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Abstract. Let K = Q(α) be a pure number field generated by a complex root α of a

monic irreducible polynomial F (x) = x2
r·3k·7s

−m ∈ Z[x], where r, k, s are three positive
natural integers. The purpose of this paper is to study the monogenity of K. Our results
are illustrated by some examples.
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1. Introduction

Let K be a number field generated by a complex root α of a monic irreducible

polynomial F (x) ∈ Z[x] of degree n and ZK its ring of integers which is a free Z-

module of rank n = [K : Q]. If ZK has a power integral basis (1, θ, . . . , θ
n−1) for

some θ ∈ ZK ; ZK = Z[θ], then the field K is said to be monogenic. Otherwise, K

is called not monogenic. Recall that for any θ ∈ ZK , the abelian quotient group

ZK/Z[θ] is finite. Its cardinal order is called the index of Z[θ], which we denote by

(ZK : Z[θ]). The index of the field K is

i(K) = gcd{(ZK : Z[θ]), θ ∈ ZK and K = Q(θ)}.

A rational prime integer p dividing i(K) is called a prime common index divisor

of K. If ZK has a power integral basis, then i(K) = 1. Thus, if there is a prime

common index divisor of K, then K is not monogenic. The problem of studying

the monogenity of number fields is called the problem of Hasse (see [11], [19]). It
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is one of the most important problems in algebraic number theory. This problem is

the subject of many studies and is of interest to several researchers. Let us recall

some previous works regarding this problem. In [13], Gaál and Remete calculated

the elements of index 1 in pure quartic number fields Q( 4
√
m) for 1 < m < 107 and

m ≡ 2, 3 (mod 4). In [12], Gaál and Győry described an algorithm to solve index

form equations in quintic number fields and they computed all generators of power

integral bases in some totally real quintic fields with the Galois group S5. In [4],

Bilu, Gaál and Győry studied the monogenity of some totally real sextic number

fields with the Galois group S6. In [2], Ahmad, Nakahara and Husnine proved that

if m ≡ 2, 3 (mod 4) and m 6= ±1 (mod 9), then the pure sextic number field Q( 6
√
m)

is monogenic.

On the other hand, if m ≡ 1 (mod 4) and m 6≡ ±1 (mod 9), then it is not mono-

genic (see [1]). Also, Hameed and Nakahara proved that if m ≡ 1 (mod 4), then

the octic number field Q( 8
√
m) is not monogenic, but if m ≡ 2, 3 (mod 4), then it is

monogenic (see [18]). In [14], Gaál and Remete obtained, by applying the explicit

form of the index equation, new deep results on monogenity of number fields Q( n
√
m),

where 3 6 n 6 9 and m is a square-free rational integer. They also showed in [15]

that if m ≡ 2 or 3 (mod 4) is a square-free rational integer, then the octic number

field K = Q(i, 4
√
m) is not monogenic. Also in [23], Pethő and Pohst studied indices

in multiquadratic number fields.

The aim of this paper is to study the monogenity of a pure number field K gen-

erated by a complex root α of a monic irreducible polynomial F (x) = x2
r ·3k·7s −m

with m 6= ±1 being a rational integer. Recall that in [7], [10], El Fadil et al. studied

the cases r = 0 and s = 0, respectively. Also in [8], El Fadil, Ben Yakkou and Didi

studied the special case r = k = s = 1. We also note that we based our method on

Newton polygon techniques applied on prime ideal factorization.

2. Main results

Let K be a pure number field generated by a complex root α of a monic irreducible

polynomial F (x) = x2
r ·3k·7s −m ∈ Z[x], where m 6= ±1 is a rational integer, and r, k

and s are three positive natural integers. The following theorem gives necessary and

sufficient conditions for ZK = Z[α].

Theorem 2.1. The ring Z[α] is the ring of integers of K if and only if m is

square-free, m 6≡ 1 (mod 4), m 6≡ ±1 (mod 9) and m 6∈ {±1,±18,±19} (mod 49).

In this case, K is monogenic and α generates a power integral of ZK .
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R em a r k 2.2. Note that significant Gassert’s result (see [16], Theorem 1.1)

yields only one way and cannot guarantee the equivalence. However, Theorem 2.1

above gives the wanted equivalence in the context of pure number fields of degrees

2r · 3k · 7s. The reader can also see Corollary 1.3 of [20]. In this paper, we prove the
above theorem since its proof is useful for the proof of Theorem 2.3.

According to Theorem 2.1, if m is not square-free, m ≡ 1 (mod 4), m ≡ ±1

(mod 9) or m 6∈ {±1,±18,±19} (mod 49), then α does not generate a power in-

tegral basis of ZK . Henceforth, Theorem 2.1 cannot decide on the monogenity

of K. The following theorem gives a partial answer. It produces infinite families of

non-monogenic pure number fields defined by x2
r ·3k·7s −m, i.e., ZK has no power

integral basis.

Theorem 2.3. Under the above hypothesis, if one of the conditions

(1) m ≡ 1 (mod 4),

(2) (a) m ≡ 1 (mod 9),

(b) r > 2 and m ≡ −1 (mod 9),

(c) r = 1 and m ≡ −1 (mod 81),

(3) (a) m ≡ 1 (mod 49),

(b) r = 1, s > 7 and m ≡ −1 (mod 78),

(c) r > 2, s > 3 and m ≡ −1 (mod 74)

holds, then K is not monogenic.

As a consequence of the two previous theorems, the following result gives an

important characterization of the monogenity of some special pure number fields of

degrees 2r · 3k · 7s.

Corollary 2.4. Let K be a pure number field generated by a complex root of a

monic irreducible polynomial x2
r ·3k·7s −mt, where m 6= ±1 is a square-free rational

integer and t a positive integer which is coprime to 42. Then the following hold.

(1) If m 6≡ 1 (mod 4), m 6≡ ±1 (mod 9) and m 6∈ {±1,±18,±19} (mod 49),

then K is monogenic.

(2) If m ≡ 1 (mod 4), then K is not monogenic.

(3) If (a) m ≡ 1 (mod 9),

(b) r > 2 and m ≡ −1 (mod 9),

(c) r = 1 and m ≡ −1 (mod 81)

then K is not monogenic.

(4) If (a) m ≡ 1 (mod 49),

(b) r = 1, s > 7 and m ≡ −1 (mod 78),

(c) r > 2, s > 3 and m ≡ −1 (mod 74)

then K is not monogenic.
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3. Preliminaries

To prove our results, we based our method on prime ideal factorization. Let p

be a rational prime integer. In 1878, Dedekind gave the explicit factorization of the

principal ideal pZK when p does not divide the index (ZK : Z[θ]) for some θ ∈ ZK

(see [6] and [21], Theorem 4.33). He also gave a criterion known as Dedekind’s cri-

terion to test the divisibility of the index (ZK : Z[θ]) by p (see [5], Theorem 6.14,

[6] and [21]). When p divides i(K), then Dedekind’s theorem cannot give the prime

ideal factorization of pZK . In 1928, Ore developed an algorithm to factorize pZK .

His method is based on Newton polygon techniques. The papers [9], [17] and [22]

give a detailed survey on the theory and applications of Newton polygon techniques,

including prime ideal factorization in number fields. Now, let us recall some fun-

damental notions on Newton polygon techniques. Let νp be the discrete valuation

of Qp(x) defined on Zp[x] by

νp

( r
∑

i=0

aix
i

)

= min{νp(ai) : 0 6 i 6 r}.

Let ϕ(x) ∈ Z[x] be a monic polynomial whose reduction modulo p is irreducible. By

successive Euclidean divisions, any monic irreducible polynomial F (x) ∈ Z[x] admits

a unique ϕ-adic development

F (x) = a0(x) + a1(x)ϕ(x) + . . .+ an(x)ϕ(x)
n

with deg(ai(x)) < deg(ϕ(x)). For every 0 6 i 6 n, let ui = νp(ai(x)). The ϕ-Newton

polygon of F (x) is the lower boundary convex envelope of the set of points

{(i, ui) : 0 6 i 6 n, ai(x) 6= 0}

in the Euclidean plane, which we denote by Nϕ(F ). The polygon Nϕ(F ) is the union

of different adjacent sides S1, S2, . . . , Sg with increasing slopes λ1 < λ2 < . . . < λg.

We write Nϕ(F ) = S1 + S2 + . . . + Sg. The polygon determined by the sides of

negative slopes of Nϕ(F ) is called the ϕ-principal Newton polygon of F (x) and is

denoted by N+
ϕ (F ). Recall that the length of N+

ϕ (F ) is l(N+
ϕ (F )) = νϕ(F (x)), the

highest power of ϕ(x) dividing F (x) modulo p. Let Fϕ be the finite residue field

Z[x]/(p, ϕ(x)) ≃ Fp[x]/(ϕ(x)). We attach to any abscissa 0 6 i 6 l(N+
ϕ (F )), the

residue coefficient

ci =







0 if (i, ui) lies strictly above N
+
ϕ (F ),

ai(x)

pui
(mod (p, ϕ(x))) if (i, ui) lies on N

+
ϕ (F ).
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Let S be one of the sides of N+
ϕ (F ) and λ = −h/e be its slope, where e and h are

two positive coprime integers. The length of S, denoted l(S), is the length of its

projection to the horizontal axis. The degree of S is d = d(S) = l(S)/e; it is equal

to the number of segments into which the integral lattices divide S. More precisely,

if (s, us) is the initial point of S, then the points with integer coordinates lying in S

are exactly

(s, us), (s+ e, us − h), . . . , (s+ de, us − dh).

We attach to S the residual polynomial defined by

Rλ(F )(y) = cs + cs+ey + . . .+ cs+(d−1)ey
d−1 + cs+dey

d ∈ Fϕ[y].

The ϕ-index of F (x), denoted indϕ(F ), is deg(ϕ) times the number of points with

natural integer coordinates that lie below or on the polygon N+
ϕ (F ), strictly above

the horizontal axis and strictly beyond the vertical axis (see Figure 1). We say

that the polynomial F (x) is ϕ-regular with respect to p if for each side S of N+
ϕ (F )

of slope λ, its associated residual polynomial Rλ(F )(y) is separable in Fϕ[y]. The

polynomial F (x) is said to be p-regular if F (x) is ϕi-regular for every 1 6 i 6 t,

where F (x) =
t
∏

i=1

ϕi(x)
li
is the factorization of F (x) into a product of powers of

distinct monic irreducible polynomials in Fp[x]. For every i = 1, . . . , t, let N+
ϕi
(F ) =

Si1 + . . . + Siri and for every j = 1, . . . , ri, let Rλij
(F )(y) =

sij
∏

s=1
ψ
nijs

ijs (y) be the

factorization of Rλij
(F )(y) in Fϕi

[y].

Now, we state the theorem of Ore, which plays a significant role in the proof of

our results (see [9], Theorem 1.7 and Theorem 1.9; [17] and [22]).

Theorem 3.1 (Ore’s theorem). Under the above notations, we have

(1)

νp((ZK : Z[α])) >

t
∑

i=1

indϕi
(F ).

The equality holds if F (x) is p-regular.

(2) If F (x) is p-regular, then

pZK =

t
∏

i=1

ri
∏

j=1

sij
∏

s=1

p
eij
ijs,

where eij is the ramification index of the side Sij and fijs = deg(ϕi)×deg(ψijs)

is the residue degree of pijs over p.
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Corollary 3.2. Under the hypothesis of the above theorem, if for every i =

1, . . . , t, li = 1 or N+
ϕi
(F ) = Si has a single side of height 1, then p does not divide

(ZK : Z[α]).

E x am p l e 3.3. Consider the monic irreducible polynomial F (x) = x6 +

153x + 17, which factors in F3[x] into F (x) = (ϕ1(x)ϕ2(x))
3
, where ϕ1(x) = x − 1

and ϕ2(x) = x+ 1. The ϕ1-development of F (x) is

f(x) = 171 + 159ϕ1(x) + 15ϕ1(x)
2 + 20ϕ1(x)

3 + 15ϕ1(x)
4 + 6ϕ1(x)

5 + ϕ1(x)
6,

and the ϕ2(x)-adic development of F (x) is

F (x) = −135 + 129ϕ2(x) + 15ϕ2(x)
2 − 20ϕ2(x)

3 + 15ϕ2(x)
4 − 6ϕ2(x)

5 + ϕ2(x)
6.

It follows that N+
ϕi
(F ) = Si1 + Si2 with respect to ν3 has two sides with d(Si1) =

d(Si2) = 1 (see Figure 1). Thus, the residual polynomials Rλit
(F )(y) attached to

the sides of N+
ϕi
(F ) are irreducible in Fϕi

[y] ≃ F3[y] as they are of degree 1 for every

i = 1, 2 and t = 1, 2. Thus F (x) is ϕi-regular for i = 1, 2, hence it is 3-regular. By

Theorem 3.1,

ν3((ZK : Z[α])) = indϕ1
(F ) + indϕ2

(F ) = 1 + 1 = 2

and

3ZK = p111p
2
121p211p

2
221

with the residue degree f(pij1/3) = 1 for every i = 1, 2 and j = 1, 2.

1 2 3

1

2

N
+
ϕ1
(F )

1 2 3

1

2

3

N
+
ϕ2
(F )

Figure 1. N+ϕi
(F ), i = 1, 2.

In order to prove theorem of the product, Guàrdia, Montes and Nart introduced

in [17] the notion of ϕ-admissible development. In this paper we use this technique in

order to treat some special cases when the ϕ-adic development of a given polynomial

F (x) is not obvious. Let

(3.1) F (x) =

n
∑

j=0

Aj(x)ϕ(x)
j , Aj(x) ∈ Zp[x]
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be a ϕ-development of F (x), not necessarily the ϕ-adic one. Take ωj = νp(Aj(x))

for all 0 6 j 6 n. Let N be the principal Newton polygon of the set of points

{(j, ωj) : 0 6 j 6 n, ωj 6= ∞}. To any 0 6 j 6 n, we attach a residual coefficient

c′j =







0 if (j, ωj) lies strictly above N,

Aj(x)

pωj
(mod (p, ϕ(x))) if (j, ωj) lies on N.

Moreover, for any side S of N with slope λ, we define the residual polynomial as-

sociated to S and denoted R′
λ(F )(y) (similar to the residual polynomial Rλ(F )(y)

defined from the ϕ-adic development). We say that a ϕ-development (3.1) of F (x)

is admissible if c′j 6= 0 for each abscissa j of a vertex of N . Note that c′j 6= 0 if and

only if ϕ(x) does not divide (Aj(x)/pωj ). For more details, see [17]. The following

lemma shows an important relationship between the ϕ-adic development and any

ϕ-admissible development of a given polynomial F (x).

Lemma 3.4 ([17], Lemma 1.12). If a ϕ-development of F (x) is admissible, then

N+
ϕ (F ) = N and c′j = cj . In particular, for any segment S of N with slope λ we

have R′
λ(F )(y) = Rλ(F )(y) (up to the multiplication by a nonzero element of Fϕ).

4. Proofs

In order to prove our theorems, we need the following lemma which gives the

p-adic valuation of the binomial coefficient
(

pr

j

)

. For the proof, refer to [3].

Lemma 4.1. Let p be a rational prime integer and r a positive integer. Then

νp

((

pr

j

))

= r − νp(j)

for any integer j = 1, . . . , pr − 1.

P r o o f of Theorem 2.1. Let D(α) be the discriminant of the algebraic integer α

and DK the field discriminant of K. Since F (x) is the minimal polynomial of α

over Q, by [21], Propositions 2.9 and 2.13, one has

D(α) = D(1, α, . . . , α2r ·3k·7s−1) = (−1)2
r ·3k·7s(2r ·3k·7s−1)/2NK/Q(F

′(α))(4.1)

= ±NK/Q(2
r · 3k · 7s · α2r ·3k·7s−1)

= ±(2r · 3k · 7s)2
r ·3k·7s ·NK/Q(α)

2r ·3k·7s−1

= ±(2r · 3k · 7s)2
r ·3k·7s ·m2r·3k·7s−1 = (ZK : Z[α])2 ·DK .
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Thus, Z[α] is integrally closed if and only if p does not divide (ZK : Z[α]) for every

rational prime p dividing 2 · 3 · 7 · m. Let p be a rational prime dividing m, then
F (x) ≡ ϕ2r ·3k·7s (mod p), where ϕ = x. The ϕ-principal Newton polygon of F (x)

with respect to νp, N
+
ϕ (F ) = S has a single side with slope λ = −νp(m)/(2r · 3k · 7s);

it is the side joining the points (0, νp(m)) and (2r ·3k ·7s, 0). If νp(m) > 2 (this means

that m is not square-free), then by using Theorem 3.1, we have

νp(ZK : Z[α]) > indϕ(F ) =
(2r · 3k · 7s − 1)(νp(m)− 1) + gcd(2r · 3k · 7s, νp(m))

2

Consequently, p2 divides the index (ZK : Z[α]) and α does not generate a power

integral basis of ZK . If νp(m) = 1 for every prime divisor ofm (i.e., m is square-free),

then N+
ϕ (F ) = S has a single side of height 1 with slope λ = −1/(2r · 3k · 7s). Thus,

the residual polynomial Rλ(F )(y) is irreducible over Fϕ ≃ Fp as it is of degree 1. By

Theorem 3.1, we get νp((ZK : Z[α])) = indϕ(F ) = 0, that is to say, p does not divide

(ZK : Z[α]). Now, we deal with the cases p ∈ {2, 3, 7} when p does not divide m.
Set 2r · 3k · 7s = a · pu, where a = 2r · 3k · 7s/pu and p does not divide a. Since p
does not divide a · m, the polynomial xa −m is separable in Fp[x]. Fix a monic

irreducible factor ϕ(x) of F (x) in Fp[x]. Then ϕ(x) is a monic irreducible factor of

the polynomial xa −m in Fp[x]. Moreover, for a suitable lifting ϕ(x) of ϕ(x), there

exist two polynomials U(x) and T (x) ∈ Z[x] such that xa −m = ϕ(x)U(x) + pT (x),

where ϕ(x) does not divide U(x)T (x). Set ψ(x) = pT (x) +m and write

F (x) = x2
r ·3k·7s −m = (xa)p

u −m = (ϕ(x)U(x) + ψ(x))p
u −m

= (ϕ(x)U(x))p
u

+

pr−1
∑

j=1

(

pu

j

)

ψ(x)p
u−jU(x)jϕ(x)j + ψ(x)p

u −m.

By the binomial expansion and Lemma 4.1, we see that

ψ(x)p
u

= pu+1H(x) +mpu

,

where

H(x) = mpu−1T (x) +
1

pu+1

pu−2
∑

j=0

(

pu

j

)

mj(pT (x))p
u−j .

It follows that

F (x) = (ϕ(x)U(x))p
u

+

pu−1
∑

j=1

(

pu

j

)

ψ(x)p
u−jU(x)jϕ(x)j(4.2)

+ pu+1H(x) +mpu −m.
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Let V (x) and R(x) be the quotient and the remainder upon the Euclidean division

of H(x) by ϕ(x), respectively. Then, we have

F (x) =

pu

∑

j=2

(

pu

j

)

ψ(x)p
u−jU(x)jϕ(x)j(4.3)

+

((

pu

1

)

ψ(x)p
u−1U(x) + pu+1V (x)

)

ϕ(x) + pu+1R(x) +mpu −m.

Thus F (x) =
pr
∑

j=0

Aj(x)ϕ(x)
j , where























A0(x) = pu+1R(x) +mpu −m,

A1(x) =

(

pu

1

)

ψ(x)p
u−1U(x) + pu+1V (x),

Aj(x) =

(

pu

j

)

ψ(x)p
u−jU(x)j for every 2 6 j 6 pu.

Let ν = νp(m
pu − m). Note that as remarked in [3], if a rational prime integer p

does not divide a nonzero rational integer m, then for every positive integer k, ν =

νp(m
pu − m) = νp(m

pu−1 − 1) = νp(m
p−1 − 1). Let ωj = νp(Aj(x)) for every

j = 0, 2, . . . , pu. Using Lemma 4.1, we see that ω0 = νp(p
u+1R(x) +mpu − m) >

min{ν, u + 1}. Note that ϕ(x) does not divide (A0(x)/pω0) (because deg(R(x)) <

deg(ϕ(x))). We also have ω1 = u and (A1(x)/pω1) = ψ(x)pu−1 · U(x). It follows

that ϕ(x) does not divide (A1(x)/pω1). Moreover, for every j = 2, 3, . . . , pu, ωj =

u − νp(j) and (Aj(x)/pωj ) =
((

pu

j

)

/pu−νp(j)
)

· ψ(x)pu−1 · U(x). So, ϕ(x) does not

divide (Aj(x)/pωj ) for every j = 0, 1, . . . , pr. Thus, the ϕ-development (4.3) of F (x)

is admissible. By Lemma 3.4, N+
ϕ (F ) is the Newton polygon joining the points

{(0, ω0)} ∪ {(pj, k − j) : 0 6 j 6 r} in the Euclidean plane. If ν = 1, then N+
ϕ (F ) is

the Newton polygon joining the points (0, 1) and (pu, 0). In this case, by Theorem 3.1,

we have

νp((ZK : Z[α])) =

t
∑

i=0

indϕi
(F ) = 0,

where ϕi(x), i = 1, . . . , t, are the monic irreducible factors of F (x) in Fp[x]. Other-

wise, if ν > 2, we see that the point (1, 1) with natural integer coordinates that

lie below or on the polygon N+
ϕ (F ), strictly above the horizontal axis and strictly

beyond the vertical axis. By Theorem 3.1, we see that

νp((ZK : Z[α])) >

t
∑

i=0

indϕi
(F ) > 1× t > 1.

This completes the proof. �
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Recall that the field index of K is

i(K) = gcd{(ZK : Z[θ]), θ ∈ ZK generates K}.

A rational prime p dividing i(K) is called a prime common index divisor of K. If ZK

has a power integral basis, then i(K) = 1. Thus a field possessing a prime common

index divisor cannot be monogenic.

For the proof of Theorem 2.3, we use the following lemma, which gives a sufficient

condition for a rational prime integer p to be a prime common index divisor ofK; it is

a consequence of a theorem of Dedekind (see [21], Theorems 4.33 and 4.34, and [6]).

Lemma 4.2. Let p be a rational prime integer and K a number field. For every

positive integer f , let Lp(f) be the number of distinct prime ideals of ZK lying above p

with residue degree f and Np(f) be the number of monic irreducible polynomials of

Fp[x] of degree f . If Lp(f) > Np(f), then p is a common index divisor of K.

R em a r k 4.3. Note that the condition i(K) = 1 is not sufficient for the mono-

genity of K. The pure cubic number field K = Q( 3
√
175) is a simple example of the

case i(K) = 1, but K is not monogenic as its index form equation equals 5x3 − 7y3

and never assumes the values ±1.

P r o o f of Theorem 2.3. In all cases, we show that K is not monogenic by

showing that i(K) is divisible by an adequate rational prime integer. Since p does

not divide m, according to the equation (4.1) and the definition of i(K), the rational

prime candidates to divide i(K) are 2, 3 and 7.

(1) Ifm ≡ 1 (mod 4), then F (x) = (x3k·7s − 1)
2r

= ((x− 1)(x2 + x+ 1)U(x))
2r ∈

F2[x], where U(x) =
3k−1·7s−1

∑

j=0

(x3)3
k−1·5s−j . Set ϕ1(x) = x−1 and ϕ2(x) = x2+x+1.

Note that (x3k·7s − 1) is separable in F2[x] (because 2 does not divide 3
k · 7s). It

follows that ϕi(x) does not divide U(x) in F2[x] for i = 1, 2. Write

F (x) = x2
r ·3k·7s −m = (x3

k·7s − 1 + 1)2
r −m = (ϕ1(x)ϕ2(x)U(x) + 1)2

r −m(4.4)

= (ϕ1(x)ϕ2(x)U(x))2
r

+

2r−1
∑

j=1

(

2r

j

)

(U(x)ϕ1(x)ϕ2(x))
j + 1−m.

Let ν = ν2(1−m), then ν > 2. Since ϕi(x) does not divide U(x) in F2[x] for i = 1, 2,

the ϕi-development (4.4) of F (x) is admissible for i = 1, 2. By Lemmas 3.4 and 4.1,

we see that for i = 1, 2, the principal Newton polygon N+
ϕi
(F ) is the lower convex

hull of the points (0, ν), (1, r), (2, r − 1), . . . and (2r, 0). Note also that U(y) = 1

(mod (2, ϕ2(x))). That is U(y) = 1 in the residual field Fϕ2
[y].
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Assume that m ≡ 5 (mod 8), then ν = 2. In this case, N+
ϕi
(F ) = Si1 has one

side of degree 2 with the slope λi1 = −1/2r−1 and ramification index ei1 = 2r−1 for

i = 1, 2. More precisely, N+
ϕi
(F ) = Si1 is the lower convex hull of the points (0, 2),

(2r−1, 1) and (2r, 0) (see Figure 2).

2
r−1 2

r

1

2
S

Figure 2. N+ϕi
(F ), i = 1, 2, when m ≡ 5 (mod 8).

In this case the attached residual polynomials are Rλ11
(F )(y) = 1 + y + y2 ∈

Fϕ1
[y] ≃ F2[y] and

Rλ21
(F )(y) = c0 + cey + c2ey

2(4.5)

= 1 + (U(x)ϕ1(x))
2r−1

y + (ϕ1(x)U(x))2
r

y2 ∈ Fϕ2
[y].

It follows that if r is odd, then

Rλ21
(F )(y) = 1 + (x+ 1)y + xy2 = (y + 1)(xy + 1)

and, if r is even, then

Rλ21
(F )(y) = 1 + xy + (x+ 1)y2 = (y + 1)((1 + x)y + 1).

So, Rλ21
(F )(y) is separable in Fϕ2

[y]. Then, F (x) is ϕi-regular for i = 1, 2. Applying

Theorem 3.1, one gets

2ZK = p
2r−1

111 p
2r−1

211 p
2r−1

212 a,

where a is a nonzero ideal of ZK provided by the monic irreducible factors of U(x)

modulo 2 and pi1k is a prime ideal of ZK of residue degree f(pi1k/2) = 2 for i = 1, 2

and k = 1, 2. Thus, there are at least three prime ideals of residue degree 2 each,

lying above 2 in ZK . As there is only one monic irreducible polynomial of degree 2

in F2[x], namely x
2 + x+1, by Lemma 4.2, 2 divides i(K). So, K is not monogenic.

Assume now that m ≡ 9 (mod 16), then ν = 3. We discuss two cases: r = 1 and

r > 2. If r = 1, then N+
ϕi
(F ) = Si1 + Si2 has two sides of degree 1 each, joining the

points (0, 3), (1, 1) and (2, 0) for i = 1, 2. Thus, the residual polynomial Rλik
(F )(y)

is irreducible in Fϕi
[y] for every i = 1, 2 and k = 1, 2. Applying Theorem 3.1, one has

2ZK = p111p121p211p221a,
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where a is a nonzero ideal of ZK provided by the monic irreducible factors of U(x)

modulo 2 and pikj are prime ideals of ZK with residue degrees

f(p111/2) = f(p121/2) = 1 and f(p211/2) = f(p221/2) = 2.

Thus, there are two prime ideals of ZK of residue degree 2 each lying above 2.

By Lemma 4.2, 2 divides i(K). Consequently, K is not monogenic. Assume now

that r > 2. In this case, N+
ϕi
(F ) = Si1 + Si2 has two sides with respective degrees

d(Si1) = 2 and d(Si2) = 1 joining the points (0, 3), (2r−1, 1) and (2r, 0) (see Figure 3).

2
r−2

2
r−1 2

r

1

2

3
Si1

Si2

Figure 3. N+ϕi
(F ), i = 1, 2, when r > 2 and m ≡ 9 (mod 16).

In this case, we have Rλ11
(F )(y) = 1+y+y2 which is irreducible in Fϕ1

[y] ≃ F2[y].

We also have that Rλ22
(F )(y) = 1 + y which is irreducible in Fϕ2

[y]. Applying

Theorem 3.1, we see that

2ZK = p
2r−2

111 p
2r−1

221 a,

where a is a nonzero ideal of ZK provided by the segments S12 and S21 and the

monic irreducible factors of U(x) modulo 2, and p111 and p221 are two prime ideals

of ZK of residue degree 2 each. So, there are two prime ideals of ZK lying above 2

of residue degree 2 each. As there is only one monic irreducible polynomial in F2[x],

by Lemma 4.2, 2 divides i(K). Hence, K is not monogenic. Assume now that m ≡ 1

(mod 16), then ν > 4. If r = 1, by applying Theorem 3.1, we see that

2ZK = p111p121p211p221a,

where a is a nonzero ideal of ZK and pikj are prime ideals of ZK with residue degrees

f(p111/2) = f(p121/2) = 1 and f(p211/2) = f(p221/2) = 2.

By Lemma 4.2, 2 divides i(K). If r = 2, we obtain that

2ZK = p111p121p
2
131q111q121q

2
131a,

where a is a nonzero ideal and p1k1 is a prime ideal of ZK with residue de-

gree f(p1k1/2) = 2 for k = 1, 2, 3 and q1k1 is a prime ideal of ZK with residue
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degree f(q1k1/2) = 1 for k = 1, 2, 3. Then, 2 divides i(K). Assume now that r > 3.

In this case, we have that

N+
ϕi
(F ) = Si1 + . . .+ Si,t−1 + Sit

has t sides with t > 3. The last two sides have degree 1 each. More precisely, the

part Si,t−1 + Sit is the lower convex hull of the points (2
r−2, 2), (2r−1, 1) and (2r, 0)

(see Figure 4).

2
r−2

2
r−1 2

r

1

2

3

4

Sit−1

Sit

Figure 4. N+ϕi
(F ), i = 1, 2, when r > 3, and m ≡ 1 (mod 16).

It follows that the residual polynomials R2,t−1(F )(y) and R2,t(F )(y) are irre-

ducible in Fϕ2
[y] as they are of degree 1 each. Applying Theorem 3.1, one has

2ZK = p
2r−2

2,t−1p
2r−1

2,t a,

where a is a nonzero ideal of ZK provided by the other segments of N
+
ϕ2
(F ), the

segments of N+
ϕ1
(F ) and the monic irreducible factors of U(x) modulo 2, and pt−1

and pt are two prime ideals of ZK of residue degree 2 each. So, the factor ϕ2(x)

of F (x) modulo 2 provides at least two prime ideals of residue degree 2 each, lying

above 2 in ZK . By Lemma 4.2, 2 divides i(K). Hence, K is not monogenic.

(2) Ifm ≡ 1 (mod 9), then F (x) = (x2r ·7s − 1)
3k

= ((x − 1)(x+ 1)V (x))
3k

, where

V (x) =
2r−1·7s−1

∑

j=0

(x2)2
r−1·5s−j . Set ϕ1(x) = x− 1 and ϕ2(x) = x+ 1. Note also that

(x2r ·7s − 1) is separable in F3[x] (because 3 does not divide 2
r · 7s). It follows that

ϕi(x) does not divide V (x) in F3[x] for i = 1, 2. Write

F (x) = x2
r ·3k·7s −m = (ϕ1(x)ϕ2(x)V (x) + 1)3

k −m(4.6)

= (ϕ1(x)ϕ2(x)V (x))3
k

+

3k−1
∑

j=1

(

3k

j

)

(V (x)ϕ1(x)ϕ2(x))
j + 1−m.

Let ω = ν3(1 − m), then ω > 2 (because m ≡ 1 (mod 9)). Since ϕi(x) does not

divide V (x) in F3[x] for i = 1, 2, the above ϕi-development of F (x) is admissible for

i = 1, 2. By Lemmas 4.1 and 3.4,

N+
ϕi
(F ) = Si1 + . . .+ Sit
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has t sides of degree 1 each with t > 2. More precisely, N+
ϕi
(F ) is the lower convex

hull of the points (0, ω), (1, k), (3, k− 1), . . . , (3k−1, 1) and (3k, 0). Thus Rλik
(F )(y)

are separable over Fϕi
as they are of degree 1. By Theorem 3.1, the monic irreducible

factors ϕ1(x) and ϕ2(x) provide at least four prime ideals of ZK of residue degree 1

each lying above 3. As there are only three monic irreducible polynomials of degree 1

in F3[x], namely, x, x−1 and x−2, by Lemma 4.2, 3 divides i(K). Consequently,K is

not monogenic. Assume now that r > 2 and m ≡ −1 (mod 9). In this case,

F (x) = ((x2 + x− 1)(x2 − x− 1)W (x))
3k

in F3[x],

where W (x) =
2r−2·7s−1

∑

j=1

(−1)j(x4)j . Let ϕ1(x) = x2 + x− 1, ϕ2(x) = x2 − x− 1 and

µ = ν3(−1−m). Write

F (x) = (ϕ1(x)ϕ2(x)W (x) − 1)3
k −m(4.7)

= (ϕ1(x)ϕ2(x)W (x))3
k

+
3k−1
∑

j=1

(−1)j
(

3k

j

)

(ϕ1(x)ϕ2(x)W (x))j − 1−m.

Since ϕi(x) does not divide W (x) (because 3 does not divide 2r · 7s), the above ϕi-

development (4.7) is admissible for i = 1, 2. Note also that µ > 2 (because m ≡ −1

(mod 9)). By Lemmas 4.1 and 3.4,

N+
ϕi
(F ) = Si1 + . . .+ Sit

has t sides of degree 1 each with t > 2. More precisely, N+
ϕi
(F ) is the lower convex

hull of the points (0, µ), (1, k), (3, k− 1), . . . , (3k−1, 1) and (3k, 0). Thus Rλik
(F )(y)

are separable over Fϕi
as they are of degree 1 for every i = 1, 2 and k = 1, . . . , t.

By Theorem 3.1, the monic factor ϕi(x) provides at least two prime ideals of residue

degree 2 each for i = 1, 2. As there are only three monic irreducible polynomials in

F3[x] of degree 2, namely, x
2 +1, x2 +x− 1 and x2 −x− 1, by Lemma 4.2, 3 divides

i(K). Hence, K is not monogenic. Similarly, if r = 1 and m ≡ −1 (mod 81), we

see that the monic irreducible factor x2 + 1 of F (x) modulo 3 provides at least four

prime ideals of residue degree 1 each, lying above 3 in ZK . It follows that 3 divides

i(K). So, K cannot be monogenic.

(3) Since 7 does not divide m, F (x) = (x2r ·3k −m)
7s

in F7[x]. Let ϕi(x) be a

monic irreducible factor of F (x) (mod 7) (this means that ϕi(x) is a monic irreducible

factor of x2
r ·3k −m (mod 7)). Let ψi(x), Ui(x), Vi(x), and Ri(x) be as in the proof

of Theorem 2.1, where we determined the ϕ-principal Newton polygon of F (x) in

the cases p = 7, and p does not divide m. Let ω0 = ν7(m
7s −m) = ν7(m

6 − 1) and
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ωi0 = ν7(7
s+1Ri(x) +mps −m) > min{s+1, ω0}. Then, N+

ϕi
(F ) is the lower convex

hull of the points {(0, ωi0)} ∪ {(7j , s− j) : 0 6 j 6 s} in the Euclidean plane.

(a) Assume now that m ≡ 1 (mod 49); ω0 > 2, then F (x) =
( 6
∏

i=1

ϕi(x)M(x)
)

7s

in F7[x], where ϕi(x) = x+ i. It follows that N+
ϕi
(F ) = Si1 + . . .+ Sit has t sides of

degree 1 each, with t > 2 for every i = 1, . . . , 6. By Theorem 3.1, every factor ϕi(x)

of F (x) provides at least two prime ideals of residue degree 1 each. Hence, there are

at least 12 prime ideals of residue degree 1 each, lying above 7. There are only seven

monic irreducible polynomials of degree 1 in F7[x], namely x, x + 1, x + 2, x + 3,

x+ 4, x+ 5 and x+ 6. By Lemma 4.2, 7 divides i(K). Consequently, K cannot be

monogenic.

(b) Suppose that r = 1, s > 7 and m ≡ −1 (mod 78) . In this case, F (x) =

(ϕ1(x)ϕ2(x)ϕ3(x)A(x))
7s

in F7[x], where ϕ1(x) = x2 + 1, ϕ1(x) = x2 + 2, ϕ3(x) =

x2+4 and A(x) ∈ Z[x] such that ϕi(x) does not divide A(x) for i = 1, 2, 3. According

to the above description of ϕi-Newton polygons, we see that

N+
ϕi
(F ) = Si1 + Si2 + . . .+ Sit

has t sides of degree 1 each with t > 8. Thus, Rλik
(F )(y) is irreducible over Fϕi

as

it is of degree 1 for every i = 1, 2, 3 and k = 1, 2, . . . , t. By Theorem 3.1, we see that

7ZK =

3
∏

i=1

t
∏

j=1

p
eit
it a,

where eit is the ramification index of the segment Sit, a is a nonzero ideal

of ZK and pit is a prime ideal of ZK of residue degree f(pit/7) = deg(ϕi) ×
deg(Rλit

(F )(y)) = 2 × 1 = 2. So, there are at least 24 prime ideals of residue

degree 2 of ZK lying above 7. Recall also that the number of monic irreducible

polynomials of degree g in Fp[x] is

Np(m) =
1

g

∑

d|g

µ(d)pg/d,

where µ is the Möbius function. It follows that for p = 7 and g = 2, N7(2) = 21. As

there are only 21 monic irreducible polynomials in F7[x], by Lemma 4.2, 7 divides

i(K). So, K is not monogenic.

(c) If r > 2, s > 3, and m ≡ −1 (mod 74), then F (x) =
( 6
∏

i=1

ϕi(x)H(x)
)

7s

in F7[x], where ϕ1 = x2 + x + 4, ϕ2(x) = x2 + 2x + 2, ϕ3(x) = x2 + 3x + 1,

ϕ4(x) = x2 + 4x + 1, ϕ5(x) = x2 + 5x + 2, ϕ6(x) = x2 + 6x + 4, and ϕi(x) does
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not divide H(x) for every i = 1, . . . , 6, and we have also ωi0 > 4. It follows that

N+
ϕi
(F ) = Si1+ . . .+Sit has t sides of degree 1 each, with t > 4 for every i = 1, . . . , 6.

By Theorem 3.1, every factor ϕi(x) of F (x) provides at least four prime ideals of

residue degree 2 each. Hence, there are at least 24 prime ideals of residue degree 2

each of ZK lying above 7. Since there are only 21 monic irreducible polynomials of

degree 2 in F7[x], by Lemma 4.2, 7 divides i(K). So, K is not monogenic. �

P r o o f of Theorem 2.4. Since gcd(t, 42) = 1, let (x, y) be the positive solution

of the Diophantine equation tx − 2r · 3k · 7sy = 1 with 1 6 y < 2r · 3k · 7s and
let η = αx/my. Then η2

r ·3k·7s = m. Thus η is a root of the polynomial G(x) =

x2
r ·3k·7s − m. Since m is square-free, G(x) is irreducible over Q. As η ∈ K and

[K : Q] = 2r · 3k · 7s = deg(G(x)), K is generated by η, a root of G(x). The proof is

therefore a direct application of Theorems 2.1 and 2.3. �

E x am p l e 4.4. Let F (x) ∈ Z[x] be a monic irreducible polynomial and K the

number field defined by a complex root of F (x).

(1) Let F (x) = x504 − 22; m = 22. Since m is square-free, m ≡ 2 (mod 4), m ≡
4 (mod 9) and m ≡ 22 (mod 49), by Theorem 2.1, K is monogenic and α

generates a power integral basis of ZK .

(2) Let F (x) = x84−82; m = 82. Since m ≡ 1 (mod 9), by Theorem 2.3, K cannot

be monogenic.

(3) Let F (x) = x1764−66353; m = 66 and t = 353. By Corollary 2.4,K is monogenic

and η = 1
66α

5 generates a power integral basis of ZK .
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