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Abstract. We consider the Vilenkin orthonormal system on a Vilenkin group G and the
Vilenkin-Fourier coefficients f(n), n € N, of functions f € LP(G) for some 1 < p < 2.

o0
We obtain certain sufficient conditions for the finiteness of the series . an|f(n)|", where
n=1
{an} is a given sequence of positive real numbers satisfying a mild assumption and 0 <
r < 2. We also find analogous conditions for the double Vilenkin-Fourier series. These
sufficient conditions are in terms of (either global or local) moduli of continuity of f and
give multiplicative analogue of some results due to Méricz (2010), Mdricz and Veres (2011),
Golubov and Volosivets (2012), and Volosivets and Kuznetsova (2020).

Keywords: generalized absolute convergence; Vilenkin-Fourier series; modulus of conti-
nuity; multiplicative system
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1. INTRODUCTION

In 2006, Gogoladge and Meskhia (see [4]) considered the convergence of the series
> meh(f), 0 <1 <2, where 0n(f) = (a3, (f) +03(f))"/?, an(f), bu(f) are the coef-
n=1

ficients of the Fourier trigonometric series of the function f, and {+,} is a sequence
of positive numbers satisfying certain definite conditions. In 2010, Mdricz (see [9])
considered the Walsh orthonormal system on the interval [0,1) in the Paley enu-
meration and the Walsh-Fourier coefficients f (n), n € N, of functions f € L?[0,1)
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for some 1 < p < 2. He found certain best possible sufficient conditions for the
finiteness of the series Z an|f(n)|", where {a,} is a given sequence of nonnegative

real numbers satlsfylng a mild assumption considered by Gogoladge and Meskhia
in [4], and 0 < r < 2. Those sufficient conditions were in terms of (either global
or local) dyadic moduli of continuity of f. In 2011, Mdricz and Veres (see [10])
proved analogues of the results proved in [9] for the double Walsh-Fourier series.
In 2012, Golubov and Volosivets (see [6]) obtained several sufficient conditions for
generalized absolute convergence of bounded type single and double Vilenkin-Fourier
series. Those conditions gave a multiplicative analogue of results due to Gogoladze
and Meskhia (see [4]), and Izumi and Izumi (see [8]). They noticed that their re-
sults are analogous of the results obtained by Mdricz in [9], and Mdricz and Veres
n [10]. They also discussed the sharpness of some of their results. In 1966, Walker
(see [14]) proved Bernstein’s original theorem for Lipschitz functions on Vilenkin
groups without bounded property. In 1992, Yonis (see [15]) used the Walker’s tech-
nique to prove a result for the S-absolute convergence of Vilenkin-Fourier series on
an arbitrary Vilenkin group. Using the technique of Walker, we prove the analogues
of some results of [9], [10], [6], and [13], for single and double Vilenkin-Fourier series
on an arbitrary Vilenkin group

2. NOTATIONS AND DEFINITIONS

2.1. Single Vilenkin-Fourier series. Let G be a compact, metrizable, 0-
dimensional, abelian group. Then the dual group X of G is a countable, discrete,
abelian, torsion group. In 1947, Vilenkin developed a part of the Fourier theory
on G. He proved the existence of an increasing sequence {X,} of finite subgroups
of X and of a sequence {¢,} of characters in X such that the following hold.

(1) Xo ={xo0}, where xo(z) =1 for all z € G.
For each n > 1, X,,/X,,—1 is of prime order p,.

) o0
) X = U X

n=0
)@nEXnH\X for all n >
)

Using these n one can enumerate the elements of X as follows. Let my = 1 and

letmkf]_[pzfork' 1. Ifl > landlfl—Zamz,wrchO a; < pip1 if0<i < s,

then y; = 300 . . Then Xy = {x;: 0< ¢ < my}. Next, if Gy, is the annihilator
of Xy, that is,

Gr={z e G: x(z)=1forall x € Xy},
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then obviously G = Gy D G1 D Gz D ..., [) Gr = {0}, and the Gy’s form a
k=0

fundamental system of neighborhoods of zero in G. Further, the index of Gy in G
is myg, and since the Haar measure is translation invariant with m(G) = 1, one has
m(Gk) = 1/my. The metric on G is then given by

d(xay) = |£L'—y| for xvyEGa

where x| =0if £ =0, and |z| = 1/mp41 if * € G \ Gg41 for £ =0,1,2,. ..
Furthermore, for each k > 0 there exists an x, € Gi \ Gr4+1 such that xm, (xr) =

exp(2mi/pr+1), and each € G can be represented uniquely by « = > b;z; with
0 < b; < pigq for all 4 > 0. Also, =0

Gk_{$€GI x—Zbixi,bo—...—bkl—O}.

=0

Consequently, each coset of Gy in G can be represented as z + G, where z =
k=1
> bix; for some choice of the b;, 0 < b; < p;+1. We shall denote these z, ordered
i=0
lexicographically, by z(fk, 0<q<mg.

Next, let dz or m denote the normalized Haar measure on G. In this section, f
denotes a function from G to C. For f € L*(G) the Fourier series of f is the series

(2.1) S[fl(@) = f(k)x (=),

k=0

where

ﬂm:ly@mma,kew

is the k-th Vilenkin-Fourier coefficient of f.

If suppr = po < oo, we refer to G as a bounded group. A group G is said
to be IE)rimary if p;, = p for all . If p, = 2 for all k, G is the so-called dyadic
group or Walsh group and the elements of its character group X are the Walsh
functions (see [1]). We denote this group by W. Note that in this case m; = 2* and
Gr = [0,1/2%) = Wy, say. As usual, the space LP(G), 1 < p < oo, is endowed with
the norm ||, = (J: | F()[F at)"/”.

If S C G, then oscillation of f over S (see, e.g. [11], Definition 1) is defined as

(2.2) osc(f,S) = sup{[f(z) = f(y)|: =,y € S}.
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For k € NU {0}, the k-th modulus of continuity of f (see, e.g. [11], Definition 2) is
defined as
(2.3)

w(f, k) =sup{|(Tnf — f)(x)|: z€ G,h € Gy}, (Tnf)(x):=f(zx+h), zed.

For k € NU{0}, the k-th local modulus of continuity of f over the coset I = yo+ Gx
(see, e.g. [3], Definition 2.1) is defined as

(2.4) w(f, k, 1) = sup{|(Tnf — f)(2)]: = € I,h € Gy}

Note that if I = yg + Gk, then « € I if and only if  — yy € Gk, and hence for each
k € NU {0}, it is clear that

(2.5) w(f,k,I) <w(f,k) and osc(f, zgk + Gi) = w(f,k, zgk + Gy).

For k e NU{0}, f € L?(G), and 1 < p < oo, the k-th integral modulus of continuity
of order p (see, e.g. [12], Definition 2.2) is defined as

(2:6) w?(f, k) = sup{||Twf = fllp: h € Gi}.

It is clear that

(2.7) WP (f k) <w(f k), keNU{0}, 1<p< oo

For f € LP(G), 1 < p < oo, the best approximation of f (see [6]) is defined as

(2.8) E®@(fn)=inf{||f - Ql,: QE€Pn}, neN,

where P, = {f € L'(G): f(i) = 0,i > n}, n € N. The best approximation and
the modulus of continuity are connected by the inequalities of Efimov (see, e.g. [6],
page 107 or [5], §10.5):

(2.9) 27 W) (f,n) < EW(f,m,) <w®(f,n).

For a function f € LP(G), k € NU {0}, and 1 < p < oo, the k-th local integral

modulus of continuity of order p of f over the coset I = yo + Gk (see, e.g. [3],
Definition 2.2) is defined as

(210)  WwW(f k1) = sup{(ﬁ J1@s - HErar)”: heay).
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For k e NU{0} and 1 < p < oo, it is clear that
(2.11) WP (f ke, T) < wl(f, k).

For a > 0 if w(f,k) = O(m, %), then f is said to satisfy a Lipschitz condition of
order o and this class is denoted by Lip (o, G) (see, e.g. [11], Definition 3). The class
Lip (o, p, G) of functions satisfying Lipschitz condition of order a, 0 < o < 1, in the
mean of order p, 1 < p < oo (see [12], Definition 2.3), is defined by

(2.12) Lip (a,p, G) = {f € LP(G): wP)(f, k) = O(m;;*)}.
It is clear that
(2.13) Lip (e, G) C Lip (e, p, G), 1< p < 0.

Following Mdricz (see [9], page 278) we define the s-bounded fluctuation as follows.

Definition 2.1. A function f is of s-bounded fluctuation for some 0 < s < o0
on G (in symbols: f € BF(Q)) if

mp—1 1/s
Fls(f, Q) = sup( Z (w(f,k,z(fk—l—Gk))s) < oo

k20 \ ‘=5

and Fls(f, Q) is called the total s-fluctuation of f on G.

In view of the equality in (2.5), for s > 1, our Definition 2.1 is equivalent to [11],
Definition 4. Also, it is clear that if f € BF,(G), 0 < s < oo, then f is bounded on G.
Following the definition of Gogoladge and Meskhia (see [4]), Golubov and Volo-
sivets (see [6], page 108) considered the following definition (see also [9], page 279).

Definition 2.2. A sequence {aj} of positive numbers is said to belong to the
class A (G) for some v > 1 if the inequality

1/
(2.14) ( > ag) <rm STy = m(7VAS L e NU{O),
keDG keD§

n—1

is satisfied, where

(2.15) Df = {mu,m,+1,...,muy1 — 1} for peNU{0}, and D :={1},

and the constant x > 1 does not depend on pu.
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We note that for any bounded group G we have (see, e.g. [13], page 220)
(2.16) A, (G) C A, (G) for v > 7e.
However, this is not true if G is unbounded (see Lemma 3.1).

2.2. Double Vilenkin-Fourier series. Let G be a Vilenkin group as in Sec-
tion 2.1. Let H be another such Vilenkin group and let the corresponding sequence
of primes be {¢;}. Let Y be the dual group of H with characters ¢;, ¢ = 0,1,2,...
and {Y;} be the increasing sequence of finite subgroups of Y as in Section 2.1. Then

1
Y, ={4; : 0 <i < ny}, where n; := [] ¢;. Let H; be annihilator of ¥}, that is,
i=1

(2.17) H ={yeH: ¢(y)=1for all ¢ € Y }.

The group G x H is called a two-dimensional Vilenkin group. The normalized Haar

measure is denoted by dm(z,y). In this section, f will denote a function from G x H

to C. Also, for y € H, f(-,y) denotes the function on G defined by f(-,y)(z) = f(z,y)

and for z € G, f(x,-) denotes the function on H defined by f(z,-)(y) = f(z,y).
The two-dimensional Fourier coefficients of f € L'(G x H) are defined as

F(m,m) = /G @R @) dmag) mon e,

We recall the difference operators A; g, Ag 1, and A; 1, which are defined in the
usual way as follows:

Al,Of(xay;hl) = f(l‘ + hlvy) - f(a:,y), A071f(a?,y;h2) = f(a:,y + h2) - f(a?,y%
and
Avaf(x,yshashe) = f(x + hi,y + he) — f(z,y + he) — f(x + h1,y) + f(2,9).

If W x Z C G x H, then oscillation of f over W x Z (see, e.g. [13], page 220) is
defined as

OSC(f7WX Z) zsup{|f(a:,y)—f(w,y)—f(x,z)+f(w,z)|: J?,’UJEVV, Y,z € Z}

For k,1 € NU {0}, the (k,1)-th modulus of continuity of f (see, e.g. [6], page 107) is
defined as

(218) w(kaal) = Sup{|A1’1f(x,y;h1,h2)|: hl S Gkth S Hl}v (xvy) € G x H.
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For k,l € NU {0}, the (k,[)-th local modulus of continuity of f over the set I x J,
I=2+Gg, J=wy+ Hy is defined as

W(f,]f,l;_[ X J) = sup{|A1’1f(x,y;h1,h2)|: (x,y) elx Jv hl S Gk; h2 S Hl}

For k,1 € NU{0} and each set I x.J, it is easy to verify that w(f, k,l; I xJ) < w(f, k,1)
and

(2.19)  osc(f, (25 & + G) x (2 + Hi)) = w(f k1, (2 5 + Gi) x (25, + H1))-

For k,1 e NU{0}, f € LP(G x H), and 1 < p < o0, the (k,1)-th integral modulus of
continuity of order p (see [6], page 107) is defined as

(2.20) WP (f,k, 1) = sup{[|A11(x, y; h1, ho)|lp: hi € Gy, ho € Hj}.
It is clear from the definitions that
(2.21) WP (f k1) <w(f k1), k1eNU{0},1<p< .

Following Moricz and Veres (see [10], page 125), the (k,1)-th local integral modulus
of continuity of order p (1 < p < 00), of a function f € LP(G x H), over the set
IxJ, I=2z+Ggk,J=wy+ Hg, k,l € NU{0}, is defined as
(2.22)

WP (f k1T x J)

1 l/p
— - . p .
SUP{<m(I <) /IXJ |A11f(2,y; ha, ha)l dm(%?J)) : h1 € Gy, ho € Hl}~

As in the case of one variable, for £,/ € NU {0} and 1 < p < oo, we have
WP (Fok, T x J) < w(f k1T x J).

Now, analogously to one variable we introduce the following. For «,8 > 0 if
w(f, k)= O(m;anl_ﬁ), we say that f satisfies a Lipschitz condition of order («, )
and this class is denoted by Lip («, 8; G x H). We define the class Lip (o, 8, p; G x H)
of functions satisfying Lipschitz condition of order («, ), 0 < «, 8 < 1, in the mean
of order p, 1 < p < o0, as

(2.23)  Lip(a,B8,p;G x H) = {f € L?(G x H): WP (f,k,1) = O(my“n;?)}.
It is clear that
(2.24) Lip (e, ;G x H) C Lip (o, B,p; G x H), 0<a,<1,1<p< 0.

Similarly to the case of one variable, following Mdricz and Veres (see [10]), we
have the following definition.
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Definition 2.3. Let 0 < s < co. We say that a function f is of s-bounded
fluctuation (in symbols: f € BF,(G x H)) if the total s-fluctuation of f on G x H,

mi—1n;—1 1/s
Flo(f,G x H) =sup(2 D @ k1L (28 4+ Gr) X (q2l+Hl)>>) < 0,

RIZ0N g1=0 ¢:=0
and Fls(f,G x H) is called the total s-fluctuation of f on G x H. In view of (2.19)

we can replace w(f, k, 1, (28 | +Gr) x (25 ,+ Hy)) by osc(f, (28, +Gr) x (25 ,+ H1))
in the above definition of Fl,(f,G x H).

Remark 2.1. Likewise the functions on rectangles, if f is such that Fls(f,
G x H) < 0o, then it is not necessary that f be measurable or bounded. For example,
let E be a non-measurable subset of G (such a non-measurable set always exists for
any infinite compact abelian group (see [7], 16.13) and hence, in particular, for a
Vilenkin group), and define f(z,y) = xg(x), (z,y) € G x H. Then Fl,(f,Gx H) =
0 < oo but f is not measurable, as the set {(z,y) € GXxH: f(z,y) 21} =ExHisa
non-measurable set, because F is a non-measurable set. Further, let f(x,y) = 1/|z|
for 0 # z € G and f(0,y) = 0 for all y € H, where || is as defined in Section 2.1.
Then Fl,(f,G x H) = 0 < oo, but f is not bounded as f(z,y) — 00 as k — o
for x € Gy \ Gi41. However, if f is such that Fls(f,G x H) < oo and for a fixed
(zo,y0) € GX H, Fls(f(xo,-), H) < oo and Fls(f(-,y0), H) < 00, then f is bounded.
Indeed, for (z,y) € G x H we have

(225)  f(ey)| < £ @y) — F@o.y) — Fla.v0) + F@o.30)] + £ (w0, 0)
+[f (20, y) — f(zo,y0)| + [f(z,y0) — f (0, y0)]
< osc(f, Go x Hy) + osc(f(xo,-), Ho)
+ osc(f (-, y0), Go) + | f(zo, yo)]
< Flo(f, G x H) + Flo(f(x0,-), H)
+-Fl8(f(ay0)7G) + |f(x07y0)|
< 0.
Therefore f is bounded on G x H.

Volosivets and Kuznetsova (see [13]) gave an analogue of Waterman’s well-known
definition of bounded A-variation as follows.

Definition 2.4 ([13]). Let p > 1 and A = {\;}32; and ¥ = {1;}52, be two

n
nondecreasing sequences of positive numbers such that A, = ZAi_l and ¥,, =
n i=1
5™ 971 tend to infinity as n — oo.
i=1
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Let f(z,y) be bounded on G x H. For fixed k,l € N, let

mi—1mn;—1 , G + G H + H P\1/p
(2.26) Vawp(f, k1) = sup(z > (ose(f, (g, + Gr) X (g o + H1)) ) :

= = Ait1¥j41

where the supremum in the formula for V is taken over all permutations {c;};% and
{B;j};L, of the index sets {0,1,...,my — 1} and {0,1,...,m — 1}. If

(2.27) Va,wp(f, G x H) = sup{Va,wp(f, k,1): k1 €N} < oo,

then we say that f € (A, U)FI,(G x H).

For G = W, a two-dimensional analogue of the class 2, (G) (see Definition 2.2)
was defined by Modricz and Veres in [10], page 127. Their definition is a particular
case of the following definition given by Golubov and Volosivets (see [6]) in the case
when G = W.

Definition 2.5. Let {ay: k,I=1,2,...} be a double sequence of positive num-
bers and v > 1. If for arbitrary u, v € NU {0} the inequality

1/~
(2.28) (Z Z azl> SC’(mumu)(l_”’)/7 Z Z agl

keDgZ leDy keDG_, 1eDS

v—1

is satisfied, where fo is as in (2.15) and the constant £ > 1 does not depend on p
or v, then {ay;} is said to belong to the class A*(y,2).

Analogously to the class A*(v,2), defined above, we define the class 2% (G x H)
as follows.

Definition 2.6. A sequence {ag;} of positive numbers is said to belong to the
class 25 (G x H) for some v > 1 if the inequality

1/~
(2.29) (Z Z azl) gﬁ(muny)(k”/”’ Z Z Qg

keijleD{,f keDC leDH |

m—1

= H(munl’)(li’Y)/vA;—l,y—lv H, v eNU {O}a
is satisfied, where fo is as in (2.15),
(2.30) Df:={n,n,+1,...,n,41 —1} forveNU{0}, and DH :={1},

and the constant x > 1 does not depend on u or v.

137



We note that the class 2 (G x H) is a generalization of the class 1, (G), v > 1,
defined by Mdricz and Veres (see [10], page 127).

In this paper, we shall prove certain results analogous to the results proved by
Moéricz in [9], and Mdricz and Veres in [10] for the single and double Vilenkin-
Fourier series, respectively. We shall also prove some results analogous to the results
proved by Golubov and Volosivets in [6], and Volosivets and Kuznetsova in [13]
for arbitrary, bounded or unbounded Vilenkin group. In what follows, C' denote a
positive constant, which may not have the same value at each occurrence.

3. RESuLTS

3.1. Single Vilenkin-Fourier series. Our first result is the following example,
which shows that (2.16) does not hold if we replace a bounded Vilenkin group by an
unbounded Vilenkin group.

Example 3.1. If G is unbounded, then there exists {a,} € A2(G) such that
{an} & 2.(G).

Our next result is a Vilenkin group analogue of a result of Mdricz, see [9], The-
orem 1. Our theorem also gives an analogue of a result of Golubov and Volosivets
(see [6], Corollary 1) for any Vilenkin group.

Theorem 3.1. If f € LP(G) for some 1 < p < 2 and
(3.1) {an} € Ay (p—rptr)(G) for some 0 < r < g,
where 1/p+ 1/q =1, then
(3.2) Yoanlfm)" <27 2Ry m AT (WP (f, )
n=1 pn=0

where k is from (2.14) corresponding toy = p/(p—rp+r). In particular, if the series
on the right-hand side of (3.2) converges, then

(3.3) > anlf(n)]" < 0.

Remark 3.1. Theorem 3.1 is proved in a similar way, except for a few steps,
by Golubov and Volosivets (see [6], Corollary 1, and the proof of Theorem 1). They
used the boundedness of G to prove this result. However, our proof will work for
any group, whether it is bounded or unbounded. To prove this result for arbitrary
group, we will use the technique used by Walker in [14].
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Corollary 3.1. If the hypotheses of Theorem 3.1 hold and the series
(34) > ann B (f,n))"
n=0
converges, then (3.3) holds.

[ee]
Corollary 3.2. If f € L?(G), G is bounded, and Zm}/Qw@)(f, u) < oo, then
oo, p=1
> |f(n)] < oo.
n=1

We note that Corollary 3.2 is not true for an unbounded Vilenkin group G (see [12],
Corollary 4.2 for p = 2).

Remark 3.2. Our Corollary 3.1 is an analogue of Corollary 2 of [6] for any
Vilenkin group. Since Theorem 2 of [6] shows the unimprovability of Corollary 2
of [6], it shows that our Corollary 3.1 is also unimprovable for any Vilenkin group.

It is worth formulating Theorem 3.1 in the particular case when f € Lip (o, p, G)

and a, = 1.

Corollary 3.3. If f € Lip (o, p,G) for some a > 0,1 <p <2, 1/p+1/qg=1,
G is bounded, and if

(3.5) <r<gq

14+ aq
then

(36) Sl < oe.
n=1

For an unbounded group G, Corollary 3.3 is already known due to Younis, see [15],
Theorem 3.1 (Actually only the condition p/(p + ap — 1) < ¢ was used in the proof
of Theorem 3.1 of [15]).

Next, we formulate Theorem 3.1 in the particular case when f € Lip («a,p, G),
a, =n® and r = 1.

Corollary 3.4. If f € Lip (o, p, G) for some a > 0, 1 < p < 2, G is bounded, and
if § € R is such that

1
(37) 0 <a-— E,
then
(3.8) > n°|f(n)] < oo
n=1
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For functions of the narrower class Lip («, G) and p = 2, Corollaries 3.3 and 3.4 are
proved by Onneweer in [11]. For an unbounded group G, a proof of Corollary 3.4 can
be given similarly to the proof of Theorem 3.1 in [15], now considering (k) = S n| f|
and applying Holder’s inequality. T

Our next theorem is formulated in terms of the n-th integral modulus of continuity
of order p over the cosets, which is a Vilenkin group analogous of Theorem 2 of [9].

Theorem 3.2. Let f and {a,} be as in Theorem 3.1. Then we have

00 my—1 r/p
(89) > anlf(n |7"<2—”"/%Zm‘”"AG (Z(w@%f,u,zi%uwu))p) :
n=1 k=0

where k is from (2.14) corresponding to v = p/(p —rp + 7).
Our next result is formulated in the following theorem, which is an analogue of

Theorem 3 of [6] for any (unbounded) Vilenkin group.

Theorem 3.3. Let f be a measurable function on G. If 1 < p' < oo, 1/p' +
1/¢ =1,1< 8 <2, Flg(f,G) < o0, and

3.10 an} € As/io_p(G) for some 0 < r < 2,
/(2=7)

then

(3.11) Z )" <27 PR(Fls(f, G))P )

% Zm;T/2—T/(2p/)(w(6+(2—ﬁ)(/)(f, u))’"_ﬁr/(Qpl)A,Cj,l
=0

where k is from (2.14) corresponding to v = 2/(2 —r). In particular, if the series on
the right-hand side of (3.11) converges, then (3.3) holds.

Our next result is a Vilenkin group analogue of Theorem 3 of [9].

Theorem 3.4. If f is a measurable function on G, f € BF4(G) for some0 < s < 2,
and if {a,} satisfies (3.10), then

(3.12) i " <27 PR(F(f.G) ”S/QZm*TAG L(w(f, ) B2,

pn=0

where £ is from (2.14) corresponding to v = 2/(2 — r) and Fls(f,G) is as in Def-
inition 2.1. In particular, if the series on the right-hand side of (3.12) converges,
then (3.3) holds.

140



We formulate Theorem 3.4 in the particular case when f € Lip (o, G)NBF4(G), G is
bounded, and a,, = 1, and obtain a Vilenkin group analogue of [9], Corollary 3.

Corollary 3.5. If f € Lip(«a,G) N BF4(G) for some @ > 0, 0 < s < 2, G is
bounded, and if

2

(3.13) r > Tra(z—s)

then (3.6) is satisfied.

Finally, we formulate Theorem 3.4 in the particular case when G is bounded,
r =1, and a, = n%, and obtain a Vilenkin group analogue of [9], Corollary 4.

Corollary 3.6. If f € Lip(«,G) N BF4(G) for some @ > 0, 0 < s < 2, G is
bounded, and if § € R is such that

a2 —s)

(3.14) b <=5,

then (3.8) is satisfied.

3.2. Double Vilenkin-Fourier series. For a double Vilenkin-Fourier series, our
first result is the following theorem which is a Vilenkin-Fourier series analogue of a
result of Méricz and Veres (see [10], Theorem 1) and a two-dimensional analogue of
Theorem 1 of Section 3.1.

Theorem 3.5. Suppose f € LP(G x H) for some 1 < p < 2. If
(315) {amn} S Ql;/(p_rp_i_r)(G X H)

for some 0 < r < q, where 1/p+1/q =1, then

(316) Y D> amalf(mn)]" <27R DY (mpny) AL,y (0P (f )
m=1n=1 pn=0v=0

where k is from (2.29) corresponding toy = p/(p—rp+r). In particular, if the series
on the right-hand side of (3.16) converges, then

(3.17) Z Z amn|f(m,n)|r < 00.

m=1n=1
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When G and H are bounded, we have the following corollaries, analogous to [10],
Corollaries 1 and 2.

Corollary 3.7. Suppose G and H are bounded, f € Lip (o, 3,p; G x H) for some
a,f>0,and 1 <p<2. If

q
(3.18) m <r<g,
then
(3.19) > 1fmn)

m=1n=1

Corollary 3.8. Suppose G and H are bounded, f € Lip («, 3,p; G x H) for some
a,f>0,and 1 <p<2. Ifd1,62 € R are such that

1 1
(3.20) 0 <a—~— and 6 <fB— -,
p p

then

(3.21) > ma% | f(m,n)| < oc.

m=1n=1

Our next result is the following theorem, which is a Vilenkin group analogue of a
result of Méricz and Veres (see [10], Theorem 2) and a two-dimensional analogue of
Theorem 3.2 of Section 3.1.

Theorem 3.6. Let f and {amy} be as in Theorem 3.5. Then we have

(3.22) ZZamn|fmn

m=1n=1
oo 00
—r § § —7r g%
g 2 K (mHnV) Ap,—l,u—l

pn=0r=0

~1n,—1 r/p
( Z Z (p) f7ua Zkl Y + GH«) (Zlg,u + HV)))p> ’

k1=0 k2=0

where k is from (2.29) corresponding toy = p/(p—rp+r). In particular, if the series
on the right-hand side of (3.22) converges, then (3.17) holds.
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Our next result is a two-dimensional analogue of Theorem 3.3 of Section 3.1.

Theorem 3.7. Let f be a measurable function on G x H. If 1 <p’ < o0, 1/p' +
1/¢ =1,1< 8 <2p, Flig(f,GxH) < 00, Flg(f(-,0),G) < o0, Flg(f(0,-), H) < o0,
and

(3.23) {amn} € A3/, (G x H) for some 0 <1 <2,

then

(3.24) am

n ‘ng
! HM8

K(Fla(f,G x B e

% ZZ(mMny)—r/@p)—rﬂ( (B+(2- B)Q)(f )" ﬁr/(2p)AM L1
pn=0rv=0

where & is from (2.29) corresponding to v = 2/(2 —r). In particular, if the series on
the right-hand side of (3.24) converges, then (3.17) holds.

Our next result is a Vilenkin group analogue of Theorem 3 of [10] and a two-
dimensional analogue of Theorem 3.4 of Section 3.1.

Theorem 3.8. If f is a measurable function on G x H, f € BF;(G x H), f(-,0) €
BF,(G), and f(0,-) € BFs(H) for some 0 < s < 2, and if {amn } satisfies (3.23), then

oo

(325) D> amnlf(m, )"

S2TR(FL(f, G x )0 (mm) T (@) P4

pn=0rv=0

where & is from (2.29) corresponding to v = 2/(2 —r). In particular, if the series on
the right-hand side of (3.25) converges, then (3.17) holds.

We formulate Theorem 3.8 in the particular case when G and H are bounded,
f € Lip(a, 8;G x H) N BF,(G x H), and am, = 1, and obtain a Vilenkin group
analogue of [10], Corollary 3.

Corollary 3.9. If f € Lip(a,8;G x H) NBF,(G x H), f(-,0) € BFs(G), and
f(0,-) € BFs(H) for some o, 3 > 0,0 < s <2, G and H are bounded, and if

2

(3.26) = + min{a, S}(2 — )’

then (3.19) is satisfied.
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Finally, we formulate Theorem 3.8 in the particular case when G and H are
bounded, 7 = 1, and @, = m®n’, and obtain a Vilenkin group analogue of [10],

Corollary 4.

Corollary 3.10. If f € Lip (o, 3;G x H) N BFs(G x H), f(-,0) € BF(G), and
£(0,-) € BFs(H) for some o, > 0,0 < s <2, G and H are bounded, and if

BR2—>s)
2 )

a2 —s)

(327) 0 < and 09 <

then (3.21) is satisfied.

Our last result is the following theorem, which is an analogue of [13], Theorem 6
for any (unbounded) Vilenkin group.

Theorem 3.9. Let p',¢' > 1,1/p'+1/¢ =1,1 < B <p +1, f be measurable
onGxH, fe (A9 )Fly(Gx H),0<r <2, and {amn} € A*(2/(2 —1),2). If the

series

&, (W @B +B) (£ ke, 1))2P =B/ (2p) /2 Ak
RSN 5 P (At AL Ry G L T
1= mi ny

x>
Il

—
—

0o 00 .
converges, then the series Y. > Gmn|f(m,n)|" also converges.
m=1n=1

4. PROOF OF RESULTS

4.1. Single Vilenkin-Fourier series. We need the following lemma, which gives
examples of certain sequences in 2., (G). This lemma is already known (see, e.g. [13]).

Lemma 4.1. If G is bounded, then {k"} € 2,(G) for all 3 € R and v > 1.

Proof of Example 3.1. Let G be any unbounded group. Then there is an
increasing sequence {ry} of natural numbers such that p,, — co. Now, we consider
the ordered sets A = {ry € N: 1} is even} and B = {r; € N: r; is odd}. Then
either A is infinite or B is infinite.

Case I. A is infinite. Rename the elements of A by n1,ns, ... Then each ny is even
and pp, — 0o as k — oo. Let {a,} be defined as follows. For mj, < n < mjy1, that
is, for n € DY, k € NU {0}, let

1
(P2 — 1)Y2 (M1 — my)
1
MEg+1 — Mg

if k is even,
(4.1) ap, =
if £ is odd.
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Note that for any p € NU {0} we have

may+1—1 1
@ Y a-
—1)1/2(m —m
keDS, k=ma, (P2p+2 R (P 2)
1 may+1
= 1/2 Z 1
(P2pt2 — D2 (M1 — may) K
_ ( )
= map+1 — M2y
(Pop+2 — V2 (M1 — may)
- 1
(P2pg2 — 1)1/2
and
ma,42—1 maoy42—1 1
(1) ) DRETEEND SEPTE o — —
m —-m
kEDg’IH.l J— k=rmzy i1 2p+2 2p+1
1 mapy42—1
= — 1
m —-m
2p+2 2p+1 [——
1

= —(m2p+2 - m2u+1) =1
m2p,+2 - m2p,+1

As n,, is even for each p € N and p,,, — o0 as jt — o0, in view of (4.2) and (4.3), we
have
ZkEDzG(mm—lwl @k _ 1
1/(p2(n,./2-1)+2 — 1)

EkeDG

2(ny /2—1)

:(pn“—1)1/2—>oo as f — 0.

1/2

Hence, there cannot exist any « such that > ar <k >, ay forall p > 0. Thus,
keDg keDS

n—1

{an} ¢ %1(G). Now, we show that {a,} € 23(G). Note that

(4.4) ( Z ai)l/Q = (mil (p2 — 1)1/21m1 _ m0)2>1/2

keD§ k=mg
1 1/2
~ (= om =g =)
1
(p2 — 1)Y2(my — mg)1/2
9 1
(p2 — 1)Y/2(my —myo)
= (p - 1)"%a = (p — 1)"/? Z k-
keDS,

= (m1 —mo)"/
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Next, for p € N, in view of (4.3), we have

maut1—1 1 1/2
( 2 ((P2pv2 — DY2 (M1 — mzu))2>

k=mz2,

(4.5) (Z ai)l/Q

keDg,

1

((P2H+2 = 1)(mapuy1 — may)
1

= 1/2 Z ak

(P2u+2 — 1)2may,” (21 — 1)V/2 | T3

1/2
5 (Mot — mzu)) x 1

2u—1
1
< 73 Z ap < (p1 — 1)1/27“51 2/ Z agk
Mo kepg, , keDg,
and for p € NU {0}, in view of (4.2), we have
1/2 mapt2—1 1 1/2
an (X @) =( X :)
keDS, ., k=mau 11 (m2u+2 - m2u+1)
1 1/2
- ((mz o — Maui1)? (mavz = m2“+1)) x1
I I
1
Y 1/2 (P22 = 1) 3 a
m2u+1(p2u+2 - 1) keDS,
1
e Y -y Y a
M2u+1 keDS, keDS,
From (4.4)—(4.6) it follows that {a,} € 2A2(G).
Case II. B is infinite. Rename the elements of B as nj,no,... Then each ny is

odd and p,,, — oo as k — co. Let {a,} be defined as follows. For mj < n < mgy1,
that is, for n € DY, k € NU {0}, let

1

_ if k is even,

M1 — M
(4.7) an =24 T X

if k£ is odd.

(Prt2 — V2 (mpq1 — mi)

Note that for any p € NU {0} we have
may41—1 mou+1—1 1
(4.8) o= ), a= Y, ———— =1
keD§ k=ma, k=ma, Zptl 2n
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and

m2“+271

(4.9) Z ar = Z ! = . )1/2.

e —— (P2p+s — 1)V 2(mapr2 —maps1)  (Pept1)42 — 1

2u+1

As n,, is odd for each € N and p,,, — oo as jt — 00, in view of (4.8) and (4.9), for
= 2, we have

G (075 1
v —1)/2) _
>_keng ar  (P2((n,—1)/2)-142 — 1)

2((np—1)/2)—1

= (pnu—1)1/2—>oo as (1 — 00.

~1/2

Hence, there cannot exist any x such that > ar <k >, a forall p > 0. Thus,

keDG keDS
{an} ¢ 21(G). Now, proceeding as in Case I, we can show that {a,} € A2(G). Thus,
in any case, we have a sequence {a,} € 22(G) such that {a,} ¢ 2 (G). O

Proof of Theorem 3.1. Fix p e NU{0}, h1 € G, \ Gpy1, and set
(4.10) g(x) = flz+h)— f(z), zed.

Then for n € N we have
(411)  g(n) = / 92X () da = /G (& + ha) — £(2)) X(2) da
/f W= hy)dz — f /f )X (2% (—h1) dz — F(n)

= Xa(h1)f(n) = f(n) = (xa(h1) = 1) f(n).

Note that
o(G/Gut1) _ Mut1 —
o(G/Gp) my g

Since p,4+1 is prime, it follows that G, /G 41 is cyclic and that every element other

O(Gu/Gu+1) =

than the identity element is its generator. That is,
GH/GIH'l = <h0 + Gu+1> Vho € Gu \ Gu+1-

Since h1 € G \ Guy1, i + Gy is a generator of the group G, /G, 4+1. We shall
show that if x € X, 41\ X, then x(h1) # 1. Let x € X,,+1\ X,,. If possible, suppose
X(h1) =1. Let z € G,,. Then z+ G,41 € G,,/Gp41 = (h1 + Gp41). So, there is an
integer k depending on z such that z + G,+1 = k(h1 + Gut1) = kh1 + G41. That
is, z — khi € G, 41. Hence, there exists 2’ € G,41 such that z — khy = 2’. Therefore

x(2) = x(khy + 2') = x(h1)"x(2)) = 1Fx(2") = x(2).
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Now, as x € X,4+1 and 2’ € G4, by definition of G411, x(2’) = 1. Therefore
Xx(z) = 1. Since z € G,, was arbitrary, x(z) = 1 for all z € G,,. Hence, by definition
of G, x € X,,. This is a contradiction. So, if x € X, 41 \ X, then x(h1) # 1.

Note that for x € X, 11, xXu € Xpuy1/Xpu. Also, o(X,11/X,) = mug/my =
Pu+1. Therefore

XX = (x X)) = (XXM)O(X“H/X“) = XoXpu = Xy

and hence xP#+' € X,,. Since hy € G, by definition of G/,, we have x?»+1(hi) =1
Therefore

(412) X(hl) — eQT[ik/pu,-f—l
for some 1 < k < p,41 and k depends on x. Let
TS, = X1\ X = {Xomps Xomp 41+ -+ Xompsr—1} = {Xn: 1 € DG}

and m be such that

1 1 . log put1
< <, e, m= 2t
2m+l T op g 2m e T log 2
Then for any y € Tu+1v as 1 <k <puy1 — 1, we have
1 1 k -1 1 1
(4.13) o< < <Pt T g <l
2m+ Putl  Du+1 Du+1 Dpt1 2m+
Now define ) f 3
p+1,1 /J«Jrl 4 Put1 4
and for [ =2,3,...,m,
1 k 1 1 k 1
TG :{ eT% <—< = 1——<—<1——}
pt1,l pt1’ 9l+1 Dut1 9l or 9l Put1 2l+1
Also, for [ =1,2,...,m, let
DS :={neDS: xne€TF,,}
Then DE is the disjoint union
m
(4.14) p¢ = Jng,
1=1
Since p,41 is prime, k/p,41 cannot be equal to 1/2% or 1—1/2 forany i = 2,3,...,m,

and hence in view of (4.13), T, G | is the disjoint union

u+1 U ptl,5°

148



Since h1 € G\ G141, it follows that 2h1,3h1, ..., (pur1 —1)h1 € G\ Gpy1. Indeed,
if possible, suppose for some 2 <t < puy1 — 1, thy ¢ G, \ Guyi1. Since hy € G,
and G, is a group, thy € G,. Since th1 ¢ G, \ G+1, it follows that thy € G 41.
Therefore for x € X,11 \ X, 1 = x(th1) = x'(h1) = ¥ #/Pu+1. But then p,i1
divides kt. Since p,1 is a prime, either p,41 divides k or p,41 divides ¢, which is
not true as 1 < k,t < pyt1. Thus, thy € G, \ Guq1 for t =2,3,...,py41 — 1. For
l=1,2,...,m,put t; ;=271 Then 1 < ¢, =21 <27 1L <2m —1 < puy1 — 1,
that is, ¢; € {1,2,...,puq1 — 1}. Therefore, as seen above, t;h; € G, \ Guy1. Thus

(4.15) Xn(tih1) #1 for any x» € X411 \ X,

So, using (4.11) replacing hy by t;h1, we get

oy gn)
(4.16) ) = ) =1

Also, in view of (4.12), for x € X, 11 \ X, we have

(4.17) Ix(tihy) — 1| = |e¥Fitik/Puta _q|

it k itk
_ Qiemitak/p;wrl e™™ /Puta .e ko — 2‘ sin Tttlk ‘
21 Pu+1
Note that for 1 <1 < m we have
1 k 1
G
XEI}L+1’Z:>F<]E<E
L] k ) 1 n2l=t  kr2tmt p2lt
or 11— < ot <l-omr = oa7 < o <
o1 2l 2ttt o w2t oo kn2ttl g
or T —T< pu+1 < T _2l+1 Z pu+1 <§
or m2!7t— r_ kn2 <27t = T
2 Pu+1 4
Observe that
© kn2l-t - T o Ekn2i-1 LT 1
- — = sin >sin—- = —.
4 putr 2 Dpt1 4 V2
Next, for [ = 1 we have
o1 © km2tl 1 © . m _ kn2t o 3n . kn2i~t . 3m 1

2 —=< <2 --=-=-X < — = sin > sin — = —,

2 putr 4 2 pup 4 DPut1 4 V2



and for [ > 2, as sine is increasing in (n2!~! — %n, m2!=1 — 1n) we have

k 2l—1 k -1 1
2l — I < T <ml=t— T = sin T < Sin(ﬂZl_1 — E) = ——
2 pum 4 Put1 4 V2
kn2li—1 1
= ‘sm ‘ —.
pu—i—l 2
Therefore for y € T L1, We have
Tttlk 1
4.18 sin ‘ > —
( ) Pu+1 V2

(We note that instead of this inequality, Golubov and Volosivets use the inequality
Ix;j(1/mg41) —1| > 2sinn/N, where N is such that p; < N forall ¢ = 1,2,. .., which
actually depends on boundedness of {p;} and hence the corresponding bound appear
in the final conclusion, too.)

In view of (4.16), (4.17) and (4.18), we have

¢ q _ 1 G(n)l4 = L 5(n) |4

s ik /put1)

1l PR 1wl

G
neD 7, PR

So, for p € NU {0} we have

w0 (5 )= (8 5 o)« (§ e 5 o)

nEDG =1 "ED,;,,I nEDf,
1 m 1/q 1/q
~55(X X o) = (X )
=1 nEDSl EDG

Therefore, for 1 < p < 2, by virtue of the Hausdorfl-Young inequality (see, e.g. [2],
equation (4.28)), and (4.10), (4.19) becomes

<Z |f(n)|q>1/q < %( ™ i) > (/ o |pdx> v

nEDE n=1
1/p
(4.20) - i( [ (e )~ fia )|pdx)

(4.21) < —=w?(f, 1)
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for all 4 € NU{0}. Since 1/(¢/r)+1/(¢/(q—71)) =7r/q+ (¢—7r)/q = 1, applying
Holder’s inequality with exponents

(4.22) o Y: N M—

roorp=1) q—r p—rp+r’
it follows from (2.14), (3.1) and (4.21) that

423) Y alfm) = 3 [fm)la

neD/? neD/?
~ T’/q (pf""p*'r’l")/p
< ( Z |f(n)|q> < Z aﬁ/(PT’err))
nEDG neD/?
S 2r/2 (w(p)(f’ w)" ”ml(}7p/(p7”p+7’))/(p/(p*Terr)) Z a

G
nEDH 1

= 2,«/2( WP (f, ) T AT

for all 4 € NU{0}. Summing (4.23) over u € N U {0} yields

E an|f(n)|r = E E an|f(n)|r < E jz(w(p)(f,u))rnmljr/q%lf_l
or/
n=1

w=0neDg n=0

=272k mTIAT (WP (f, )

pn=0
which is (3.2) to be proved. This completes the proof of Theorem 3.1. O

Proof of Corollary 3.1. Since the hypotheses of Theorem 3.1 hold, we have
equation (4.23). Therefore by (2.9) and the fact that for n < m,, E®(f,n) >
E®(f,m,), we have

(4.24) > anlfn)" < 507 (WP (f, )" wmy, T AT
neDS
< B CEP (L m st S
nEDS 1
C(EW(f,m, Z ann~"/
nEDS 1
= > aun YEP(f,n))".
neDC

n—1

Summing up the inequality in (4.24) over u, we get the statement of Corollary 3.1.
O
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Proof of Corollary 3.2. We shall put a, = 1 in Theorem 3.1. Since G is
bounded, setting § = 0 in Lemma 4.1, we see that {a,} € %, (G) for every v > 1.
In particular, {a,} satisfies (3.1) for 1 < p < 2 and 0 < r < ¢, so for p = 2 and
r = 1. Also, as f € L?(G), all the conditions of Theorem 3.1 hold. Therefore by
Theorem 3.1, we have (3.2) with a,, =1, p = ¢ = 2 and r = 1. This means we have
the inequality

o0

(4.25) > <220 S 4G WO (f, ),

n=1 pn=0

where & is from (2.14) corresponding to v = 2/(2 — 2 + 1) = 2. Further, in this case,

we have

(4.26)

Afl_ Z an = Z l=my, —myu_1<my,, peN, Aglzalzlgm
nED‘Cj1 nEDfl

Therefore (4.25) becomes

o0

Z | < 2_1/2/@2771 Pm,w® (f,p) = 2_1/2/£Zm/1/2w(2)(f,u).

n=1 u=0

Hence, if i m}/Qw(z)(f, p) < oo then, i |f(n)| < co. This completes the proof.

pn=0 n=1 0

Proof of Corollary 3.3. We shall put a,, = 1 in Theorem 3.1. Since G is

bounded, setting 8 = 0 in Lemma 4.1, we see that {a,} € 2, (G) for every v > 1. In

particular, {a, } satisfies (3.1) for 1 < p < 2and 0 < r < ¢q. Also, as f € Lip (o, p, G),

f € LP(G) for 1 < p < 2. Therefore, by Theorem 3.1, we have (3.2) with a,, = 1.
This means we have the inequality

(4.27) fj nF <2772 S m TS W (f, )
n=1 pn=0

where the constant  is from (2.14) corresponding to vy =p/(p —rp+7r), 0 <7 < q.
Finally, as f € Lip (o, p, G), we have

(4.28) w® (f, ) < Cm®, peNU{0}.

Using (4.26) and (4.28) in (4.27), we have

o0 o0
(4.29) Z n)|" <27/ 2kCT Z m, lim, m, " = 27T2kC" Z m;r/q"’l_m.
n=1 =0 pn=0
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Now in view of (3.5), we have ¢ < r(1 4+ aq), so 1 < r/q + ra, and hence —r/q +
1 —ra < 0. Also, as m, > 2", it follows that m,, Jrlatiore < ou(=r/gti-ra) - gq
from (4.29) we get

o0

_ 1 Iz
(430) Z |T‘ < 2 T‘/QHCT Z (W) .
=0

Since r/g—1+ra > 0,0 < 1/2'”/‘1’1er < 1 and hence the geometric series on
the right-hand side of (4.30) converges. So we get (3.6), completing the proof of
Corollary 3.3. O

Proof of Corollary 3.4. Suppose f € Lip (a, p, G) for some o > 0and 1 < p < 2,
and § < a — 1/p. Since G is bounded, in view of Lemma 4.1, {n°} € 21, (G) for all
v > 1. So, we can put a,, = n% in Theorem 3.1 to get (3.2) with a,, = n%, that is,

Yo nllf ) <272k Y S m AT (WP (f )T
n=1

pn=0
where the constant « is from (2.14) corresponding to vy =p/(p—rp+1), 0 <r < gq.
Now, setting r = 1, in the above inequality we get

Mg

(431) W) < 226 S i 9AS W (£, ).
1 pn=0

Also, when 6 > 0, we have

n

AG1 =a; = 1 5+1

< my
G 6 5 6+1
Aul_ Z < Z m —mu_l)<mumuzmu"’7 e N,
nEDS 1 nEDE 1

and for § < 0 we have
AG =a; =12 <ml™o,

u 1= Z n’ < Z mz—l = m,i—l(mu —My—1) = mz—lmu—l(pu —-1)

neD§ | neDg |

o+1 0+1,0+1 -6 _ 6—',—1 —0, . 0+1
sm ;J, 1pH_mu 1pp, pp, p, pp, \pO mp, ) MEN

So, in either case,

(4.32) AT = > n’<omit

€]
nEDu 1

Since f € Lip (o, p, G), we have (4.28). Using (4.32) and (4.28) in (4.31), we get

o0 o0 o0
(4.33) Z n®|f(n)] <272k Z m;l/qC’mfflCm;a <C Z m;l/q"’é“_o‘.
= n=0 n=0

153



Now, in view of (3.7), we have 6 < o« —1/p, soa >+ 1/p=0+1—1/q, and
hence —1/¢+ 66+ 1 —« < 0. Also, as m, > 2*, it follows that m, Slatdtl-a o
ou(=1/ato+1=a) Qo from (4.33) we get

(4.34) > n|f(n)] < CZ(W%HQ)M
n=1 n=0

Since 1/g—d—1+a>0,0< 1/21/‘1"5’1*0‘ < 1, and hence the geometric series on
the right-hand side of (4.34) converges. So we get (3.8) to be proved. O

Proof of Theorem 3.2. Proceeding as in the proof of Theorem 3.1, for h; €
G\ Gut1, b = 0, we get (4.20). So, in view of the fact that G is the disjoint union
of the cosets z,g’ju +Gu k=0,1,...,m, — 1, each of measure 1/m,, we get

R 1 1/1’)
s (X vioor)” < ([ rerm - sepas)
nEDE

1 l/p

<E<Z [, s - fopa)

k=0 Y2k, tGu

1 my—1 1 1/p

g ﬁ ( m_M(W(p) (fa Hy Z}Sp, + GH))p> )

by definition of w® (f, p, Zlgu + G,). Now, applying Holder’s inequality with the
exponents in (4.22), it follows from (2.14), (3.1), and (4.35) that
(4.36)

S afor = X ore < (3 17er) (X aee

>(p—rp+7“)/p

neD¢ neDS neDg neD¢
my,—1 1 r/p
< 2r/2< Z - (w(p)(f,u, Zﬁﬂ + Gﬂ))p)
k=0 *
> ﬁml(il—p/(p—rpw))/(p/(p—v"p+7")) Z an
neD§ |
my—1 r/p
= 2”/2mur/”< Z (WP (f, p, z,g’ju + Gu))p> nm;”/qA/ijl
k=0

my—1 r/p
9T AT < S (@ (f G, + Gmp)
k=0

for all p > 0. Summing (4.36) over u € N U {0} yields (3.9). This completes the
proof of Theorem 3.2. O
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Proof of Theorem 3.3. We prove this theorem by proceeding similarly to the
proof of Theorem 3 of [6]. Since Flg(f,G) < oo, it follows that f is bounded.
Therefore, as f is measurable, it follows that f € L?(G). So, proceeding as in
Theorem 3.1, for hy € G, \ Gut1, p = 0, we have (4.20) with p = ¢ = 2. Therefore,
for 1 < p’ < oo we have

(137 (x |f<n>|2)p/ <

nEDE

’

o ([ 1+ - p@par)

Now, writing

B, 2-84d+8

(438) 2= p/ + q/ )

and applying the integral form of Holder’s inequality with the exponents p’ and ¢’
yields

’ ’

O O N R A o e

neDf
1/p’
N m——
, Ny 1/q¢'\p
X (/ |f(x+hi) — f(a:)|(((2—ﬁ)q +8)/d")a dx) )
G

~ f(@)|° dz

p'/d
</|fa:+h1 <>|2ﬁq+ﬂdx) |

Now, in view of the fact that G is the disjoint union of the cosets z TG 1<g<

//\

/

2p'

m,, — 1, each of measure 1/m,,, (4.39) becomes

(4.40) ( > |f(n)|2> (mi: / fl@+hi) = f(x))” da:)

neDY
x (w(Z=A)d +B)(f7 M))(p /4)((2=B)d'+P)

my—1

< (X[ (osclfag, 6 )
q=0 28t G
X ((JL,((%ﬁ)q’Jrﬂ)(f7 M))2p’f/3
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my—1

2 (3 (ol + G

q=0
% (w((Q—ﬁ)q’+B) (f, M))Qp’—ﬁ

my—1

_ Qp'mul< 3 (ose(f, 26, + GM))ﬁ)

q=0
X ((JL,((%ﬁ)q’Jrﬂ)(f7 M))2p’f/3
< 27p/m;1(]:lﬁ(f, G))ﬁ(w((%ﬁ)q’ﬂi)(f, H))2p’fﬂ.

Since %r + %(2 —r) =1, applying Holder’s inequality with the exponents 2/r and
2/(2 —r), in view of (4.40), (3.10) and (2.14), we have

@y Y wlfolr < (X 1 ) ( ) ai/@—”)@_rw

neD¢ neD¢ neD¢
< @7 my Y (Fl (£, G (W G (f, )20y
x km(-2/ GG/ NN

G
nEDH 1

= 2_”"/2m;”"/(2”l)(]-"lﬁ(f, G))Pr/ 20

x (w(@=P)'+h) (. u))?"—ﬁ?"/(Qp’)ﬁm;v"/QA/Cjil
= 2725 (Fly(f, G))ﬁr/@p/)m;rﬂ—r/@p/)

x (=P +8) (. u))f*ﬁr/@p’)Ale_l

for all ¢ > 0. Summing (4.41) over all u € NU {0}, we get (3.11). This completes
the proof of Theorem 3.3. ([

Proof of Theorem 3.4. Suppose f is measurable on G, f € BF,(G) for some
0 < s < 2,and {a,} satisfies (3.10). As Fl;(f,G) < o0, it follows that f is bounded.
Since f is measurable, it follows that f € L?(G). Now, proceeding as in Theorem 3.1,
for hh € G, \ Guy1, 1 = 0, we get (4.20). Setting p = ¢ = 2 in (4.20), in view of
Parseval’s formula (see [7], Chapter VI, §23), (4 10) of the definition of g, and the
fact that G is the disjoint union of the cosets zk +G,, k=0,1,...,m, — 1, each
of measure 1/m,,, we have

(4.42) (nEZDGIf ) <%</|f(x+h1>—f(x)l2dx)1/2
(mfl / o i) - f(x)|2dx)1/2

k,p

%|

156



1 1 1/2
<73 X met g e
my—1

- J%( S @l oG+ GH»Q)W.

k=0

Now, applying Hoélder’s inequality with the exponents 2/r and 2/(2 — r), it follows
from (2.14), (3.10) and (4.42) that
(4.43)

Y anlfm)

nEDE
r/2 (2—r)/2
S |f<n>|’“an<( |f<n>|2) (Z a?/@-“)
nEDE nEDE nEDE
1 my,—1 r/2
< W( Z (W(fvﬂang+Gu))2> /<;m(1 2/(2—r))/(2/(2—7) Z an
or/ P S
1 " G 2—s G s 2 —r/2 zG
- 2/—/( > el + Gl @3+ G ) A
my,—1 r/2
<2 PmAC < S (o ) @ 2+ Gw)
k=0
My — r/2
<2 Pkm T AS (w(fo )2 Z (=G, 1 Gy )))
=0

<27 2rm " A (w(f, )3T SW(f S(f, Q)2

Summing (4.43) over ;1 € N U {0} yields (3.12). This completes the proof of Theo-
rem 3.4. (]

Proof of Corollary 3.5. We shall put a, = 1 in Theorem 3.4. Since G is
bounded, setting 8 = 0 in Lemma 4.1, we see that {a,} € 2, (G) for every v > 1. In
particular, {a, } satisfies (3.10) for 0 < r < 2. Also, by our assumption, f € BF,(G)
for 0 < s < 2. Therefore, by Theorem 3.4, we have (3.12) with a,, = 1. This means

we have

o0

(4.44) Z n)|" < 27 2R(FL(f, G))"/? Z _TA,?A(W(JC’ p0)Eor/2,

n=1 u=0

where the constant « is from (2.14) corresponding to v = 2/(2 — r). Since a,, = 1,
from (4.26) we have A,,_1 = m,_1(p,—1). Further, by our hypothesis, f € Lip (o, G)
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and hence w(f, n) < Cm,“. So, (4.44) becomes

(4.45) i |’“<2—?“/2 (FI(f, @) 7"9/2Zm my—1(py — 1)(Cm; m, )(2—3)7“/2

p,O

< 272k (Fl, @) rs/2 m,,"my—1p,(Cm,* (2=s)r/2
n—1Pu
pn=0

< 2—7“/2&(}-13 (f7 G))rs/QC Z m;rmu (m;o{)(Q—s)r/Q
pn=0

_ 277,/2143(_/_'.[5(]0, G))rs/QC Z m;r+17ar(2fs)/2.

p=0

Now, in view of (3.13), we have 2r + ar(2 — s) > 2. So, r + lar(Z —s) > 1, and
hence —r+1—2ar(2—s) < 0. Also, as m,, > 2", it follows that mf“ ar(2- S)/2
gu(—rH1-ar(2=5)/2) Qo from (4.45) we get

— | ; r —r rs S 1 H
(4.46) lef(ml <27PR(FL(f.G)) /QCZ)(m)-
n= =

Since r—1+3ar(2—s) > 0,0 < 1/2r—1+er(2=5)/2 < 1 and hence the geometric series
on the right-hand side of (4.46) converges. This completes the proof of Corollary 3.5.
(]

Proof of Corollary 3.6. Suppose f € Lip(«,G) N BF(G) for some a > 0,

0 < s < 2, Gis bounded, and § < fa(2 —s). Then, in view of Lemma 4.1,
{n%} € 2A,(G) for all ¥ > 1. So, we can put a, = n° in Theorem 3.4 to get (3.12)

with a,, = n’, that is,

i |r<2 r/2 (J—_-l (fG rs/QmerAG ( (f; ))2 sr/2

pn=0

where the constant « is from (2.14) corresponding to v = 2/(2 — r). Now, setting
r =1, we get

(4.47) i n)| < 9= 1/2, (FI(f,@)) /2 Zm_lAS L(w(f, /-//))(2_8)/2.

pn=0
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Since a, = n%, from (4.32) we have Au 1 < Cm‘erl Further, as f € Lip (o, G), we
have w(f, ) < Cm,“, p € NU{0}. Therefore, from (4.47) we get

(4.48) Z n)| < 27V 26(Fl,(f,G)) G/QZm‘lCm‘s“(Cm o)(25)/2

n=0

<27 V2R(FL(f,G))*2C Y mb /2,

pn=0
Since § < /204(2 s), we have § — 1a(2 — s) < 0. Also, as m,, > 2*, it follows that
ml T2 ou(6-a(2-5)/2) gq from (4.48) we get
= 1/2 /2 1 g
(4.49) Z n)| < 27 V26(FL(f, G)) CZ(W) .
n=1 pn=0

Since —§+1a(2—5) > 0,0 < 1/279F2(2=%)/2 < 1 and hence the geometric series on
the right-hand side of (4.49) converges. So, we get (3.8). This proves Corollary 3.6.
(I

4.2. Double Vilenkin-Fourier series. Almost all results of Section 3.2 can
be proved using similar techniques to the case of one variable. For the readers’
convenience, we shall give a complete proof of Theorem 3.5 and an outline of proofs
for the remaining results. First, we state the following lemma, which is a two-
dimensional analogue of Lemma 4.1 and easily follows from it.

Lemma 4.2. If G and H are bounded, then {k"172} e A*(G x H) for all
Bi,2€ Randy>1

Proof of Theorem 3.5. Fix pu,v € NU{0}, (h1, h2) € (Gu\Gpuy1) X (H \Hy41),
and set

(4.50) g(z,y) = A1 f(x,y; 1, h2), (z,y) € Gx H.
Then for m,n € N we have
(4.51)
g(m,n) = / (@, 9)Xom (€)1, (y) dm (@, y) = (i (h1) = 1) (G (h2) = 1) f(m, n).
GxH

Since h1 € G, \ Gput1, in view of (4.12), for x € X,,4+1 \ X, we have
(4.52) x(h1) = eZ™k1/Putt for some 1 < k1 < Py
Similarly as he € H, \ H, 1, using (4.12) for H, for ¢ € Y, 41 \ Y, we have

(4.53) Y(hy) = *¥k2/a+1 for some 1 < kg < quq1.
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As in the case of one variable, let m; = [logp,+1/log2] and ms = [logg,+1/log2].
Now, using the notations of the proof of Theorem 3.1 for groups G and H, in view
of (4.51), (4.15), (4.17) and (4.18), for 1 < I; < my, i = 1,2 we have

(454) > >

mEDf,l nebe

Z Z ql q|g(m,n)|q

mEDG[ neD!, X (B2, h1) = 19| (t1, h2) — 1]
ol v,y
by, k|9 t1, ko |4

Z Z 27q‘5111u‘ 271 Smu‘ |g(m,n)|?

meD§, neDH, Pp+1 Qv+1
Qq/22q/2 1

<22 “age M)t =54 > 2

mEDu,ll nEDu, Iy meDul neDV i

Using (4.14) for G and H, and (4.54) for p,v € NU {0} we have

1) (X3 ) = (£ 5 ¥ |f<m,n>|q)1/q

meDZ neDH l1=11>=1 mEDﬁ"J1 neDl{fIQ

(5L Y % wonr)”

l1=112=1 mEDG nEDf’l2

(XY Y % |g<m,n>|Q)1/q

=11ly=1 G H
l1=112 meD, I neD; I

N

S Y o)

meDZ neDH

Therefore, for 1 < p < 2, by virtue of the Hausdorfl-Young inequality (see, e.g. [2],
equation (4.28)) and (4.50), (4.55) becomes

P> 'f(m’”)'q>1/q<%(iim(m,nnq)w

meDSG neDH

1 ) 1/p
<3( [ ttwnran)
1 1/p
(4.56) =3 (/ |A1 1 f (2, y; ha, ho)|P dm(J%y))
GxH
(4.57) < %w(p)(ﬁu, v)
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for all p,v € NU{0}. As in the case of one variable, applying Holder’s inequality
with exponents in (4.22), it follows from (2.29), (3.15) and (4.57) that

(458) Z Z amn|fA(m7n)|r

meDG neDH

(2 X timor) (S 5w

)(perrT)/p
meDG neDH meDG neD[

1 r —r *
< ? (w(p) (f7 s V)) H(munV) /un—l,u—l

for all p,v € NU{0}. Summing (4.58) over u,v € N U {0} yields

SNl ) =33 ST ST anal fm )l

m=1n=1 pn=0rv=0 mEfo neDH

< 27"k Z Z(munV)ir/qAZ—l,u—l (w(p) (fv H, V))Tv

pn=0r=0
which is (3.16) to be proved. This completes the proof of Theorem 3.5. (]

Substituting am, = 1 and @, = m®*n®? in Theorem 3.5 and proceeding as in the
proofs of Corollaries 3.3 and 3.4, respectively, we can write proofs of Corollaries 3.7
and 3.8. Also, the way we have proved Theorem 3.2 using Theorem 3.1 allows us to
prove Theorem 3.6 using Theorem 3.5.

Proof of Theorem 3.7. Since Flg(f,Gx H), Flg(f(-,0),G) and Flg(f(0,-), H)
are finite, in view of Remark 2.1, f is bounded. Therefore, as f is measurable on
G x H, it follows that f € L?(G x H). So, proceeding as in Theorem 3.5, for
(hi,h2) € (G \ Guy1) X (Hy \ Hyq1), p,v > 0, we have (4.56) with p = ¢ = 2, that

is, we have

aso) (X % |f<m,n>|2)1/2<

meDZ neDH

1/2
(/ |A1,1f($ay;h17h2)|2dm(a:,y)) ,
GxH

N~

So, for 1 < p’ < 0o we have

aoo) (X % |f<m,n>|2>p'<ﬁ(/€ A dnge.) )

meDSG neDH

’
P

Now, proceeding as in the proof of Theorem 3.3, starting from (4.60) instead of (4.37),
we can complete the proof of Theorem 3.7. O
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Proof of Theorem 3.8. Suppose f is measurable on G x H, f € BF,(G x H),
f(-,0) € BF4(G), f(0,-) € BFs(H) for some 0 < s < 2, and {a,,} satisfies (3.23).
As Vi(f,G x H) < Fls(f,G x H) < o0, in view of Remark 2.1, it follows that f
is bounded. Since f is measurable on G x H, it follows that f € L?(G x H). So,
proceeding as in the proof of Theorem 3.7, we get (4.59). Now, proceeding as in the
proof of Theorem 3.4, starting from (4.59) instead of (4.20) with p = ¢ = 2, we can
complete the proof of this theorem. O

Proof of Corollary 3.9. We shall put a,,, = 1 in Theorem 3.8. Since G and H
are bounded, setting 8 = 0 in Lemma 4.2, we see that {am,} € A% (G x H) for every
~v = 1. In particular, {a,} satisfies (3.23) for 0 < r < 2. Also, by our assumption,
f €BF,(G x H), f(-,0) € BF4(G), and f(0,-) € BF,(H) for 0 < s < 2. Therefore,
by Theorem 3.8, we have (3.25) with a;,, = 1. This means we have

(461) >N |f(mn)|" <27R(FL(f,G x H))"™/?

m=1n=1

XZZ mHnV f s V))(2 S)T/QA* —1,v—1»

pn=0r=0

where k is from (2.29) corresponding to v = 2/(2 — r). Now, proceeding as in the
proof of Corollary 3.5, starting with (4.61) instead of (4.44), we can complete the
proof of this corollary. O

Proof of Corollary 3.10. Suppose f € Lip (o, 8;G x HYNBF (G x H), f(-,0) €
BF(G), f(0,-) € BF,(H) for some o, 8 > 0,0 < s < 2, G and H are bounded, ¢; <
1a(2—s), and 82 < £8(2 — s). Then, in view of Lemma 4.2, {m®n%} € 22(G x H)
for all v > 1. So, we can put @, = m°n% and r = 1 in Theorem 3.8 to get (3.25)

with @nm = mo'n% and r = 1, that is,

(4.62) Z Zm‘” n®|f(m,n)| <27 K(Fl(f,G x H))*/?

m=1n=1
0o o0

X Z Z(WHHV)_l(W(f7M, V))(2 9)/2"4; 1,v—1»
pn=0r=0
where the constant k is from (2.29) corresponding to v = 2. Now, proceeding as in
the proof of Corollary 3.6, starting from (4.62) instead of (4.47), we can complete
the proof of Corollary 3.10. O

The proof of Theorem 3.9 is similar to the proof of [13], Theorem 6. However, we
note that in the statement as well as in the proof of [13], Theorem 6, the authors
have identified G with [0, 1).
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Proof of Theorem 3.9. Since f € (A, ¥)Fl,(G x H), it is bounded and hence,
being measurable, it follows that f € L?*(G x H). Proceeding as in the proof of
Theorem 3.7, we get (4.59), that is, we have

Z Z |f(m,n)? < i/c H|A171f(a?,y;hl,h2)|2dm(x,y)-

meDS neDH

Now writing 2 as in (4.38) and applying the integral form of Holder’s inequality with
the exponents p’ and ¢’ yields
(4.63)

~ ]_ / / /
> D fmn)P <y /G H|A1,1f<x,y;h1,h2>|ﬁ/p+<<H>q O dm(x, y)
X

meDS neDH L
1 /P
1 18sasehi )l ante)
GxH

1/q'
X (/ |Av1f (2, y; b, he)|(27A4HA) dm(m,y))
GxH

1 1/p’
<1( [ dusah o) ntey)
GxH
X

(@W(@=BHO) (1, 1. 1)) (10N C=8)d'+8),

Therefore

won (5 omnr) < ([ mse bl )

meDG neDH

x (w(@=PHB) (f 1y )P C=BHA/d)

=— (/ |A11f(z,y; by ho)|P dm(a, y))
4r GxH
x (w((Q_ﬁ)q/Jfﬁ)(f,u, V))2p/—ﬁ.

Now multiplying the above inequality by ()\lejﬂ)’l and, after that, summing the

resulting inequalities over 1 = 0,1,...,m, —1and j =0,1,...,n, — 1, we get

N> Z|f<m,n>|2>' 3D (= Z|f(m,n)|2>p/

meDG neDH =0 j=0 meDG neDH

1 1
< N a7 A ) 7h 7h ﬁd 9 )
Z: Z Aiy19j41 4P </G><H| 11f (@ yi b, ho)l” dm(z, y)
X (w ((2-B)d'+8) (f 1, ,/))21)’7/3
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my,— 1n,—1

:4 (((2 ﬁ)q+6)(fu,/ 2p’ BZ Z)\

=0 7=0 z+1w]+1

DI (A1 f (s, ho)|P di(a, y)

k=0 =0 (Zéic,,l,JrGu)X(ZéfﬁHu)

—1n,—1 —1n,—1
1 v v
< —(w 2ﬁq+ﬂ)(fuy2p -B 1
v ; > Saim kZO 2
< (05e(f, (25 + Gy x (211, + H,)))’ dm(z,y)
(28 FCGLIX(z8 ,+Hy,)
]. /
— = (,(2=B)d+B) 2p"—B
= (f.0)
my—1n,—1mu—1n,—
(osc(f, (= qku"'GH) (z8,+H, )P
X
></ 1dm(x,y)
(28 FCGLIX(z8 ,+Hy)
1 _ ,_
S D) (f 1) P
—1n,—1 1n,—
XZ Z(Z Z OSCf, qk/L+G) (qlu+H)))> 1
k=0 1=0 \ i=0 j=0 A 19541 Mty
1 mw—lnufl
S (W((2iﬂ)q +ﬂ)(fvﬂa V))Qp - Z Z Va,w,8(f, 1, V))B
Zmyny k=0 1=0
1 my—1n,—1
((2—B)a'+8) 2p' -8 ﬂ
< 4p/munu (W (fv“a V)) (VA w8 vaa Z Z 1
1 , ,
— = (@B +B) 2p" =B B
= Ty (w (s, 0)) =P Vw6 1, v))  mums,
1 _ ’ o
< F(w(@ PP (f, 11,0))%P P (Vo 5(f, G x H))P,
whence we obtain the inequality
(4.65)

< Z Z |f(m’n)|2>;ﬂ < (w((Qfﬂ)q +ﬁ)(ij, l/[i)jjlqli(vj\’qlﬁ(f,c; X H))ﬂ’

mEDE neDH

v

which implies that

v

e P - 1/
S S lfmm < (U *m(f,uva):ﬂqjiwA,w,ﬂ(f,GxH))ﬁ) |

mEDE neDH
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Now for 0 < r < 2, as 1 = 2r + (2 — ), in view of (2.29), (4.65), and Holder’s
inequality, we have
(4.66)

Z Z amn|f(m,n)|T

meDG neDH

([ T ae) (S % venr)”

meDG neDH meDG neDH
r/2
< w(mym, )17/ R amn( >y |f(m,n)|2>
meDG neDH | meDS neDH

(w((2 B)d’ +,6) (f, 1, v) )Zp ﬁVA\I/ﬁ(f G x H))r/(Qp)
A, Y,

< k(myuny)~ T/QA# 1,u— 1(

Summing (4.66) over u,v € N U {0}, we get

(467) _
33wl = 23 S Y aalfon )l
m=1n=1 u=0v=0meD§ neDH
< 35 nmm)
pn=0rv=0
x ((W((2 DA (f, )P PVr (S, G x H)>r/(2p)
A, Vo,
This completes the proof. O
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