(x, y)| 6 |f(x, y)− f(x0, y)− f(x, y0) + f(x0, y0)|+ |f(x0, y0)|
+ |f(x0, y)− f(x0, y0)|+ |f(x, y0)− f(x0, y0)|

6 osc(f,G0 ×H0) + osc(f(x0, ·), H0)

+ osc(f(·, y0), G0) + |f(x0, y0)|
6 F ls(f,G×H) + F ls(f(x0, ·), H)

+ F ls(f(·, y0), G) + |f(x0, y0)|
<∞.

Therefore f is bounded on G×H .

Volosivets and Kuznetsova (see [13]) gave an analogue of Waterman’s well-known

definition of bounded Λ-variation as follows.

Definition 2.4 ([13]). Let p > 1 and Λ = {λi}∞i=1 and Ψ = {ψj}∞j=1 be two

nondecreasing sequences of positive numbers such that Λn =
n
∑

i=1

λ−1
i and Ψn =

n
∑

i=1

ψ−1 tend to infinity as n→ ∞.
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Let f(x, y) be bounded on G×H . For fixed k, l ∈ N, let

(2.26) VΛ,Ψ,p(f, k, l) := sup

(mk−1
∑

i=0

nl−1
∑

j=0

(osc(f, (zGqαi
,k +Gk)× (zHqβj

,l +Hl)))
p

λi+1ψj+1

)1/p

,

where the supremum in the formula for V is taken over all permutations {αi}mk
i=1 and

{βj}nl

j=1 of the index sets {0, 1, . . . ,mk − 1} and {0, 1, . . . , nl − 1}. If

(2.27) VΛ,Ψ,p(f,G×H) := sup{VΛ,Ψ,p(f, k, l) : k, l ∈ N} <∞,

then we say that f ∈ (Λ,Ψ)F lp(G×H).

For G = W , a two-dimensional analogue of the class Aγ(G) (see Definition 2.2)

was defined by Móricz and Veres in [10], page 127. Their definition is a particular

case of the following definition given by Golubov and Volosivets (see [6]) in the case

when G =W .

Definition 2.5. Let {akl : k, l = 1, 2, . . .} be a double sequence of positive num-
bers and γ > 1. If for arbitrary µ, ν ∈ N ∪ {0} the inequality

(2.28)

(

∑

k∈DG
µ

∑

l∈DG
ν

aγkl

)1/γ

6 C(mµmν)
(1−γ)/γ

∑

k∈DG
µ−1

∑

l∈DG
ν−1

akl

is satisfied, where DG
µ is as in (2.15) and the constant κ > 1 does not depend on µ

or ν, then {akl} is said to belong to the class A∗(γ, 2).

Analogously to the class A∗(γ, 2), defined above, we define the class A∗

γ(G ×H)

as follows.

Definition 2.6. A sequence {akl} of positive numbers is said to belong to the
class A∗

γ(G×H) for some γ > 1 if the inequality

(2.29)

(

∑

k∈DG
µ

∑

l∈DH
ν

aγkl

)1/γ

6 κ(mµnν)
(1−γ)/γ

∑

k∈DG
µ−1

∑

l∈DH
ν−1

akl

:= κ(mµnν)
(1−γ)/γA∗

µ−1,ν−1, µ, ν ∈ N ∪ {0},

is satisfied, where DG
µ is as in (2.15),

(2.30) DH
ν := {nν, nν + 1, . . . , nν+1 − 1} for ν ∈ N ∪ {0}, and DH

−1 := {1},

and the constant κ > 1 does not depend on µ or ν.
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We note that the class A∗

γ(G ×H) is a generalization of the class Aγ(G), γ > 1,

defined by Móricz and Veres (see [10], page 127).

In this paper, we shall prove certain results analogous to the results proved by

Móricz in [9], and Móricz and Veres in [10] for the single and double Vilenkin-

Fourier series, respectively. We shall also prove some results analogous to the results

proved by Golubov and Volosivets in [6], and Volosivets and Kuznetsova in [13]

for arbitrary, bounded or unbounded Vilenkin group. In what follows, C denote a

positive constant, which may not have the same value at each occurrence.

3. Results

3.1. Single Vilenkin-Fourier series. Our first result is the following example,

which shows that (2.16) does not hold if we replace a bounded Vilenkin group by an

unbounded Vilenkin group.

E x am p l e 3.1. If G is unbounded, then there exists {an} ∈ A2(G) such that

{an} /∈ A1(G).

Our next result is a Vilenkin group analogue of a result of Móricz, see [9], The-

orem 1. Our theorem also gives an analogue of a result of Golubov and Volosivets

(see [6], Corollary 1) for any Vilenkin group.

Theorem 3.1. If f ∈ Lp(G) for some 1 < p 6 2 and

(3.1) {an} ∈ Ap/(p−rp+r)(G) for some 0 < r < q,

where 1/p+ 1/q = 1, then

(3.2)
∞
∑

n=1

an|f̂(n)|r 6 2−r/2κ
∞
∑

µ=0

m−r/q
µ AG

µ−1(ω
(p)(f, µ))r,

where κ is from (2.14) corresponding to γ = p/(p−rp+r). In particular, if the series
on the right-hand side of (3.2) converges, then

(3.3)

∞
∑

n=1

an|f̂(n)|r <∞.

R em a r k 3.1. Theorem 3.1 is proved in a similar way, except for a few steps,

by Golubov and Volosivets (see [6], Corollary 1, and the proof of Theorem 1). They

used the boundedness of G to prove this result. However, our proof will work for

any group, whether it is bounded or unbounded. To prove this result for arbitrary

group, we will use the technique used by Walker in [14].
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Corollary 3.1. If the hypotheses of Theorem 3.1 hold and the series

(3.4)

∞
∑

n=0

ann
−r/q(E(p)(f, n))r

converges, then (3.3) holds.

Corollary 3.2. If f ∈ L2(G), G is bounded, and
∞
∑

µ=1
m

1/2
µ ω(2)(f, µ) < ∞, then

∞
∑

n=1
|f̂(n)| <∞.

We note that Corollary 3.2 is not true for an unbounded Vilenkin groupG (see [12],

Corollary 4.2 for p = 2).

R em a r k 3.2. Our Corollary 3.1 is an analogue of Corollary 2 of [6] for any

Vilenkin group. Since Theorem 2 of [6] shows the unimprovability of Corollary 2

of [6], it shows that our Corollary 3.1 is also unimprovable for any Vilenkin group.

It is worth formulating Theorem 3.1 in the particular case when f ∈ Lip (α, p,G)

and an ≡ 1.

Corollary 3.3. If f ∈ Lip (α, p,G) for some α > 0, 1 < p 6 2, 1/p + 1/q = 1,

G is bounded, and if

(3.5)
q

1 + αq
< r < q,

then

(3.6)

∞
∑

n=1

|f̂(n)|r <∞.

For an unbounded group G, Corollary 3.3 is already known due to Younis, see [15],

Theorem 3.1 (Actually only the condition p/(p+ αp− 1) < q was used in the proof

of Theorem 3.1 of [15]).

Next, we formulate Theorem 3.1 in the particular case when f ∈ Lip (α, p,G),

an = nδ and r = 1.

Corollary 3.4. If f ∈ Lip (α, p,G) for some α > 0, 1 < p 6 2, G is bounded, and

if δ ∈ R is such that

(3.7) δ < α− 1

p
,

then

(3.8)
∞
∑

n=1

nδ|f̂(n)| <∞.
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For functions of the narrower class Lip (α,G) and p = 2, Corollaries 3.3 and 3.4 are

proved by Onneweer in [11]. For an unbounded group G, a proof of Corollary 3.4 can

be given similarly to the proof of Theorem 3.1 in [15], now considering ϕ(k) =
∑

Tk

nδ|f̂ |
and applying Hölder’s inequality.

Our next theorem is formulated in terms of the n-th integral modulus of continuity

of order p over the cosets, which is a Vilenkin group analogous of Theorem 2 of [9].

Theorem 3.2. Let f and {an} be as in Theorem 3.1. Then we have

(3.9)
∞
∑

n=1

an|f̂(n)|r 6 2−r/2κ
∞
∑

µ=0

m−r
µ AG

µ−1

(mµ−1
∑

k=0

(ω(p)(f, µ, zGk,µ +Gµ))
p

)r/p

,

where κ is from (2.14) corresponding to γ = p/(p− rp+ r).

Our next result is formulated in the following theorem, which is an analogue of

Theorem 3 of [6] for any (unbounded) Vilenkin group.

Theorem 3.3. Let f be a measurable function on G. If 1 < p′ < ∞, 1/p′ +
1/q′ = 1, 1 6 β < 2p′, F lβ(f,G) <∞, and

(3.10) {an} ∈ A2/(2−r)(G) for some 0 < r < 2,

then

(3.11)
∞
∑

n=1

an|f̂(n)|r 6 2−r/2κ(F lβ(f,G))βr/(2p
′)

×
∞
∑

µ=0

m−r/2−r/(2p′)
µ (ω(β+(2−β)q′)(f, µ))r−βr/(2p′)AG

µ−1.

where κ is from (2.14) corresponding to γ = 2/(2− r). In particular, if the series on

the right-hand side of (3.11) converges, then (3.3) holds.

Our next result is a Vilenkin group analogue of Theorem 3 of [9].

Theorem 3.4. If f is a measurable function onG, f ∈ BFs(G) for some 0 < s < 2,

and if {an} satisfies (3.10), then

(3.12)

∞
∑

n=1

an|f̂(n)|r 6 2−r/2κ(F ls(f,G))rs/2
∞
∑

µ=0

m−r
µ AG

µ−1(ω(f, µ))
(2−s)r/2,

where κ is from (2.14) corresponding to γ = 2/(2 − r) and F ls(f,G) is as in Def-
inition 2.1. In particular, if the series on the right-hand side of (3.12) converges,

then (3.3) holds.
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We formulate Theorem 3.4 in the particular case when f ∈ Lip (α,G)∩BFs(G), G is

bounded, and an ≡ 1, and obtain a Vilenkin group analogue of [9], Corollary 3.

Corollary 3.5. If f ∈ Lip (α,G) ∩ BFs(G) for some α > 0, 0 < s < 2, G is

bounded, and if

(3.13) r >
2

2 + α(2 − s)
,

then (3.6) is satisfied.

Finally, we formulate Theorem 3.4 in the particular case when G is bounded,

r = 1, and an = nδ, and obtain a Vilenkin group analogue of [9], Corollary 4.

Corollary 3.6. If f ∈ Lip (α,G) ∩ BFs(G) for some α > 0, 0 < s < 2, G is

bounded, and if δ ∈ R is such that

(3.14) δ <
α(2 − s)

2
,

then (3.8) is satisfied.

3.2. Double Vilenkin-Fourier series. For a double Vilenkin-Fourier series, our

first result is the following theorem which is a Vilenkin-Fourier series analogue of a

result of Móricz and Veres (see [10], Theorem 1) and a two-dimensional analogue of

Theorem 1 of Section 3.1.

Theorem 3.5. Suppose f ∈ Lp(G×H) for some 1 < p 6 2. If

(3.15) {amn} ∈ A
∗

p/(p−rp+r)(G×H)

for some 0 < r < q, where 1/p+ 1/q = 1, then

(3.16)

∞
∑

m=1

∞
∑

n=1

amn|f̂(m,n)|r 6 2−rκ

∞
∑

µ=0

∞
∑

ν=0

(mµnν)
−r/qA∗

µ−1,ν−1(ω
(p)(f, µ, ν))r ,

where κ is from (2.29) corresponding to γ = p/(p−rp+r). In particular, if the series
on the right-hand side of (3.16) converges, then

(3.17)

∞
∑

m=1

∞
∑

n=1

amn|f̂(m,n)|r <∞.
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When G and H are bounded, we have the following corollaries, analogous to [10],

Corollaries 1 and 2.

Corollary 3.7. Suppose G and H are bounded, f ∈ Lip (α, β, p;G×H) for some

α, β > 0, and 1 < p 6 2. If

(3.18)
q

1 + qmin{α, β} < r < q,

then

(3.19)

∞
∑

m=1

∞
∑

n=1

|f̂(m,n)|r <∞.

Corollary 3.8. Suppose G and H are bounded, f ∈ Lip (α, β, p;G×H) for some

α, β > 0, and 1 < p 6 2. If δ1, δ2 ∈ R are such that

(3.20) δ1 < α− 1

p
and δ2 < β − 1

p
,

then

(3.21)
∞
∑

m=1

∞
∑

n=1

mδ1nδ2 |f̂(m,n)| <∞.

Our next result is the following theorem, which is a Vilenkin group analogue of a

result of Móricz and Veres (see [10], Theorem 2) and a two-dimensional analogue of

Theorem 3.2 of Section 3.1.

Theorem 3.6. Let f and {amn} be as in Theorem 3.5. Then we have

(3.22)

∞
∑

m=1

∞
∑

n=1

amn|f̂(m,n)|r

6 2−rκ

∞
∑

µ=0

∞
∑

ν=0

(mµnν)
−rA∗

µ−1,ν−1

×
(mµ−1

∑

k1=0

nν−1
∑

k2=0

(ω(p)(f, µ, ν; (zGk1,µ +Gµ)× (zHk2,ν +Hν)))
p

)r/p

,

where κ is from (2.29) corresponding to γ = p/(p−rp+r). In particular, if the series
on the right-hand side of (3.22) converges, then (3.17) holds.
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Our next result is a two-dimensional analogue of Theorem 3.3 of Section 3.1.

Theorem 3.7. Let f be a measurable function on G×H . If 1 < p′ <∞, 1/p′ +
1/q′ = 1, 1 6 β < 2p′, F lβ(f,G×H) <∞, F lβ(f(·, 0), G) <∞, F lβ(f(0, ·), H) <∞,
and

(3.23) {amn} ∈ A
∗

2/(2−r)(G×H) for some 0 < r < 2,

then

(3.24)
∞
∑

m=1

∞
∑

n=1

amn|f̂(m,n)|r

6 2−rκ(F lβ(f,G×H))βr/(2p
′)

×
∞
∑

µ=0

∞
∑

ν=0

(mµnν)
−r/(2p′)−r/2(ω(β+(2−β)q′)(f, µ, ν))r−βr/(2p′)A∗

µ−1,ν−1,

where κ is from (2.29) corresponding to γ = 2/(2− r). In particular, if the series on

the right-hand side of (3.24) converges, then (3.17) holds.

Our next result is a Vilenkin group analogue of Theorem 3 of [10] and a two-

dimensional analogue of Theorem 3.4 of Section 3.1.

Theorem 3.8. If f is a measurable function on G×H , f ∈ BFs(G×H), f(·, 0) ∈
BFs(G), and f(0, ·) ∈ BFs(H) for some 0 < s < 2, and if {amn} satisfies (3.23), then

(3.25)
∞
∑

m=1

∞
∑

n=1

amn|f̂(m,n)|r

6 2−rκ(F ls(f,G×H))rs/2
∞
∑

µ=0

∞
∑

ν=0

(mµnν)
−r(ω(f, µ, ν))(2−s)r/2A∗

µ−1,ν−1,

where κ is from (2.29) corresponding to γ = 2/(2− r). In particular, if the series on

the right-hand side of (3.25) converges, then (3.17) holds.

We formulate Theorem 3.8 in the particular case when G and H are bounded,

f ∈ Lip (α, β;G × H) ∩ BFs(G × H), and amn ≡ 1, and obtain a Vilenkin group

analogue of [10], Corollary 3.

Corollary 3.9. If f ∈ Lip (α, β;G × H) ∩ BFs(G × H), f(·, 0) ∈ BFs(G), and

f(0, ·) ∈ BFs(H) for some α, β > 0, 0 < s < 2, G and H are bounded, and if

(3.26) r >
2

2 + min{α, β}(2− s)
,

then (3.19) is satisfied.
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Finally, we formulate Theorem 3.8 in the particular case when G and H are

bounded, r = 1, and amn = mδ1nδ2 , and obtain a Vilenkin group analogue of [10],

Corollary 4.

Corollary 3.10. If f ∈ Lip (α, β;G × H) ∩ BFs(G ×H), f(·, 0) ∈ BFs(G), and

f(0, ·) ∈ BFs(H) for some α, β > 0, 0 < s < 2, G and H are bounded, and if

(3.27) δ1 <
α(2− s)

2
and δ2 <

β(2 − s)

2
,

then (3.21) is satisfied.

Our last result is the following theorem, which is an analogue of [13], Theorem 6

for any (unbounded) Vilenkin group.

Theorem 3.9. Let p′, q′ > 1, 1/p′ + 1/q′ = 1, 1 6 β < p′ + 1, f be measurable

on G ×H , f ∈ (Λ,Ψ)F lp′(G ×H), 0 < r < 2, and {amn} ∈ A∗(2/(2− r), 2). If the

series

(3.28)

∞
∑

k=1

∞
∑

l=1

((ω((2−β)q′+β)(f, k, l))2p
′
−β

Λmk
Ψnl

)r/(2p′)

(mknl)
−r/2A∗

k−1,l−1

converges, then the series
∞
∑

m=1

∞
∑

n=1
amn|f̂(m,n)|r also converges.

4. Proof of results

4.1. Single Vilenkin-Fourier series. We need the following lemma, which gives

examples of certain sequences in Aγ(G). This lemma is already known (see, e.g. [13]).

Lemma 4.1. If G is bounded, then {kβ} ∈ Aγ(G) for all β ∈ R and γ > 1.

P r o o f of Example 3.1. Let G be any unbounded group. Then there is an

increasing sequence {rk} of natural numbers such that prk → ∞. Now, we consider
the ordered sets A = {rk ∈ N : rk is even} and B = {rk ∈ N : rk is odd}. Then
either A is infinite or B is infinite.

Case I. A is infinite. Rename the elements of A by n1, n2, . . . Then each nk is even

and pnk
→ ∞ as k → ∞. Let {an} be defined as follows. For mk 6 n < mk+1, that

is, for n ∈ DG
k , k ∈ N ∪ {0}, let

(4.1) an =















1

(pk+2 − 1)1/2(mk+1 −mk)
if k is even,

1

mk+1 −mk
if k is odd.
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Note that for any µ ∈ N ∪ {0} we have

(4.2)
∑

k∈DG
2µ

ak =

m2µ+1−1
∑

k=m2µ

1

(p2µ+2 − 1)1/2(m2µ+1 −m2µ)

=
1

(p2µ+2 − 1)1/2(m2µ+1 −m2µ)

m2µ+1
∑

k=m2µ

1

=
1

(p2µ+2 − 1)1/2(m2µ+1 −m2µ)
(m2µ+1 −m2µ)

=
1

(p2µ+2 − 1)1/2

and

(4.3)
∑

k∈DG
2µ+1

ak =

m2µ+2−1
∑

k=m2µ+1

ak =

m2µ+2−1
∑

k=m2µ+1

1

m2µ+2 −m2µ+1

=
1

m2µ+2 −m2µ+1

m2µ+2−1
∑

k=m2µ+1

1

=
1

m2µ+2 −m2µ+1
(m2µ+2 −m2µ+1) = 1.

As nµ is even for each µ ∈ N and pnµ → ∞ as µ→ ∞, in view of (4.2) and (4.3), we
have
∑

k∈DG
2(nµ/2−1)+1

ak
∑

k∈DG
2(nµ/2−1)

ak
=

1

1/(p2(nµ/2−1)+2 − 1)1/2
= (pnµ − 1)1/2 → ∞ as µ→ ∞.

Hence, there cannot exist any κ such that
∑

k∈DG
µ

ak 6 κ
∑

k∈DG
µ−1

ak for all µ > 0. Thus,

{an} /∈ A1(G). Now, we show that {an} ∈ A2(G). Note that

(4.4)

(

∑

k∈DG
0

a2k

)1/2

=

(m1−1
∑

k=m0

1

(p2 − 1)1/2(m1 −m0)2

)1/2

=
( 1

(p2 − 1)(m1 −m0)2
(m1 −m0)

)1/2

=
1

(p2 − 1)1/2(m1 −m0)1/2

= (m1 −m0)
1/2 1

(p2 − 1)1/2(m1 −m0)

= (p1 − 1)1/2a1 = (p1 − 1)1/2
∑

k∈DG
−1

ak.
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Next, for µ ∈ N, in view of (4.3), we have

(4.5)

(

∑

k∈DG
2µ

a2k

)1/2

=

(m2µ+1−1
∑

k=m2µ

1

((p2µ+2 − 1)1/2(m2µ+1 −m2µ))2

)1/2

=
( 1

(p2µ+2 − 1)(m2µ+1 −m2µ)2
(m2µ+1 −m2µ)

)1/2

× 1

=
1

(p2µ+2 − 1)1/2m
1/2
2µ (p2µ+1 − 1)1/2

∑

k∈DG
2µ−1

ak

6
1

m
1/2
2µ

∑

k∈DG
2µ−1

ak 6 (p1 − 1)1/2m
(1−2)/2
2µ

∑

k∈DG
2µ−1

ak

and for µ ∈ N ∪ {0}, in view of (4.2), we have

(4.6)

(

∑

k∈DG
2µ+1

a2k

)1/2

=

(m2µ+2−1
∑

k=m2µ+1

1

(m2µ+2 −m2µ+1)
2

)1/2

=
( 1

(m2µ+2 −m2µ+1)2
(m2µ+2 −m2µ+1)

)1/2

× 1

=
1

m
1/2
2µ+1(p2µ+2 − 1)1/2

(p2µ+2 − 1)1/2
∑

k∈DG
2µ

ak

=
1

m
1/2
2µ+1

∑

k∈DG
2µ

ak 6 (p1 − 1)1/2m
(1−2)/2
2µ+1

∑

k∈DG
2µ

ak.

From (4.4)–(4.6) it follows that {an} ∈ A2(G).

Case II. B is infinite. Rename the elements of B as n1, n2, . . . Then each nk is

odd and pnk
→ ∞ as k → ∞. Let {an} be defined as follows. For mk 6 n < mk+1,

that is, for n ∈ DG
k , k ∈ N ∪ {0}, let

(4.7) an =















1

mk+1 −mk
if k is even,

1

(pk+2 − 1)1/2(mk+1 −mk)
if k is odd.

Note that for any µ ∈ N ∪ {0} we have

(4.8)
∑

k∈DG
2µ

ak =

m2µ+1−1
∑

k=m2µ

ak =

m2µ+1−1
∑

k=m2µ

1

m2µ+1 −m2µ
= 1
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and

(4.9)
∑

k∈DG
2µ+1

ak =

m2µ+2−1
∑

k=m2µ+1

1

(p2µ+3 − 1)1/2(m2µ+2 −m2µ+1)
=

1

(p(2µ+1)+2 − 1)1/2
.

As nµ is odd for each µ ∈ N and pnµ → ∞ as µ→ ∞, in view of (4.8) and (4.9), for
µ > 2, we have

∑

k∈DG
2((nµ−1)/2)

ak
∑

k∈DG
2((nµ−1)/2)−1

ak
=

1

(p2((nµ−1)/2)−1+2 − 1)−1/2
= (pnµ −1)1/2 → ∞ as µ→ ∞.

Hence, there cannot exist any κ such that
∑

k∈DG
µ

ak 6 κ
∑

k∈DG
µ−1

ak for all µ > 0. Thus,

{an} /∈ A1(G). Now, proceeding as in Case I, we can show that {an} ∈ A2(G). Thus,

in any case, we have a sequence {an} ∈ A2(G) such that {an} /∈ A1(G). �

P r o o f of Theorem 3.1. Fix µ ∈ N ∪ {0}, h1 ∈ Gµ \Gµ+1, and set

(4.10) g(x) := f(x+ h1)− f(x), x ∈ G.

Then for n ∈ N we have

(4.11) ĝ(n) =

∫

G

g(x)χn(x) dx =

∫

G

(f(x+ h1)− f(x))χn(x) dx

=

∫

G

f(x)χn(x− h1) dx− f̂(n) =

∫

G

f(x)χn(x)χn(−h1) dx− f̂(n)

= χn(h1)f̂(n)− f̂(n) = (χn(h1)− 1)f̂(n).

Note that

o(Gµ/Gµ+1) =
o(G/Gµ+1)

o(G/Gµ)
=
mµ+1

mµ
= pµ+1.

Since pµ+1 is prime, it follows that Gµ/Gµ+1 is cyclic and that every element other

than the identity element is its generator. That is,

Gµ/Gµ+1 = 〈h0 +Gµ+1〉 ∀h0 ∈ Gµ \Gµ+1.

Since h1 ∈ Gµ \ Gµ+1, h1 + Gµ+1 is a generator of the group Gµ/Gµ+1. We shall

show that if χ ∈ Xµ+1 \Xµ, then χ(h1) 6= 1. Let χ ∈ Xµ+1 \Xµ. If possible, suppose

χ(h1) = 1. Let z ∈ Gµ. Then z +Gµ+1 ∈ Gµ/Gµ+1 = 〈h1 +Gµ+1〉. So, there is an
integer k depending on z such that z +Gµ+1 = k(h1 +Gµ+1) = kh1 +Gµ+1. That

is, z − kh1 ∈ Gµ+1. Hence, there exists z
′ ∈ Gµ+1 such that z− kh1 = z′. Therefore

χ(z) = χ(kh1 + z′) = χ(h1)
kχ(z′) = 1kχ(z′) = χ(z′).
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Now, as χ ∈ Xµ+1 and z
′ ∈ Gµ+1, by definition of Gµ+1, χ(z

′) = 1. Therefore

χ(z) = 1. Since z ∈ Gµ was arbitrary, χ(z) = 1 for all z ∈ Gµ. Hence, by definition

of Gµ, χ ∈ Xµ. This is a contradiction. So, if χ ∈ Xµ+1 \Xµ, then χ(h1) 6= 1.

Note that for χ ∈ Xµ+1, χXµ ∈ Xµ+1/Xµ. Also, o(Xµ+1/Xµ) = mµ+1/mµ =

pµ+1. Therefore

χpµ+1Xµ = (χXµ)
pµ+1 = (χXµ)

o(Xµ+1/Xµ) = χ0Xµ = Xµ

and hence χpµ+1 ∈ Xµ. Since h1 ∈ Gµ, by definition of Gµ, we have χ
pµ+1(h1) = 1.

Therefore

(4.12) χ(h1) = e2πik/pµ+1

for some 1 6 k < pµ+1 and k depends on χ. Let

TG
µ+1 := Xµ+1 \Xµ = {χmµ , χmµ+1, . . . , χmµ+1−1} = {χn : n ∈ DG

µ }

and m be such that

1

2m+1
<

1

pµ+1
6

1

2m
, i.e., m =

log pµ+1

log 2
.

Then for any χ ∈ TG
µ+1, as 1 6 k 6 pµ+1 − 1, we have

(4.13)
1

2m+1
<

1

pµ+1
6

k

pµ+1
6
pµ+1 − 1

pµ+1
= 1− 1

pµ+1
< 1− 1

2m+1
.

Now define

TG
µ+1,1 =

{

χ ∈ TG
µ+1 :

1

4
<

k

pµ+1
<

3

4

}

and for l = 2, 3, . . . ,m,

TG
µ+1,l =

{

χ ∈ TG
µ+1 :

1

2l+1
<

k

pµ+1
<

1

2l
or 1− 1

2l
<

k

pµ+1
< 1− 1

2l+1

}

.

Also, for l = 1, 2, . . . ,m, let

DG
µ,l := {n ∈ DG

µ : χn ∈ TG
µ+1,l}.

Then DG
µ is the disjoint union

(4.14) DG
µ =

m
⋃

l=1

DG
µ,l.

Since pµ+1 is prime, k/pµ+1 cannot be equal to 1/2
i or 1−1/2i for any i = 2, 3, . . . ,m,

and hence in view of (4.13), TG
µ+1 is the disjoint union

TG
µ+1 =

m
⋃

j=1

TG
µ+1,j .
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Since h1 ∈ Gµ \Gµ+1, it follows that 2h1, 3h1, . . . , (pµ+1−1)h1 ∈ Gµ \Gµ+1. Indeed,

if possible, suppose for some 2 6 t 6 pµ+1 − 1, th1 /∈ Gµ \ Gµ+1. Since h1 ∈ Gµ

and Gµ is a group, th1 ∈ Gµ. Since th1 /∈ Gµ \ Gµ+1, it follows that th1 ∈ Gµ+1.

Therefore for χ ∈ Xµ+1 \ Xµ, 1 = χ(th1) = χt(h1) = e2πikt/pµ+1 . But then pµ+1

divides kt. Since pµ+1 is a prime, either pµ+1 divides k or pµ+1 divides t, which is

not true as 1 6 k, t < pµ+1. Thus, th1 ∈ Gµ \ Gµ+1 for t = 2, 3, . . . , pµ+1 − 1. For

l = 1, 2, . . . ,m, put tl := 2l−1. Then 1 6 tl = 2l−1 6 2m−1 6 2m − 1 6 pµ+1 − 1,

that is, tl ∈ {1, 2, . . . , pµ+1 − 1}. Therefore, as seen above, tlh1 ∈ Gµ \Gµ+1. Thus

(4.15) χn(tlh1) 6= 1 for any χn ∈ Xµ+1 \Xµ.

So, using (4.11) replacing h1 by tlh1, we get

(4.16) f̂(n) =
ĝ(n)

χn(tlh1)− 1
.

Also, in view of (4.12), for χ ∈ Xµ+1 \Xµ we have

(4.17) |χ(tlh1)− 1| = |e2πitlk/pµ+1 − 1|

=
∣

∣

∣
2ieπitlk/pµ+1

eπitlk/pµ+1 − e−πitlk/pµ+1

2i

∣

∣

∣
= 2

∣

∣

∣
sin

πtlk

pµ+1

∣

∣

∣
.

Note that for 1 6 l 6 m we have

χ ∈ TG
µ+1,l ⇒

1

2l+1
<

k

pµ+1
<

1

2l

or 1− 1

2l
<

k

pµ+1
< 1− 1

2l+1
⇒ π2l−1

2l+1
<
kπ2l−1

pµ+1
<

π2l−1

2l

or π2l−1 − π2l−1

2l
<
kπ2l−1

pµ+1
< π2l−1 − π2l−1

2l+1
⇒ π

4
<
kπ2l−1

pµ+1
<

π

2

or π2l−1 − π

2
<
kπ2l−1

pµ+1
< π2l−1 − π

4
.

Observe that
π

4
<
kπ2l−1

pµ+1
<

π

2
⇒ sin

kπ2l−1

pµ+1
> sin

π

4
=

1√
2
.

Next, for l = 1 we have

π2l−1− π

2
<
kπ2l−1

pµ+1
< π2l−1− π

4
⇒ π

2
<
kπ2l−1

pµ+1
<

3π

4
⇒ sin

kπ2l−1

pµ+1
> sin

3π

4
=

1√
2
,
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and for l > 2, as sine is increasing in (π2l−1 − 1
2π, π2l−1 − 1

4π), we have

π2l−1 − π

2
<
kπ2l−1

pµ+1
< π2l−1 − π

4
⇒ sin

kπ2l−1

pµ+1
< sin

(

π2l−1 − π

4

)

= − 1√
2

⇒
∣

∣

∣
sin

kπ2l−1

pµ+1

∣

∣

∣
>

1√
2
.

Therefore for χ ∈ TG
µ+1,l we have

(4.18)
∣

∣

∣
sin

πtlk

pµ+1

∣

∣

∣
>

1√
2
.

(We note that instead of this inequality, Golubov and Volosivets use the inequality

|χj(1/mk+1)− 1| > 2 sin π/N , where N is such that pi 6 N for all i = 1, 2, . . ., which

actually depends on boundedness of {pi} and hence the corresponding bound appear
in the final conclusion, too.)

In view of (4.16), (4.17) and (4.18), we have

∑

n∈DG
µ,l

|f̂(n)|q =
∑

n∈DG
µ,l

1

|χn(tlh1)− 1|q |ĝ(n)|
q =

∑

n∈DG
µ,l

1

2q| sin(πtlk/pµ+1)|q
|ĝ(n)|q

6
∑

n∈DG
µ,l

2q/2

2q
|ĝ(n)|q =

1

2q/2

∑

n∈DG
µ,l

|ĝ(n)|q .

So, for µ ∈ N ∪ {0} we have

(4.19)

(

∑

n∈DG
µ

|f̂(n)|q
)1/q

=

( m
∑

l=1

∑

n∈DG
µ,l

|f̂(n)|q
)1/q

6

( m
∑

l=1

1

2q/2

∑

n∈DG
µ,l

|ĝ(n)|q
)1/q

=
1√
2

( m
∑

l=1

∑

n∈DG
µ,l

|ĝ(n)|q
)1/q

=
1√
2

(

∑

n∈DG
µ

|ĝ(n)|q
)1/q

.

Therefore, for 1 < p 6 2, by virtue of the Hausdorff-Young inequality (see, e.g. [2],

equation (4.28)), and (4.10), (4.19) becomes

(

∑

n∈DG
µ

|f̂(n)|q
)1/q

6
1√
2

( ∞
∑

n=1

|ĝ(n)|q
)1/q

6
1√
2

(
∫

G

|g(x)|p dx
)1/p

=
1√
2

(
∫

G

|f(x+ h1)− f(x)|p dx
)1/p

(4.20)

6
1√
2
ω(p)(f, µ)(4.21)
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for all µ ∈ N ∪ {0}. Since 1/(q/r) + 1/(q/(q − r)) = r/q + (q − r)/q = 1, applying

Hölder’s inequality with exponents

(4.22)
q

r
=

p

r(p− 1)
and

q

q − r
=

p

p− rp+ r
,

it follows from (2.14), (3.1) and (4.21) that

(4.23)
∑

n∈DG
µ

an|f̂(n)|r =
∑

n∈DG
µ

|f̂(n)|ran

6

(

∑

n∈DG
µ

|f̂(n)|q
)r/q(

∑

n∈DG
µ

ap/(p−rp+r)
n

)(p−rp+r)/p

6
1

2r/2
(ω(p)(f, µ))rκm(1−p/(p−rp+r))/(p/(p−rp+r))

µ

∑

n∈DG
µ−1

an

=
1

2r/2
(ω(p)(f, µ))rκm−r/q

µ AG
µ−1

for all µ ∈ N ∪ {0}. Summing (4.23) over µ ∈ N ∪ {0} yields
∞
∑

n=1

an|f̂(n)|r =

∞
∑

µ=0

∑

n∈DG
µ

an|f̂(n)|r 6

∞
∑

µ=0

1

2r/2
(ω(p)(f, µ))rκm−r/q

µ AG
µ−1

= 2−r/2κ

∞
∑

µ=0

m−r/q
µ AG

µ−1(ω
(p)(f, µ))r,

which is (3.2) to be proved. This completes the proof of Theorem 3.1. �

P r o o f of Corollary 3.1. Since the hypotheses of Theorem 3.1 hold, we have

equation (4.23). Therefore by (2.9) and the fact that for n 6 mµ, E
(p)(f, n) >

E(p)(f,mµ), we have

(4.24)
∑

n∈DG
µ

an|f̂(n)|r 6
1

2r/2
(ω(p)(f, µ))rκm−r/q

µ AG
µ−1

6
1

2r/2
(2E(P )(f,mµ))

rκm−r/q
µ

∑

n∈DG
µ−1

an

6 C(E(p)(f,mµ))
r

∑

n∈DG
µ−1

ann
−r/q

=
∑

n∈DG
µ−1

ann
−r/q(E(p)(f, n))r.

Summing up the inequality in (4.24) over µ, we get the statement of Corollary 3.1.

�
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P r o o f of Corollary 3.2. We shall put an ≡ 1 in Theorem 3.1. Since G is

bounded, setting β = 0 in Lemma 4.1, we see that {an} ∈ Aγ(G) for every γ > 1.

In particular, {an} satisfies (3.1) for 1 < p 6 2 and 0 < r < q, so for p = 2 and

r = 1. Also, as f ∈ L2(G), all the conditions of Theorem 3.1 hold. Therefore by

Theorem 3.1, we have (3.2) with an ≡ 1, p = q = 2 and r = 1. This means we have

the inequality

(4.25)

∞
∑

n=1

|f̂(n)| 6 2−1/2κ

∞
∑

µ=0

m−1/2
µ AG

µ−1ω
(2)(f, µ),

where κ is from (2.14) corresponding to γ = 2/(2− 2 + 1) = 2. Further, in this case,

we have

(4.26)

AG
µ−1 =

∑

n∈DG
µ−1

an =
∑

n∈DG
µ−1

1 = mµ −mµ−1 < mµ, µ ∈ N, AG
−1 = a1 = 1 6 m0.

Therefore (4.25) becomes

∞
∑

n=1

|f̂(n)| < 2−1/2κ
∞
∑

µ=0

m−1/2
µ mµω

(2)(f, µ) = 2−1/2κ
∞
∑

µ=0

m1/2
µ ω(2)(f, µ).

Hence, if
∞
∑

µ=0
m

1/2
µ ω(2)(f, µ) <∞ then,

∞
∑

n=1
|f̂(n)| <∞. This completes the proof.

�

P r o o f of Corollary 3.3. We shall put an ≡ 1 in Theorem 3.1. Since G is

bounded, setting β = 0 in Lemma 4.1, we see that {an} ∈ Aγ(G) for every γ > 1. In

particular, {an} satisfies (3.1) for 1 < p 6 2 and 0 < r < q. Also, as f ∈ Lip (α, p,G),

f ∈ Lp(G) for 1 < p 6 2. Therefore, by Theorem 3.1, we have (3.2) with an ≡ 1.

This means we have the inequality

(4.27)
∞
∑

n=1

|f̂(n)|r 6 2−r/2κ
∞
∑

µ=0

m−r/q
µ AG

µ−1(ω
(p)(f, µ))r ,

where the constant κ is from (2.14) corresponding to γ = p/(p− rp+ r), 0 < r < q.

Finally, as f ∈ Lip (α, p,G), we have

(4.28) ω(p)(f, µ) 6 Cm−α
µ , µ ∈ N ∪ {0}.

Using (4.26) and (4.28) in (4.27), we have

(4.29)

∞
∑

n=1

|f̂(n)|r < 2−r/2κCr
∞
∑

µ=0

m−r/q
µ mµm

−rα
µ = 2−r/2κCr

∞
∑

µ=0

m−r/q+1−rα
µ .
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Now in view of (3.5), we have q < r(1 + αq), so 1 < r/q + rα, and hence −r/q +
1 − rα < 0. Also, as mµ > 2µ, it follows that m

−r/q+1−rα
µ 6 2µ(−r/q+1−rα). So,

from (4.29) we get

(4.30)
∞
∑

n=1

|f̂(n)|r 6 2−r/2κCr
∞
∑

µ=0

( 1

2r/q−1+rα

)µ

.

Since r/q − 1 + rα > 0, 0 < 1/2r/q−1+rα < 1 and hence the geometric series on

the right-hand side of (4.30) converges. So we get (3.6), completing the proof of

Corollary 3.3. �

P r o o f of Corollary 3.4. Suppose f ∈ Lip (α, p,G) for some α > 0 and 1 < p 6 2,

and δ < α − 1/p. Since G is bounded, in view of Lemma 4.1, {nδ} ∈ Aγ(G) for all

γ > 1. So, we can put an = nδ in Theorem 3.1 to get (3.2) with an = nδ, that is,

∞
∑

n=1

nδ|f̂(n)|r 6 2−r/2κ

∞
∑

µ=0

m−r/q
µ AG

µ−1(ω
(p)(f, µ))r ,

where the constant κ is from (2.14) corresponding to γ = p/(p− rp+ r), 0 < r < q.

Now, setting r = 1, in the above inequality we get

(4.31)
∞
∑

n=1

nδ|f̂(n)| 6 2−1/2κ
∞
∑

µ=0

m−1/q
µ AG

µ−1ω
(p)(f, µ).

Also, when δ > 0, we have

AG
−1 = a1 = 1δ 6 mδ+1

0 ,

AG
µ−1 =

∑

n∈DG
µ−1

nδ 6
∑

n∈DG
µ−1

mδ
µ = mδ

µ(mµ −mµ−1) < mδ
µmµ = mδ+1

µ , µ ∈ N,

and for δ < 0 we have

AG
−1 = a1 = 1δ 6 m1+δ

0 ,

AG
µ−1 =

∑

n∈DG
µ−1

nδ 6
∑

n∈DG
µ−1

mδ
µ−1 = mδ

µ−1(mµ −mµ−1) = mδ
µ−1mµ−1(pµ − 1)

6 mδ+1
µ−1pµ = mδ+1

µ−1p
δ+1
µ p−δ

µ = mδ+1
µ p−δ

µ 6 p−δ
0 mδ+1

µ , µ ∈ N.

So, in either case,

(4.32) AG
µ−1 =

∑

n∈DG
µ−1

nδ
6 Cmδ+1

µ .

Since f ∈ Lip (α, p,G), we have (4.28). Using (4.32) and (4.28) in (4.31), we get

(4.33)

∞
∑

n=1

nδ|f̂(n)| 6 2−1/2κ

∞
∑

µ=0

m−1/q
µ Cmδ+1

µ Cm−α
µ 6 C

∞
∑

µ=0

m−1/q+δ+1−α
µ .
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Now, in view of (3.7), we have δ < α − 1/p, so α > δ + 1/p = δ + 1 − 1/q, and

hence −1/q + δ + 1 − α < 0. Also, as mµ > 2µ, it follows that m
−1/q+δ+1−α
µ 6

2µ(−1/q+δ+1−α). So, from (4.33) we get

(4.34)
∞
∑

n=1

nδ|f̂(n)| 6 C
∞
∑

µ=0

( 1

21/q−δ−1+α

)µ

.

Since 1/q− δ − 1 + α > 0, 0 < 1/21/q−δ−1+α < 1, and hence the geometric series on

the right-hand side of (4.34) converges. So we get (3.8) to be proved. �

P r o o f of Theorem 3.2. Proceeding as in the proof of Theorem 3.1, for h1 ∈
Gµ \Gµ+1, µ > 0, we get (4.20). So, in view of the fact that G is the disjoint union

of the cosets zGk,µ +Gµ, k = 0, 1, . . . ,mµ − 1, each of measure 1/mµ, we get

(4.35)

(

∑

n∈DG
µ

|f̂(n)|q
)1/q

6
1√
2

(
∫

G

|f(x+ h1)− f(x)|p dx
)1/p

6
1√
2

(mµ−1
∑

k=0

∫

zG
k,µ+Gµ

|f(x+ h1)− f(x)|p dx
)1/p

6
1√
2

(mµ−1
∑

k=0

1

mµ
(ω(p)(f, µ, zGk,µ +Gµ))

p

)1/p

,

by definition of ω(p)(f, µ, zGk,µ + Gµ). Now, applying Hölder’s inequality with the

exponents in (4.22), it follows from (2.14), (3.1), and (4.35) that

(4.36)
∑

n∈DG
µ

an|f̂(n)|r =
∑

n∈DG
µ

|f̂(n)|ran 6

(

∑

n∈DG
µ

|f̂(n)|q
)r/q(

∑

n∈DG
µ

ap/(p−rp+r)
n

)(p−rp+r)/p

6 2−r/2

(mµ−1
∑

k=0

1

mµ
(ω(p)(f, µ, zGk,µ +Gµ))

p

)r/p

× κm(1−p/(p−rp+r))/(p/(p−rp+r))
µ

∑

n∈DG
µ−1

an

= 2−r/2m−r/p
µ

(mµ−1
∑

k=0

(ω(p)(f, µ, zGk,µ +Gµ))
p

)r/p

κm−r/q
µ AG

µ−1

= 2−r/2κm−r
µ AG

µ−1

(mµ−1
∑

k=0

(ω(p)(f, µ, zGk,µ +Gµ))
p

)r/p

for all µ > 0. Summing (4.36) over µ ∈ N ∪ {0} yields (3.9). This completes the
proof of Theorem 3.2. �

154



P r o o f of Theorem 3.3. We prove this theorem by proceeding similarly to the

proof of Theorem 3 of [6]. Since F lβ(f,G) < ∞, it follows that f is bounded.
Therefore, as f is measurable, it follows that f ∈ L2(G). So, proceeding as in

Theorem 3.1, for h1 ∈ Gµ \Gµ+1, µ > 0, we have (4.20) with p = q = 2. Therefore,

for 1 < p′ <∞ we have

(4.37)

(

∑

n∈DG
µ

|f̂(n)|2
)p′

6
1

2p′

(
∫

G

|f(x+ h1)− f(x)|2 dx
)p′

.

Now, writing

(4.38) 2 =
β

p′
+

(2 − β)q′ + β

q′
,

and applying the integral form of Hölder’s inequality with the exponents p′ and q′

yields

(4.39)

(

∑

n∈DG
µ

|f̂(n)|2
)p′

6
1

2p′

(
∫

G

|f(x+ h1)− f(x)|β/p′+((2−β)q′+β)/q′ dx

)p′

6
1

2p′

((
∫

G

|f(x+ h1)− f(x)|(β/p′)p′

dx

)1/p′

×
(
∫

G

|f(x+ h1)− f(x)|(((2−β)q′+β)/q′)q′ dx

)1/q′)p′

=
1

2p′

∫

G

|f(x+ h1)− f(x)|β dx

×
(
∫

G

|f(x+ h1)− f(x)|(2−β)q′+β dx

)p′/q′

.

Now, in view of the fact that G is the disjoint union of the cosets zGq,µ +Gµ, 1 6 q 6

mµ − 1, each of measure 1/mµ, (4.39) becomes

(

∑

n∈DG
µ

|f̂(n)|2
)p′

6 2−p′

(mµ−1
∑

q=0

∫

zG
q,µ+Gµ

|f(x+ h1)− f(x)|β dx

)

(4.40)

× (ω((2−β)q′+β)(f, µ))(p
′/q′)((2−β)q′+β)

6 2−p′

(mµ−1
∑

q=0

∫

zG
q,µ+Gµ

(osc(f, zGq,µ +Gµ))
β dx

)

× (ω((2−β)q′+β)(f, µ))2p
′
−β
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= 2−p′

(mµ−1
∑

q=0

(osc(f, zGq,µ +Gµ))
βm−1

µ

)

× (ω((2−β)q′+β)(f, µ))2p
′
−β

= 2−p′

m−1
µ

(mµ−1
∑

q=0

(osc(f, zGq,µ +Gµ))
β

)

× (ω((2−β)q′+β)(f, µ))2p
′
−β

6 2−p′

m−1
µ (F lβ(f,G))β(ω((2−β)q′+β)(f, µ))2p

′
−β .

Since 1
2r+

1
2 (2− r) = 1, applying Hölder’s inequality with the exponents 2/r and

2/(2− r), in view of (4.40), (3.10) and (2.14), we have

(4.41)
∑

n∈DG
µ

an|f̂(n)|r 6

(

∑

n∈DG
µ

|f̂(n)|2
)r/2(

∑

n∈DG
µ

a2/(2−r)
n

)(2−r)/2

6 (2−1m−1/p′

µ (F lβ(f,G))β/p
′

(ω((2−β)q′+β)(f, µ))2−β/p′

)r/2

× κm(1−2/(2−r))/(2/(2−r))
µ

∑

n∈DG
µ−1

an

= 2−r/2m−r/(2p′)
µ (F lβ(f,G))βr/(2p

′)

× (ω((2−β)q′+β)(f, µ))r−βr/(2p′)κm−r/2
µ AG

µ−1

= 2−r/2κ(F lβ(f,G))βr/(2p
′)m−r/2−r/(2p′)

µ

× (ω((2−β)q′+β)(f, µ))r−βr/(2p′)AG
µ−1

for all µ > 0. Summing (4.41) over all µ ∈ N ∪ {0}, we get (3.11). This completes
the proof of Theorem 3.3. �

P r o o f of Theorem 3.4. Suppose f is measurable on G, f ∈ BFs(G) for some

0 < s < 2, and {an} satisfies (3.10). As F ls(f,G) <∞, it follows that f is bounded.
Since f is measurable, it follows that f ∈ L2(G). Now, proceeding as in Theorem 3.1,

for h1 ∈ Gµ \ Gµ+1, µ > 0, we get (4.20). Setting p = q = 2 in (4.20), in view of

Parseval’s formula (see [7], Chapter VI, §23), (4.10) of the definition of g, and the

fact that G is the disjoint union of the cosets zGk,µ + Gµ, k = 0, 1, . . . ,mµ − 1, each

of measure 1/mµ, we have

(

∑

n∈DG
µ

|f̂(n)|2
)1/2

6
1√
2

(
∫

G

|f(x+ h1)− f(x)|2 dx
)1/2

(4.42)

=
1√
2

(mµ−1
∑

k=0

∫

zG
k,µ+Gµ

|f(x+ h1)− f(x)|2 dx
)1/2
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6
1√
2

(mµ−1
∑

k=0

1

mµ
(ω(f, µ, zGk,µ +Gµ))

2

)1/2

=
1

√

2mµ

(mµ−1
∑

k=0

(ω(f, µ, zGk,µ +Gµ))
2

)1/2

.

Now, applying Hölder’s inequality with the exponents 2/r and 2/(2− r), it follows

from (2.14), (3.10) and (4.42) that

(4.43)
∑

n∈DG
µ

an|f̂(n)|r

=
∑

n∈DG
µ

|f̂(n)|ran 6

(

∑

n∈DG
µ

|f̂(n)|2
)r/2(

∑

n∈DG
µ

a2/(2−r)
n

)(2−r)/2

6
1

2r/2m
r/2
µ

(mµ−1
∑

k=0

(ω(f, µ, zGk,µ +Gµ))
2

)r/2

κm(1−2/(2−r))/(2/(2−r))
µ

∑

n∈DG
µ−1

an

=
1

2r/2m
r/2
µ

(mµ−1
∑

k=0

(ω(f, µ, zGk,µ +Gµ))
2−s(ω(f, µ, zGk,µ +Gµ))

s

)r/2

κm−r/2
µ AG

µ−1

6 2−r/2κm−r
µ AG

µ−1

(mµ−1
∑

k=0

(ω(f, µ))2−s(ω(f, µ, zGk,µ +Gµ))
s

)r/2

6 2−r/2κm−r
µ AG

µ−1(ω(f, µ))
(2−s)r/2

(mµ−1
∑

k=0

(ω(f, µ, zGk,µ +Gµ))
s

)r/2

6 2−r/2κm−r
µ AG

µ−1(ω(f, µ))
(2−s)r/2(F ls(f,G))rs/2.

Summing (4.43) over µ ∈ N ∪ {0} yields (3.12). This completes the proof of Theo-
rem 3.4. �

P r o o f of Corollary 3.5. We shall put an ≡ 1 in Theorem 3.4. Since G is

bounded, setting β = 0 in Lemma 4.1, we see that {an} ∈ Aγ(G) for every γ > 1. In

particular, {an} satisfies (3.10) for 0 < r < 2. Also, by our assumption, f ∈ BFs(G)

for 0 < s < 2. Therefore, by Theorem 3.4, we have (3.12) with an ≡ 1. This means

we have

(4.44)
∞
∑

n=1

|f̂(n)|r 6 2−r/2κ(F ls(f,G))rs/2
∞
∑

µ=0

m−r
µ AG

µ−1(ω(f, µ))
(2−s)r/2,

where the constant κ is from (2.14) corresponding to γ = 2/(2 − r). Since an ≡ 1,

from (4.26) we haveAµ−1 = mµ−1(pµ−1). Further, by our hypothesis, f ∈ Lip (α,G)
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and hence ω(f, µ) 6 Cm−α
µ . So, (4.44) becomes

(4.45)

∞
∑

n=1

|f̂(n)|r 6 2−r/2κ(F ls(f,G))rs/2
∞
∑

µ=0

m−r
µ mµ−1(pµ − 1)(Cm−α

µ )(2−s)r/2

< 2−r/2κ(F ls(f,G))rs/2
∞
∑

µ=0

m−r
µ mµ−1pµ(Cm

−α
µ )(2−s)r/2

6 2−r/2κ(F ls(f,G))rs/2C
∞
∑

µ=0

m−r
µ mµ(m

−α
µ )(2−s)r/2

= 2−r/2κ(F ls(f,G))rs/2C
∞
∑

µ=0

m−r+1−αr(2−s)/2
µ .

Now, in view of (3.13), we have 2r + αr(2 − s) > 2. So, r + 1
2αr(2 − s) > 1, and

hence −r+1− 1
2αr(2− s) < 0. Also, as mµ > 2µ, it follows that m

−r+1−αr(2−s)/2
µ 6

2µ(−r+1−αr(2−s)/2). So, from (4.45) we get

(4.46)

∞
∑

n=1

|f̂(n)|r 6 2−r/2κ(F ls(f,G))rs/2C
∞
∑

µ=0

( 1

2r−1+αr(2−s)/2

)µ

.

Since r−1+ 1
2αr(2−s) > 0, 0 < 1/2r−1+αr(2−s)/2 < 1, and hence the geometric series

on the right-hand side of (4.46) converges. This completes the proof of Corollary 3.5.

�

P r o o f of Corollary 3.6. Suppose f ∈ Lip (α,G) ∩ BFs(G) for some α > 0,

0 < s < 2, G is bounded, and δ < 1
2α(2 − s). Then, in view of Lemma 4.1,

{nδ} ∈ Aγ(G) for all γ > 1. So, we can put an = nδ in Theorem 3.4 to get (3.12)

with an = nδ, that is,

∞
∑

n=1

nδ|f̂(n)|r 6 2−r/2κ(F ls(f,G))rs/2
∞
∑

µ=0

m−r
µ AG

µ−1(ω(f, µ))
(2−s)r/2,

where the constant κ is from (2.14) corresponding to γ = 2/(2 − r). Now, setting

r = 1, we get

(4.47)

∞
∑

n=1

nδ|f̂(n)| 6 2−1/2κ(F ls(f,G))s/2
∞
∑

µ=0

m−1
µ AG

µ−1(ω(f, µ))
(2−s)/2.
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Since an = nδ, from (4.32) we have AG
µ−1 6 Cmδ+1

µ . Further, as f ∈ Lip (α,G), we

have ω(f, µ) 6 Cm−α
µ , µ ∈ N ∪ {0}. Therefore, from (4.47) we get

(4.48)

∞
∑

n=1

nδ|f̂(n)| 6 2−1/2κ(F ls(f,G))s/2
∞
∑

µ=0

m−1
µ Cmδ+1

µ (Cm−α
µ )(2−s)/2

6 2−1/2κ(F ls(f,G))s/2C
∞
∑

µ=0

mδ−α(2−s)/2
µ .

Since δ < 1
2α(2 − s), we have δ − 1

2α(2 − s) < 0. Also, as mµ > 2µ, it follows that

m
δ−α(2−s)/2
µ 6 2µ(δ−α(2−s)/2). So from (4.48) we get

(4.49)

∞
∑

n=1

nδ|f̂(n)| 6 2−1/2κ(F ls(f,G))s/2C
∞
∑

µ=0

( 1

2−δ+α(2−s)/2

)µ

.

Since −δ+ 1
2α(2−s) > 0, 0 < 1/2−δ+α(2−s)/2 < 1, and hence the geometric series on

the right-hand side of (4.49) converges. So, we get (3.8). This proves Corollary 3.6.

�

4.2. Double Vilenkin-Fourier series. Almost all results of Section 3.2 can

be proved using similar techniques to the case of one variable. For the readers’

convenience, we shall give a complete proof of Theorem 3.5 and an outline of proofs

for the remaining results. First, we state the following lemma, which is a two-

dimensional analogue of Lemma 4.1 and easily follows from it.

Lemma 4.2. If G and H are bounded, then {kβ1 lβ2} ∈ A∗

γ(G × H) for all

β1, β2 ∈ R and γ > 1.

P r o o f of Theorem 3.5. Fix µ, ν ∈ N∪{0}, (h1, h2) ∈ (Gµ\Gµ+1)×(Hν \Hν+1),

and set

(4.50) g(x, y) := ∆1,1f(x, y;h1, h2), (x, y) ∈ G×H.

Then for m,n ∈ N we have

(4.51)

ĝ(m,n) =

∫

G×H

g(x, y)χ̄m(x)ψn(y) dm(x, y) = (χm(h1)− 1)(ψn(h2)− 1)f̂(m,n).

Since h1 ∈ Gµ \Gµ+1, in view of (4.12), for χ ∈ Xµ+1 \Xµ we have

(4.52) χ(h1) = e2πik1/pµ+1 for some 1 6 k1 < pµ+1.

Similarly as h2 ∈ Hν \Hν+1, using (4.12) for H , for ψ ∈ Yν+1 \ Yν we have

(4.53) ψ(h2) = e2πik2/qν+1 for some 1 6 k2 < qν+1.
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As in the case of one variable, let m1 = [log pµ+1/ log 2] and m2 = [log qν+1/ log 2].

Now, using the notations of the proof of Theorem 3.1 for groups G and H , in view

of (4.51), (4.15), (4.17) and (4.18), for 1 6 li 6 mi, i = 1, 2 we have

(4.54)
∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

|f̂(m,n)|q

=
∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

1

|χm(tl1h1)− 1|q|ψn(tl2h2)− 1|q |ĝ(m,n)|
q

=
∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

2−q
∣

∣

∣
sin

πtl1k1
pµ+1

∣

∣

∣

−q

2−q
∣

∣

∣
sin

πtl2k2
qν+1

∣

∣

∣

−q

|ĝ(m,n)|q

6
∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

2q/22q/2

2q2q
|ĝ(m,n)|q =

1

2q

∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

|ĝ(m,n)|q.

Using (4.14) for G and H , and (4.54) for µ, ν ∈ N ∪ {0} we have

(4.55)

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|q
)1/q

=

( m1
∑

l1=1

m2
∑

l2=1

∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

|f̂(m,n)|q
)1/q

6

( m1
∑

l1=1

m2
∑

l2=1

1

2q

∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

|ĝ(m,n)|q
)1/q

=
1

2

( m1
∑

l1=1

m2
∑

l2=1

∑

m∈DG
µ,l1

∑

n∈DH
ν,l2

|ĝ(m,n)|q
)1/q

=
1

2

(

∑

m∈DG
µ

∑

n∈DH
ν

|ĝ(m,n)|q
)1/q

.

Therefore, for 1 < p 6 2, by virtue of the Hausdorff-Young inequality (see, e.g. [2],

equation (4.28)) and (4.50), (4.55) becomes

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|q
)1/q

6
1

2

( ∞
∑

m=1

∞
∑

n=1

|ĝ(m,n)|q
)1/q

6
1

2

(
∫

G×H

|g(x, y)|p dm(x, y)

)1/p

=
1

2

(
∫

G×H

|∆1,1f(x, y;h1, h2)|p dm(x, y)

)1/p

(4.56)

6
1

2
ω(p)(f, µ, ν)(4.57)
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for all µ, ν ∈ N ∪ {0}. As in the case of one variable, applying Hölder’s inequality
with exponents in (4.22), it follows from (2.29), (3.15) and (4.57) that

(4.58)
∑

m∈DG
µ

∑

n∈DH
ν

amn|f̂(m,n)|r

6

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|q
)r/q(

∑

m∈DG
µ

∑

n∈DH
ν

ap/(p−rp+r)
mn

)(p−rp+r)/p

6
1

2r
(ω(p)(f, µ, ν))rκ(mµnν)

−r/qA∗

µ−1,ν−1

for all µ, ν ∈ N ∪ {0}. Summing (4.58) over µ, ν ∈ N ∪ {0} yields

∞
∑

m=1

∞
∑

n=1

amn|f̂(m,n)|r =
∞
∑

µ=0

∞
∑

ν=0

∑

m∈DG
µ

∑

n∈DH
ν

amn|f̂(m,n)|r

6 2−rκ

∞
∑

µ=0

∞
∑

ν=0

(mµnν)
−r/qA∗

µ−1,ν−1(ω
(p)(f, µ, ν))r ,

which is (3.16) to be proved. This completes the proof of Theorem 3.5. �

Substituting amn ≡ 1 and amn = mδ1nδ2 in Theorem 3.5 and proceeding as in the

proofs of Corollaries 3.3 and 3.4, respectively, we can write proofs of Corollaries 3.7

and 3.8. Also, the way we have proved Theorem 3.2 using Theorem 3.1 allows us to

prove Theorem 3.6 using Theorem 3.5.

P r o o f of Theorem 3.7. Since F lβ(f,G×H), F lβ(f(·, 0), G) and F lβ(f(0, ·), H)

are finite, in view of Remark 2.1, f is bounded. Therefore, as f is measurable on

G × H , it follows that f ∈ L2(G × H). So, proceeding as in Theorem 3.5, for

(h1, h2) ∈ (Gµ \Gµ+1)× (Hν \Hν+1), µ, ν > 0, we have (4.56) with p = q = 2, that

is, we have

(4.59)

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)1/2

6
1

2

(
∫

G×H

|∆1,1f(x, y;h1, h2)|2 dm(x, y)

)1/2

.

So, for 1 < p′ <∞ we have

(4.60)

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)p′

6
1

4p′

(
∫

G×H

|∆1,1f(x, y;h1, h2)|2 dm(x, y)

)p′

.

Now, proceeding as in the proof of Theorem 3.3, starting from (4.60) instead of (4.37),

we can complete the proof of Theorem 3.7. �
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P r o o f of Theorem 3.8. Suppose f is measurable on G ×H , f ∈ BFs(G ×H),

f(·, 0) ∈ BFs(G), f(0, ·) ∈ BFs(H) for some 0 < s < 2, and {amn} satisfies (3.23).
As Vs(f,G × H) 6 F ls(f,G × H) < ∞, in view of Remark 2.1, it follows that f
is bounded. Since f is measurable on G × H , it follows that f ∈ L2(G × H). So,

proceeding as in the proof of Theorem 3.7, we get (4.59). Now, proceeding as in the

proof of Theorem 3.4, starting from (4.59) instead of (4.20) with p = q = 2, we can

complete the proof of this theorem. �

P r o o f of Corollary 3.9. We shall put amn ≡ 1 in Theorem 3.8. Since G and H

are bounded, setting β = 0 in Lemma 4.2, we see that {amn} ∈ A∗

γ(G×H) for every

γ > 1. In particular, {amn} satisfies (3.23) for 0 < r < 2. Also, by our assumption,

f ∈ BFs(G ×H), f(·, 0) ∈ BFs(G), and f(0, ·) ∈ BFs(H) for 0 < s < 2. Therefore,

by Theorem 3.8, we have (3.25) with amn ≡ 1. This means we have

(4.61)
∞
∑

m=1

∞
∑

n=1

|f̂(m,n)|r 6 2−rκ(F ls(f,G×H))rs/2

×
∞
∑

µ=0

∞
∑

ν=0

(mµnν)
−r(ω(f, µ, ν))(2−s)r/2A∗

µ−1,ν−1,

where κ is from (2.29) corresponding to γ = 2/(2 − r). Now, proceeding as in the

proof of Corollary 3.5, starting with (4.61) instead of (4.44), we can complete the

proof of this corollary. �

P r o o f of Corollary 3.10. Suppose f ∈ Lip (α, β;G×H)∩BFs(G×H), f(·, 0) ∈
BFs(G), f(0, ·) ∈ BFs(H) for some α, β > 0, 0 < s < 2, G and H are bounded, δ1 <
1
2α(2− s), and δ2 <

1
2β(2− s). Then, in view of Lemma 4.2, {mδ1nδ2} ∈ A∗

γ(G×H)

for all γ > 1. So, we can put amn = mδ1nδ2 and r = 1 in Theorem 3.8 to get (3.25)

with amn = mδ1nδ2 and r = 1, that is,

(4.62)

∞
∑

m=1

∞
∑

n=1

mδ1nδ2 |f̂(m,n)| 6 2−1κ(F ls(f,G×H))s/2

×
∞
∑

µ=0

∞
∑

ν=0

(mµnν)
−1(ω(f, µ, ν))(2−s)/2A∗

µ−1,ν−1,

where the constant κ is from (2.29) corresponding to γ = 2. Now, proceeding as in

the proof of Corollary 3.6, starting from (4.62) instead of (4.47), we can complete

the proof of Corollary 3.10. �

The proof of Theorem 3.9 is similar to the proof of [13], Theorem 6. However, we

note that in the statement as well as in the proof of [13], Theorem 6, the authors

have identified G with [0, 1).
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P r o o f of Theorem 3.9. Since f ∈ (Λ,Ψ)F lp(G ×H), it is bounded and hence,

being measurable, it follows that f ∈ L2(G × H). Proceeding as in the proof of

Theorem 3.7, we get (4.59), that is, we have

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2 6
1

4

∫

G×H

|∆1,1f(x, y;h1, h2)|2 dm(x, y).

Now writing 2 as in (4.38) and applying the integral form of Hölder’s inequality with

the exponents p′ and q′ yields

(4.63)
∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2 6
1

4

∫

G×H

|∆1,1f(x, y;h1, h2)|β/p
′+((2−β)q′+β)/q′ dm(x, y)

=
1

4

(
∫

G×H

|∆1,1f(x, y;h1, h2)|β dm(x, y)

)1/p′

×
(
∫

G×H

|∆1,1f(x, y;h1, h2)|((2−β)q′+β) dm(x, y)

)1/q′

6
1

4

(
∫

G×H

|∆1,1f(x, y;h1, h2)|β dm(x, y)

)1/p′

× (ω((2−β)q′+β)(f, µ, ν))(1/q
′)((2−β)q′+β).

Therefore

(4.64)

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)p′

6
1

4p′

(
∫

G×H

|∆1,1f(x, y;h1, h2)|β dm(x, y)

)p′/p′

× (ω((2−β)q′+β)(f, µ, ν))p
′(2−β+β/q′)

=
1

4p′

(
∫

G×H

|∆1,1f(x, y;h1, h2)|β dm(x, y)

)

× (ω((2−β)q′+β)(f, µ, ν))2p
′
−β.

Now multiplying the above inequality by (λi+1ψj+1)
−1 and, after that, summing the

resulting inequalities over i = 0, 1, . . . ,mµ − 1 and j = 0, 1, . . . , nν − 1, we get

ΛmµΨnν

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)p′

=

mµ−1
∑

i=0

nν−1
∑

j=0

1

λi+1ψj+1

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)p′

6

mµ−1
∑

i=0

nν−1
∑

j=0

1

λi+1ψj+1

1

4p′

(
∫

G×H

|∆1,1f(x, y;h1, h2)|β dm(x, y)

)

× (ω((2−β)q′+β)(f, µ, ν))2p
′
−β
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=
1

4p′
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β

mµ−1
∑

i=0

nν−1
∑

j=0

1

λi+1ψj+1

×
mµ−1
∑

k=0

nν−1
∑

l=0

∫

(zG
qk,µ+Gµ)×(zH

ql,ν
+Hν)

|∆1,1f(x, y;h1, h2)|β dm(x, y)

6
1

4p′
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β

mµ−1
∑

i=0

nν−1
∑

j=0

1

λi+1ψj+1

mµ−1
∑

k=0

nν−1
∑

l=0

1

×
∫

(zG
qk,µ+Gµ)×(zH

ql,ν
+Hν)

(osc(f, (zGqk,µ +Gµ)× (zHql,ν +Hν)))
β dm(x, y)

=
1

4p′
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β

×
mµ−1
∑

k=0

nν−1
∑

l=0

mµ−1
∑

i=0

nν−1
∑

j=0

(osc(f, (zGqk,µ +Gµ)× (zHql,ν +Hν)))
β

λi+1ψj+1

×
∫

(zG
qk,µ+Gµ)×(zH

ql,ν
+Hν)

1 dm(x, y)

=
1

4p′
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β

×
mµ−1
∑

k=0

nν−1
∑

l=0

(mµ−1
∑

i=0

nν−1
∑

j=0

(osc(f, (zGqk,µ +Gµ)× (zHql,ν +Hν)))
β

λi+1ψj+1

)

1

mµnν

6
1

4p′mµnν
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β

mµ−1
∑

k=0

nν−1
∑

l=0

(VΛ,Ψ,β(f, µ, ν))
β

6
1

4p′mµnν
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β(VΛ,Ψ,β(f, µ, ν))

β

mµ−1
∑

k=0

nν−1
∑

l=0

1

=
1

4p′mµnν
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β(VΛ,Ψ,β(f, µ, ν))

βmµnν

6
1

4p′
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β(VΛ,Ψ,β(f,G×H))β ,

whence we obtain the inequality

(4.65)
(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)p′

6
(ω((2−β)q′+β)(f, µ, ν))2p

′
−β(VΛ,Ψ,β(f,G×H))β

ΛmµΨnν

,

which implies that

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2 6

((ω((2−β)q′+β)(f, µ, ν))2p
′
−β(VΛ,Ψ,β(f,G×H))β

ΛmµΨnν

)1/p′

.
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Now for 0 < r < 2, as 1 = 1
2r +

1
2 (2 − r), in view of (2.29), (4.65), and Hölder’s

inequality, we have

(4.66)
∑

m∈DG
µ

∑

n∈DH
ν

amn|f̂(m,n)|r

6

(

∑

m∈DG
µ

∑

n∈DH
ν

a2/(2−r)
mn

)(2−r)/2(
∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)r/2

6 κ(mµnν)
(1−2/(2−r))/(2/(2−r))

∑

m∈DG
µ−1

∑

n∈DH
ν−1

amn

(

∑

m∈DG
µ

∑

n∈DH
ν

|f̂(m,n)|2
)r/2

6 κ(mµnν)
−r/2A∗

µ−1,ν−1

( (ω((2−β)q′+β)(f, µ, ν))2p
′
−βVΛ,Ψ,β(f,G×H)

ΛmµΨnν

)r/(2p′)

.

Summing (4.66) over µ, ν ∈ N ∪ {0}, we get
(4.67)

∞
∑

m=1

∞
∑

n=1

amn|f̂(m,n)|r =

∞
∑

µ=0

∞
∑

ν=0

∑

m∈DG
µ

∑

n∈DH
ν

amn|f̂(m,n)|r

6

∞
∑

µ=0

∞
∑

ν=0

κ(mµnν)
−r/2A∗

µ−1,ν−1

×
((ω((2−β)q′+β)(f, µ, ν))2p

′
−βVΛ,Ψ,β(f,G×H)

ΛmµΨnν

)r/(2p′)

.

This completes the proof. �
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