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Abstract. We investigate the existence of infinitely many periodic solutions for the p(t)-
Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series
of new super-p+ growth and asymptotic-p+ growth conditions. Using the minimax meth-
ods in critical point theory, some multiplicity theorems are established, which unify and
generalize some known results in the literature. Meanwhile, we also present an example to
illustrate our main results are new even in the case p(t) ≡ p = 2.
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1. Introduction and main results

Consider the p(t)-Laplacian systems

(1.1) −(|u′(t)|p(t)−2u′(t))′ = ∇F (t, u(t)) a.e. t ∈ R,

where F (t, x) and p(t) satisfy the following conditions:

(H0) F : [0, T ]× R
N → R is measurable and T -periodic (T > 0) in its first variable

for all x ∈ R
N, continuously differentiable in x for a.e. t ∈ [0, T ], and there exist

a ∈ C(R+,R+), b ∈ L1(0, T ;R+) such that

|F (t, x)| + |∇F (t, x)| 6 a(|x|)b(t)

for all x ∈ R
N and a.e. t ∈ [0, T ];
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(P) p(t) ∈ C(0, T ;R+), p(t) = p(t+ T ) and

1 < p− := min
06t6T

p(t) 6 p+ := max
06t6T

p(t) < ∞.

The interest in the study of problem (1.1) is twofold. On one hand, we have

the physical motivations, since the p(t)-Laplacian systems can be applied to de-

scribe the physical phenomena with ‘pointwise different properties’ which first arose

from the nonlinear elasticity theory, see [31] and the references therein. On the other

hand, we have the purely mathematical interest in these types of problems, mainly re-

garding the existence of solutions as well as multiplicity results. For more general and

recent works on p(t)-Laplacian systems, we refer the reader to [4], [10], [22], [26], [28].

As we have seen, if p(t) ≡ p > 1, problem (1.1) reduces to the classical ordinary

p-Laplacian systems

(1.2) −(|u′(t)|p−2u′(t))′ = ∇F (t, u(t)) a.e. t ∈ R.

In last decades, considerable attention has been drawn to the existence and multi-

plicity of periodic solutions for problem (1.2) under various conditions, see [8], [9],

[11], [21], [25], [27], [30]. Specially, applying the generalized mountain pass theorem

and some techniques of analysis, Ma and Zhang in [11] have proved problem (1.2) has

infinitely many nontrivial periodic solutions. More precisely, for the super-p growth

case, they established the following theorem.

Theorem 1.1 ([11]). Assume that F satisfies (H0) and the following conditions:

(H1) F (t, x) > 0 for all (t, x) ∈ [0, T ]× R
N;

(H2) lim
|x|→0

F (t, x)/|x|p = 0 uniformly for a.e. t ∈ [0, T ];

(H3) lim inf
|x|→∞

F (t, x)/|x|p > 0 uniformly for a.e. t ∈ [0, T ];

(H4) lim sup
|x|→∞

F (t, x)/|x|r 6 M < ∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];

(H5) lim inf
|x|→∞

((∇F (t, x), x) − pF (t, x))/|x|µ > ̺ > 0 uniformly for some ̺ > 0 and

a.e. t ∈ [0, T ],

where r > p, µ > r−p and (·, ·), |·| are the Euclidean inner product and norm in RN,

respectively. Then problem (1.2) has a sequence of distinct periodic solutions with

period kjT satisfying kj ∈ N and kj → ∞ as j → ∞.

At the same time, for the asymptotic-p growth case, they obtained the following

results.

Theorem 1.2 ([11]). Assume that F satisfies (H0)–(H3) and the following con-

ditions:
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(H4′) lim sup
|x|→∞

F (t, x)/|x|p 6 M < ∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];

(H6) there exists γ ∈ L1(0, T ;R+) such that (∇F (t, x), x) − pF (t, x) > γ(t) for all

x ∈ R
N and a.e. t ∈ [0, T ];

(H7) lim
|x|→∞

((∇F (t, x), x) − pF (t, x)) = ∞ uniformly for a.e. t ∈ [0, T ].

Then problem (1.2) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

Theorem 1.3 ([11]). Assume that F satisfies (H0)–(H3), (H4′) and the following

conditions:

(H6′) there exists γ ∈ L1(0, T ;R+) such that (∇F (t, x), x) − pF (t, x) 6 γ(t) for all

x ∈ R
N and a.e. t ∈ [0, T ];

(H7′) lim
|x|→∞

((∇F (t, x), x) − pF (t, x)) = −∞ uniformly for a.e. t ∈ [0, T ].

Then problem (1.2) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

Motivated by the results of [6], [11], [19], [20], [23], [24], in the present paper,

making use of auxiliary functions, we are interested in extending Theorem 1.1 to

the p(t)-Laplacian systems (1.1) under more general hypotheses. In addition, we

should stress that the different methods in [11] are used to ensure the compact

conditions for the super-p growth situation and the asymptotic-p growth situation.

Here, we attempt to propose a unified approach when the potential function F (t, x)

exhibits either an asymptotic-p+ or a super-p+ behaviour for problem (1.1). Hence,

our results are new and improve recent results in the literature even in the case

p(t) ≡ p = 2.

Now, we are in a position to state our main results. To begin with, for the super-p+

growth case, we have:

Theorem 1.4. Suppose that conditions (H0), (P) hold and F satisfies the follow-

ing conditions:

(F1) F (t, x) > 0 for all (t, x) ∈ [0, T ]× R
N;

(F2) lim
|x|→0

F (t, x)/|x|p
+

= 0 uniformly for a.e. t ∈ [0, T ];

(F3) lim inf
|x|→∞

F (t, x)/|x|p
+

> 0 uniformly for a.e. t ∈ [0, T ];

(F4) there exists h ∈ C(R+,R+) such that

lim sup
|x|→∞

F (t, x)

h(|x|)
6 M < ∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];
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(F5) there exist M1 > 0, θ1 ∈ C(R+,R+) with lim
s→∞

h(s)/θ1(s)s
p−

= 0 and

θ1(s)/h(s) is non-increasing in s for all s ∈ R
+, where h(s) is defined in (F4),

such that

(∇F (t, x), x) − p+F (t, x) > θ1(|x|) ∀x ∈ R
N, |x| > M1 and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

R em a r k 1.5. When comparing Theorem 1.4 to Theorem 1.1, the following four

aspects must be pointed out:

(1) Condition (F1) is the same as (H1), conditions (F2) and (F3) can be regarded as

natural generalizations of (H2) and (H3) about p(t)-Laplacian systems, respectively.

(2) We can find that conditions (F4) and (F5) cover the cases of assumptions (H4)

and (H5) when (H1) (or (F1)) holds. We follow two steps to demonstrate this claim.

Step 1. We confirm that (H1) (or (F1)), (H4) and (H5) could imply µ 6 r. It

follows from (H4) that there exists d1 > 0 such that

(1.3) F (t, x) 6 M |x|r ∀x ∈ R
N, |x| > d1 and for a.e. t ∈ [0, T ].

By (H5), we can choose d2 > 0 such that

(1.4) (∇F (t, x), x) − pF (t, x) > ̺|x|µ ∀x ∈ R
N, |x| > d2 and for a.e. t ∈ [0, T ].

Let d3 := max{d1, d2}, taking account of (1.3), (1.4) and (H1) (or (F1)), we infer that

M |x|r > F (t, x) =

∫ 1

0

1

s
(∇F (t, sx), sx) ds+ F (t, 0) >

∫ 1

0

1

s
(̺|sx|µ + pF (t, sx)) ds

>
1

µ
̺|x|µ ∀x ∈ R

N, |x| > d3 and for a.e. t ∈ [0, T ],

which implies that µ 6 r.

Step 2. We claim that (H4) and (H5) are special cases of (F4) and (F5), respec-

tively, when (H1) (or (F1)) holds. We only need to take p(t) ≡ p > 1, h(s) = sr,

θ1(s) = ̺sµ and M1 large enough, where ̺ > 0, r > p, µ > r − p. In fact, we

can check that lim
s→∞

h(s)/θ1(s)s
p = lim

s→∞
sr−µ−p/̺ = 0 by µ > r − p. Furthermore,

θ1(s)/h(s) = ̺sµ−r is non-increasing in s for all s ∈ R
+ by Step 1. Therefore, h(s)

and θ1(s) satisfy all conditions of (F4) and (F5).

(3) There exist functions F (t, x) satisfying Theorem 1.4 and not fulfilling the result

of Theorem 1.1. The detailed example will be given in Section 5.

(4) Last but not the least, from the discussions of (1)–(3) we see that Theorem 1.4

significantly extends and improves Theorem 1.1.
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R em a r k 1.6. In [23], the first author and Zhang are concerned with the exis-

tence of periodic solutions for the following damped vibration problem

(1.5)

{
ü(t) + q(t)u̇ +∇F (t, u(t)) = 0 a.e. t ∈ [0, T ],

u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where q ∈ L1(0, T ;R),
∫ T

0
q(t) dt = 0. Theorem 1.1, the main result of [23], has

introduced the following new non-quadratic conditions:

(F4∗) lim sup
|x|→∞

eQ(t)F (t, x)/|x|r 6 M < ∞ uniformly for some M > 0 and a.e. t ∈

[0, T ], where Q(t) :=
∫ t

0
q(s) ds, r > 2;

(F5∗) there existM1 > 0, µ > r−2 and k1 ∈ C(R+,R+) with lim
s→∞

k1(s)s
µ+2−r = ∞,

lim
s→∞

k
r/µ
1 (s)s2 = ∞ and k1(s) is non-increasing in s for all s ∈ R

+ such that

eQ(t)((∇F (t, x), x) − 2F (t, x)) > k1(|x|)|x|
µ ∀x ∈ R

N, |x| > M1

and for a.e. t ∈ [0, T ].

From [23] we have known that (F4∗) and (F5∗) are more general than (H4) and (H5)

when (H1) (or (F1)) holds. Here, if q(t) ≡ 0 and µ 6 r, we emphasize that

these new non-quadratic conditions (F4∗) and (F5∗) are also special cases of as-

sumptions (F4) and (F5), respectively. Indeed, set p(t) ≡ p = 2, h(s) = sr,

θ1(s) = k1(s)s
µ. Using the properties of k1(s) and µ 6 r, a direct computa-

tion shows that lim
s→∞

h(s)/θ1(s)s
2 = lim

s→∞
1/k1(s)s

µ+2−r = 0; moreover, we have

g(s) := θ1(s)/h(s) = k1(s)s
µ−r is non-increasing in s for all s ∈ R

+ since g(s)/g(t) =

(k1(s)/k1(t))(s/t)
µ−r > 1 for all s 6 t by µ 6 r. Therefore, in some sense, Theo-

rem 1.4 also generalizes Theorem 1.1 with q(t) ≡ 0 of [23].

Theorem 1.7. Suppose that conditions (H0), (P) hold, F satisfies (F1)–(F3) and

the following condition:

(F6) there exist M2 > 0, τ > 1, θ2 ∈ C(R+,R+) with lim
s→∞

sp
∗

/θ
1/τ
2 (s) = 0 and

θ2(s)/s
p+τ is non-increasing in s for all s ∈ R

+, where p∗ := p+− p− such that

(∇F (t, x), x) − p+F (t, x) > θ2(|x|)
(F (t, x)

|x|p+

)τ
∀x ∈ R

N, |x| > M2

and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.
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R em a r k 1.8. We assert that (H1) (or (F1)), (H4) and (H5) could imply (F6)

with p(t) ≡ p > 1. As a matter of fact, in view of (H4) and (H5), for all x ∈ R
N

and M2 large enough we have

(∇F (t, x), x) − pF (t, x) > ̺|x|µ+p−r |x|
r

|x|p
>

̺

M
|x|µ+p−r F (t, x)

|x|p
.

Select p(t) ≡ p, τ = 1, θ2(s) = ̺sµ+p−r/M , noticing µ > r−p, then lim
s→∞

1/θ2(s) = 0

and θ2(s)/s
p = ̺sµ−r/M is non-increasing in s for all s ∈ R

+ by Remark 1.5 (2),

Step 1. So, (F6) holds. Therefore, Theorem 1.7 greatly unifies and generalizes

Theorem 1.1.

Theorem 1.9. Suppose that conditions (H0), (P) hold, F satisfies (F1)–(F3) and

the following condition:

(F7) there existM3 > 0, σ > p−/(p− − 1), θ3 ∈C(R+,R+) with lim
s→∞

sp
∗

/θ
1/σ
3 (s) = 0

and θ3(s)/s
(p+−1)σ is non-increasing in s for all s ∈ R

+, such that

(∇F (t, x), x) − p+F (t, x) > θ3(|x|)
( |∇F (t, x)|

|x|p+−1

)σ
∀x ∈ R

N, |x| > M3

and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

R em a r k 1.10. When p(t) ≡ p = 2, σ > 1, condition (F7) was originally due

to [24].

Next, turning our attention to the asymptotic-p+ growth case, from Theorem 1.4,

Theorem 1.7 and Theorem 1.9, we can easily get the following results.

Corollary 1.11. Suppose that conditions (H0), (P) hold, F satisfies (F1)–(F3)

and the following conditions:

(F4′) lim sup
|x|→∞

F (t, x)/|x|p
+

6 M < ∞ uniformly for some M > 0 and a.e. t ∈ [0, T ];

(F5′) there exist M1 > 0, θ1 ∈ C(R+,R+) with lim
s→∞

sp
∗

/θ1(s) = 0 and θ1(s)/s
p+

is

non-increasing in s for all s ∈ R
+ such that

(∇F (t, x), x) − p+F (t, x) > θ1(|x|) ∀x ∈ R
N, |x| > M1 and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.
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R em a r k 1.12. Corollary 1.11 seems like a new result. When p(t) ≡ p, in

contrast to Theorem 1.2, Corollary 1.11 removes the assumption (H6) completely

although it uses a few stronger condition (F5′) instead of (H7).

Corollary 1.13. Suppose that conditions (H0), (P) hold, F satisfies (F1)–(F3)

and (F4′) and the following condition:

(F5′′) there exist M1 > 0, θ1 ∈ C(R+,R+) with lim
s→∞

sp
∗

/θ1(s) = 0 and θ1(s)/s
p+

is

non-increasing in s for all s ∈ R
+ such that

(∇F (t, x), x) − p+F (t, x) 6 −θ1(|x|) ∀x ∈ R
N, |x| > M1 and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

Corollary 1.14. Suppose that conditions (H0), (P) hold, F satisfies (F1)–(F3)

and (F4′) and the following condition:

(F6′) there exist M2 > 0, τ > 1, θ2 ∈ C(R+,R+) with lim
s→∞

sp
∗

/θ
1/τ
2 (s) = 0 and

θ2(s)/s
p+τ is non-increasing in s for all s ∈ R

+ such that

(∇F (t, x), x) − p+F (t, x) > θ2(|x|) ∀x ∈ R
N, |x| > M2 and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

Corollary 1.15. Suppose that conditions (H0), (P) hold, F satisfies (F1)–(F3)

and (F4′) and the following condition:

(F6′′) there exist M2 > 0, τ > 1, θ2 ∈ C(R+,R+) with lim
s→∞

sp
∗

/θ
1/τ
2 (s) = 0 and

θ2(s)/s
p+τ is non-increasing in s for all s ∈ R

+ such that

(∇F (t, x), x) − p+F (t, x) 6 −θ2(|x|) ∀x ∈ R
N, |x| > M2 and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

Corollary 1.16. Suppose that conditions (H0), (P) hold, F satisfies (F1)–(F3)

and the following conditions:

(F4′′) lim sup
|x|→∞

|∇F (t, x)|/|x|p
+−1 6 M < ∞ uniformly for a.e. t ∈ [0, T ];
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(F7′) there exist M3 > 0, σ > p−/(p− − 1), θ3 ∈ C(R+,R+) with lim
s→∞

sp
∗

/

θ
1/σ
3 (s) = 0 and θ3(s)/s

(p+−1)σ is non-increasing in s for all s ∈ R
+ such that

(∇F (t, x), x) − p+F (t, x) > θ3(|x|) ∀x ∈ R
N, |x| > M3 and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

Corollary 1.17. Suppose that conditions (H0), (P) hold, F satisfies (F1), (F2)

and (F4′′) and the following conditions:

(F3′) lim inf
|x|→∞

(∇F (t, x), x)/|x|p
+

> 0 uniformly for a.e. t ∈ [0, T ];

(F7′′) there exist M3 > 0, σ > p−/(p− − 1), θ3 ∈ C(R+,R+) with lim
s→∞

sp
∗

/

θ
1/σ
3 (s) = 0 and θ3(s)/s

(p+−1)σ is non-increasing in s for all s ∈ R
+ such that

(∇F (t, x), x) − p+F (t, x) 6 −θ3(|x|) ∀x ∈ R
N, |x| > M3 and for a.e. t ∈ [0, T ].

Then problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞.

R em a r k 1.18. Without loss of generality, we may assume that function b in

assumption (H0) is T -periodic.

Finally, the rest of this paper is organized as follows. In Section 2, we set up the

functional analytic framework needed to study problem (1.1) from the variational

point of view. In Section 3, we find that all (C) sequences (see Definition 3.2 below) of

the energy functional associated with systems (1.1) are bounded (see Lemmas 3.3–3.5

below), then we prove all the compact conditions (C) (see Definition 3.2 below) hold.

In Section 4, we adopt the same ideas developed by Ma and Zhang in [11] to show

our main results by generalized mountain pass theorem in [12]. At last, in Section 5,

we give an example to illustrate our results are new even in the case p(t) ≡ p = 2.

2. Preliminaries

In this section, we first give some necessary background knowledge and proposi-

tions concerning the generalized Lebesgue-Sobolev spaces. We can refer the reader

to [3] for more information.

Let k be a positive integer and p(t) satisfy condition (P). Define

Lp(t)(0, kT ;RN) :=

{
u ∈ L1(0, kT ;RN) :

∫ kT

0

|u|p(t) dt < ∞

}

192



with the norm

|u|Lp(t) = |u|p(t) := inf

{
λ > 0:

∫ kT

0

∣∣∣u
λ

∣∣∣
p(t)

dt 6 1

}
.

Define

C∞
kT = C∞

kT (R;R
N) := {u ∈ C∞(R;RN) : u is kT -periodic}.

For u ∈ L1(0, kT ;RN), if there exists ν ∈ L1(0, kT ;RN) satisfying

∫ kT

0

νϕdt = −

∫ kT

0

uϕ′ dt ∀ϕ ∈ C∞
kT ,

then ν is called the kT -weak derivative of u and is denoted by u′. Define

W
1,p(t)
kT (0, kT ;RN) := {u ∈ Lp(t)(0, kT ;RN) : u′ ∈ Lp(t)(0, kT ;RN)}

with the norm

‖u‖
W

1,p(t)
kT

= ‖u‖ := |u|p(t) + |u′|p(t).

For u ∈ W
1,p(t)
kT (0, kT ;RN), let

u :=
1

kT

∫ kT

0

u(t) dt, ũ(t) = u(t)− u

and

W̃
1,p(t)
kT (0, kT ;RN) :=

{
u ∈ W

1,p(t)
kT (0, kT ;RN) :

∫ kT

0

u(t) dt = 0

}
,

then

W
1,p(t)
kT (0, kT ;RN) = W̃

1,p(t)
kT (0, kT ;RN)⊕ R

N.

For the sake of convenience, in the following we use Lp(t), W
1,p(t)
kT , W̃

1,p(t)
kT to

denote Lp(t)(0, kT ;RN), W
1,p(t)
kT (0, kT ;RN), W̃

1,p(t)
kT (0, kT ;RN), respectively.

Proposition 2.1 ([4]). For u ∈ Lp(t), one has

(1) |u|p(t) < 1 (= 1;> 1) ⇔
∫ kT

0 |u(t)|p(t) dt < 1 (= 1;> 1);

(2) |u|p(t) > 1 ⇒ |u|p
−

p(t) 6
∫ kT

0
|u(t)|p(t) dt 6 |u|p

+

p(t), |u|p(t) < 1 ⇒ |u|p
+

p(t) 6
∫ kT

0 |u(t)|p(t) dt 6 |u|p
−

p(t);

(3) |u|p(t) → 0 ⇔
∫ kT

0 |u(t)|p(t) dt → 0, |u|p(t) → ∞ ⇔
∫ kT

0 |u(t)|p(t) dt → ∞.

Proposition 2.2 ([4]). The space Lp(t) and W
1,p(t)
kT are separable and reflexive

Banach spaces when p− > 1.

Proposition 2.3 ([4]). There is a continuous embeddingW
1,p(t)
kT →֒ C(0, kT ;RN);

when p− > 1, it is a compact embedding.
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Proposition 2.4 ([4]). For every u ∈ W̃
1,p(t)
kT , there exists ck > 0 such that

‖u‖∞ 6 ck|u
′|p(t), where ‖u‖∞ := max

t∈[0,kT ]
|u(t)|.

Proposition 2.5 ([4]). Let u = u + ũ(t) ∈ W
1,p(t)
kT . Then the norm |ũ′|p(t) is an

equivalent norm on W̃
1,p(t)
kT .

Proposition 2.6 ([22]). Let Jk(u) :=
∫ kT

0 |u′(t)|p(t)/p(t) dt for u ∈ W
1,p(t)
kT . Then

〈J ′
k(u), v〉 =

∫ kT

0 (|u′(t)|p(t)−2u′(t), v′(t)) dt for all u, v ∈ W
1,p(t)
kT , and J ′

k is a mapping

of type (S+), i.e., if un ⇀ u and lim sup
n→∞

〈J ′
k(un)− J ′(u), un − u〉 6 0, then {un} has

a convergent subsequence in W
1,p(t)
kT .

By assumption (H0), the functional

(2.1) ϕk(u) :=

∫ kT

0

1

p(t)
|u′(t)|p(t) dt−

∫ kT

0

F (t, u(t)) dt

is continuously differentiable, and

(2.2) 〈ϕ′
k(u), v〉 =

∫ kT

0

|u′(t)|p(t)−2(u′(t), v′(t)) dt−

∫ kT

0

(∇F (t, u(t)), v(t)) dt

for all u, v ∈ W
1,p(t)
kT (see [22]).

We say that u ∈ W
1,p(t)
kT is a weak solution of problem (1.1) if it satisfies

〈ϕ′
k(u), v〉 = 0 for any v ∈ W

1,p(t)
kT .

Hence, the kT -solutions of problem (1.1) correspond to the critical points of the func-

tional ϕk. In the whole paper, we denote various positive constants as Ci, i = 1, 2, . . .

3. Compact conditions

Let us recall the following compact concepts, which can be found in [2], [12], [16].

Definition 3.1. Let E be a real Banach space. We say that {un} in E is a Palais-

Smale sequence ((PS) sequence) for ϕk if ϕk(un) is bounded and ϕ′
k(un) → 0 as

n → ∞. The functional ϕk ∈ C1(E,R) satisfies the Palais-Smale condition ((PS)

condition) if any Palais-Smale sequence contains a convergent subsequence.

Definition 3.2. LetE be a real Banach space. We say that {un} in E is a Cerami

sequence ((C) sequence) for ϕk if ϕk(un) is bounded and ϕ′
k(un)(1 + ‖un‖) → 0 as

n → ∞. The functional ϕk ∈ C1(E,R) satisfies the Cerami condition ((C) condition)

if any Cerami sequence contains a convergent subsequence.
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In this section, we observe that although the energy functional of problem (1.1)

may possess unbounded (PS) sequence, we can prove that all (C) sequences of this

functional are bounded. Concretely speaking, we have

Lemma 3.3. Assume that (H0), (P), (F1), (F3)–(F5) hold, then the functional ϕk

satisfies condition (C).

P r o o f. Let E := W
1,p(t)
kT . Suppose that {un} ⊂ W

1,p(t)
kT is a (C) sequence of ϕk,

then one has

(3.1) |ϕk(un)| 6 C1, (1 + ‖un‖)‖ϕ
′
k(un)‖E∗ 6 C1

for all n ∈ N, where E∗ is the dual space of E.

In the first place, by (F4), there exists M4 > 0 such that

F (t, x) 6 Mh(|x|)

for all |x| > M4 and a.e. t ∈ [0, T ], which together with assumption (H0) yields

(3.2) F (t, x) 6 Mh(|x|) + h1(t)

for all x ∈ R
N and a.e. t ∈ [0, kT ], where h1(t) := max

|x|6M4

a(|x|)b(t) > 0. It follows

from (2.1), (3.1) and (3.2) that

(3.3) C1 > ϕk(un) =

∫ kT

0

1

p(t)
|u′

n(t)|
p(t) dt−

∫ kT

0

F (t, un(t)) dt

>
1

p+

∫ kT

0

|u′
n(t)|

p(t) dt−M

∫ kT

0

h(|un|) dt−

∫ kT

0

h1(t) dt.

On the other hand, by (F5), one has

(3.4) (∇F (t, x), x) − p+F (t, x) > θ1(|x|)

for all |x| > M1 and a.e. t ∈ [0, T ]. Let Ω1n := {t ∈ [0, kT ] : |un(t)| > M1},

Ωc
1n := {t ∈ [0, kT ] : |un(t)| < M1} and h2(t) := (p+ +M1) max

|x|6M1

a(|x|)b(t) > 0. It

follows from (2.1), (2.2), (3.1) and (3.4) that

(3.5)

(p+ + 1)C1 > p+ϕk(un)− 〈ϕ′
k(un), un〉 >

∫ kT

0

((∇F (t, un), un)− p+F (t, un)) dt

>

∫

Ω1n

θ1(|un|) dt−

∫ kT

0

h2(t) dt

for all n ∈ N. Hence, we have

(3.6)

∫ kT

0

θ1(|un|) dt =

∫

Ω1n

θ1(|un|) dt+

∫

Ωc
1n

θ1(|un|) dt 6 C2 ∀n ∈ N.
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Next, from assumption (P) and Proposition 2.3, there exists d > 0 such that

(3.7) ‖u‖∞ 6 d‖u‖

for all u ∈ W
1,p(t)
kT . By virtue of (3.3), (3.6), (3.7), and noticing that h(s)/θ1(s) is

non-decreasing in s for all s ∈ R
+, we obtain that

(3.8)

C1 > ϕk(un) >
1

p+

∫ kT

0

|u′
n(t)|

p(t) dt−M

∫ kT

0

h(|un|)

θ1(|un|)
θ1(|un|) dt−

∫ kT

0

h1(t) dt

>
1

p+

∫ kT

0

|u′
n(t)|

p(t) dt−MC2
h(‖un‖∞)

θ1(‖un‖∞)
−

∫ kT

0

h1(t) dt

>
1

p+

∫ kT

0

|u′
n(t)|

p(t) dt−MC2
h(d‖un‖)

θ1(d‖un‖)
−

∫ kT

0

h1(t) dt.

Finally, we claim {un} is bounded, otherwise, going if necessary to a subsequence,

we assume that ‖un‖ → ∞ as n → ∞. Set vn := un/‖un‖ = un/‖un‖+ũn(t)/‖un‖ =

vn+ ṽn(t), then {vn} is bounded inW
1,p(t)
kT . Hence, there exists a subsequence, again

denoted by {vn}, such that

vn ⇀ v0 weakly in W
1,p(t)
kT ,(3.9)

vn → v0 strongly in C(0, kT ;RN).(3.10)

Then, by (3.10), one has

(3.11) vn =
1

kT

∫ kT

0

vn(t) dt →
1

kT

∫ kT

0

v0(t) dt = v0 as n → ∞.

Dividing both sides of (3.8) by ‖un‖
p−

, in light of the properties of θ1(s) and condi-

tion (P), we can find that

C1

‖un‖p−
>

1

p+

∫ kT

0

|u′
n(t)|

p(t)

‖un‖p
−

dt−MC2
h(d‖un‖)

θ1(d‖un‖)‖un‖p
−
−

∫ kT

0
h1(t) dt

‖un‖p
−

>
1

p+

∫ kT

0

|u′
n(t)|

p(t)

‖un‖p(t)
dt−MC2d

p− h(d‖un‖)

θ1(d‖un‖)dp−‖un‖p
−
−

∫ kT

0 h1(t) dt

‖un‖p
−

=
1

p+

∫ kT

0

|v′n(t)|
p(t) dt−MC2d

p− h(d‖un‖)

θ1(d‖un‖)dp−‖un‖p
−
−

∫ kT

0 h1(t) dt

‖un‖p
−

,

which implies that

(3.12)

∫ kT

0

|v′n(t)|
p(t) dt → 0 as n → ∞.
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Then, by Proposition 2.1 (3), one has |v′n(t)|p(t) → 0 as n → ∞, which together with

Proposition 2.4 and (3.10) yield

(3.13) vn → v0 = v0 as n → ∞.

Consequently, we get v0 ∈ R
N and v0 6= 0, which implies that

(3.14) |un(t)| → ∞ as n → ∞ uniformly for a.e. t ∈ [0, kT ].

So, from (F1), (F3), (3.14) and Fatou’s lemma, we get

(3.15) lim inf
n→∞

∫ kT

0 F (t, un(t)) dt

‖un‖p
+ >

∫ kT

0

lim inf
n→∞

F (t, un(t))

|un(t)|p
+ |vn(t)|

p+

dt

=

∫ kT

0

lim inf
|un(t)|→∞

F (t, un(t))

|un(t)|p
+ |v0(t)|

p+

dt > 0.

However, by (2.1), (3.1) and (3.12), we have

∫ kT

0
F (t, un(t)) dt

‖un‖p
+ =

∫ kT

0

1

p(t)

|u′
n(t)|

p(t)

‖un‖p
+ dt−

ϕk(un)

‖un‖p
+

6
1

p−

∫ kT

0

∣∣∣u
′
n(t)

‖un‖

∣∣∣
p(t)

dt−
ϕk(un)

‖un‖p
+

=
1

p−

∫ kT

0

|v′n(t)|
p(t) dt−

ϕk(un)

‖un‖p
+ ,

which means that

lim inf
n→∞

∫ kT

0
F (t, un) dt

‖un‖p
+ 6 0,

which contradicts (3.15). Thus, {un} is bounded in W
1,p(t)
kT .

By Proposition 2.2 and Proposition 2.3, {un} has a subsequence, again denoted

by {un}, such that

un ⇀ u weakly in W
1,p(t)
kT ,(3.16)

un → u strongly in C(0, kT ;RN).(3.17)

Now, we show that {un} has a subsequence convergent strongly to u in W
1,p(t)
kT .

From Proposition 2.6, it suffices to prove that lim sup
n→∞

〈J ′
k(un) − J ′

k(u), un − u〉 6 0.

It follows from (3.7) that

(3.18) |un(t)| 6 C3 ∀ t ∈ [0, kT ].

197



From (3.17), (3.18), (H0) and Remark 1.18, we get

(3.19)

∣∣∣∣
∫ kT

0

(∇F (t, un(t)), un(t)− u(t)) dt

∣∣∣∣ 6
∫ kT

0

|∇F (t, un(t))||un(t)− u(t)| dt

6 ‖un − u‖∞

∫ kT

0

a(|un(t)|)b(t) dt

6 C4‖un − u‖∞

∫ kT

0

b(t) dt.

Thus, from (3.17), we obtain

(3.20)

∣∣∣∣
∫ T

0

(∇F (t, un(t)), un(t)− u(t)) dt

∣∣∣∣ → 0 as n → ∞.

By (3.1) and (3.18), we also have

(3.21) 〈ϕ′
k(un), un − u〉 → 0 as n → ∞.

Then it follows from (3.20) and (3.21) that

(3.22)

〈J ′
k(un), un − u〉 =

∫ kT

0

(|u′
n(t)|

p(t)−2u′
n(t), u

′
n(t)− u′(t)) dt

= 〈ϕ′
k(un), un − u〉+

∫ kT

0

(∇F (t, un(t)), un(t)− u(t)) dt → 0

as n → ∞. Moreover, since J ′
k(u) ∈ (W

1,p(t)
kT )∗, by (3.16), one has

(3.23) 〈J ′
k(u), un − u〉 → 0 as n → ∞,

which combined with (3.22) implies that

lim
n→∞

〈J ′
k(un)− J ′

k(u), un − u〉 = 0.

Hence, from Proposition 2.6, {un} has a subsequence convergent strongly to u in

W
1,p(t)
kT . This concludes the proof of Lemma 3.3. �

Lemma 3.4. Assume that (H0), (P), (F1), (F3) and (F6) hold. Then the func-

tional ϕk satisfies condition (C).
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P r o o f. From the arguments of Lemma 3.3, we only need to prove that {un} is

bounded in W
1,p(t)
kT . It follows from assumptions (F6) and (H0) that

(3.24) (∇F (t, x), x) − p+F (t, x) > θ2(|x|)
(F (t, x)

|x|p+

)τ

for all |x| > M2 and a.e. t ∈ [0, kT ]. Let Ω2n := {t ∈ [0, kT ] : |un(t)| > M2}.

By (2.1), (2.2), (3.1), (3.7), (3.24), (F1) and the properties of θ2(s), we obtain

(3.25) (p+ + 1)C1 > p+ϕk(un)− 〈ϕ′
k(un), un〉

>

∫ kT

0

((∇F (t, un), un(t)) − p+F (t, un)) dt

>

∫

Ω2n

θ2(|un|)
(F (t, un)

|un|p
+

)τ
dt−

∫ kT

0

h3(t) dt

>

∫

Ω2n

θ2(‖un‖∞)
F τ (t, un)

‖un‖
p+τ
∞

dt−

∫ kT

0

h3(t) dt

>

∫

Ω2n

θ2(d‖un‖)
F τ (t, un)

dp+τ‖un‖p
+τ

dt−

∫ kT

0

h3(t) dt,

where h3(t) := (p+ +M2) max
|x|6M2

a(|x|)b(t) > 0. Hence, we see that

(3.26)

∫ kT

0

F τ (t, un(t)) dt 6
C5

θ2(d‖un‖)
‖un‖

p+τ + C6

for all n ∈ N. Furthermore, by (F1), (3.1), (3.26) and Hölder’s inequality, one derives

(3.27) C1 > ϕk(un) =

∫ kT

0

1

p(t)
|u′

n(t)|
p(t) dt−

∫ kT

0

F (t, un(t)) dt

>
1

p+

∫ kT

0

|u′
n(t)|

p(t) dt− C7

(∫ kT

0

F τ (t, un(t)) dt

)1/τ

>
1

p+

∫ kT

0

|u′
n(t)|

p(t) dt− C7

( C5

θ2(d‖un‖)
‖un‖

p+τ + C6

)1/τ

>
1

p+

∫ kT

0

|u′
n(t)|

p(t) dt−
C8

θ
1/τ
2 (d‖un‖)

‖un‖
p+

− C9 ∀n ∈ N.

Now, we claim {un} is bounded, otherwise, going if necessary to a subsequence,

we can assume that ‖un‖ → ∞ as n → ∞. With the same manner of Lemma 3.3,

dividing both sides of (3.27) by ‖un‖
p−

, using the properties of θ2(s), we conclude
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that |un(t)| → ∞ as n → ∞ uniformly for a.e. t ∈ [0, kT ]. From (F1), (F3) and

Fatou’s lemma, we get

(3.28) lim inf
n→∞

∫ kT

0
F (t, un) dt

‖un‖p
+ >

∫ kT

0

lim inf
|un|→∞

F (t, un)

|un|p
+ |v0|

p+

dt > 0.

On the other hand, noting that (3.1) and (3.12), we know that

lim inf
n→∞

∫ kT

0 F (t, un) dt

‖un‖p
+ 6 0,

which contradicts (3.28). Therefore, {un} is bounded inW
1,p(t)
kT , and then ϕk satisfies

condition (C). �

Lemma 3.5. Assume that (H0), (P), (F1), (F3) and (F7) hold. Then the func-

tional ϕk satisfies condition (C).

P r o o f. Let Ω3n := {t ∈ [0, kT ] : |un(t)| > M3}. It follows from (3.1), (3.7),

(H0), (F7) and the properties of θ3(s) that

(3.29) (p+ + 1)C1 > p+ϕk(un)− 〈ϕ′
k(un), un〉

>

∫ kT

0

((∇F (t, un), un)− p+F (t, un)) dt

>

∫

Ω3n

θ3(|un|)
|∇F (t, un)|

σ

|un|(p
+−1)σ

dt−

∫ kT

0

h4(t) dt

>

∫

Ω3n

θ3(d‖un‖)
|∇F (t, un)|

σ

d(p+−1)σ‖un‖(p
+−1)σ

dt−

∫ kT

0

h4(t) dt

for all n ∈ N, where h4(t) := (p+ +M3) max
|x|6M3

a(|x|)b(t) > 0. As a consequence, we

have

(3.30)

∫ kT

0

|∇F (t, un)|
σ dt 6

C10

θ3(d‖un‖)
‖un‖

(p+−1)σ + C11

for all n ∈ N. Let 1/σ+1/σ′ = 1, since σ > p−/(p− − 1), by simple computation, we

get p− > σ′. So, there exists continuous embedding Lp−

(0, kT ;R) →֒ Lσ′

(0, kT ;R),

where Lγ(0, kT ;R) is the usual Lγ space, γ = p−, σ′. What is more, it is not difficult

to see that there exists continuous embedding Lp(t) →֒ Lp−

(0, kT ;R), which together
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with (3.1), (3.30) and Hölder’s inequality yields that

(3.31)

C1 > 〈ϕ′
k(un), un〉 =

∫ kT

0

|u′
n|

p(t) dt−

∫ kT

0

(∇F (t, un), un) dt

>

∫ kT

0

|u′
n|

p(t) dt−

(∫ kT

0

|∇F (t, un)|
σ dt

)1/σ(∫ kT

0

|un|
σ′

dt

)1/σ′

>

∫ kT

0

|u′
n|

p(t) dt−
( C10

θ3(d‖un‖)
‖un‖

(p+−1)σ + C11

)1/σ
C12

(∫ kT

0

|un|
p−

dt

)1/p−

>

∫ kT

0

|u′
n|

p(t) dt−
( C10

θ3(d‖un‖)
‖un‖

(p+−1)σ + C11

)1/σ
C12|un|p(t)

>

∫ kT

0

|u′
n|

p(t) dt−
( C10

θ3(d‖un‖)
‖un‖

(p+−1)σ + C11

)1/σ
C12‖un‖

>

∫ kT

0

|u′
n|

p(t) dt−
C13

θ
1/σ
3 (d‖un‖)

‖un‖
p+

− C14‖un‖ ∀n ∈ N.

Finally, we claim {un} is bounded, otherwise, going if necessary to a subsequence,

we assume that ‖un‖ → ∞ as n → ∞. In the same way as in the proof of Lemma 3.3,

multiplying both sides of (3.31) by ‖un‖
−p−

, we can obtain that |un(t)| → ∞ as

n → ∞ uniformly for a.e. t ∈ [0, kT ], and then from (F1), (F3) and Fatou’s lemma,

we obtain that

(3.32) lim inf
n→∞

∫ T

0
F (t, un) dt

‖un‖p
+ > 0.

On the other hand, note that (3.1) and (3.12) imply that

lim inf
n→∞

∫ T

0 F (t, un) dt

‖un‖p
+ 6 0,

which contradicts (3.32). Thus, {un} is bounded in W
1,p(t)
kT . Using the same argu-

ments as in Lemma 3.3, we know that ϕk satisfies condition (C). �

4. Proofs of main results

In this section, we shall use the following generalized mountain pass theorem to

prove our results.

Theorem 4.1 ([16]). Let E be a real Banach space with E = V ⊕X , where V is

finite dimensional. Suppose ϕk ∈ C1(E,R) satisfies the (PS) condition, and
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(i) there exist ̺k, α > 0 such that ϕk|∂B̺k
∩X > α, whereB̺k

:= {u ∈ E : ‖u‖ < ̺k},

∂B̺k
denotes the boundary of B̺k

;

(ii) there exist ek ∈ ∂B1 ∩X and s0 > ̺k such that if Qk :≡ (Bs0 ∩ V )⊕ {sek : 0 6

s 6 s0}, then ϕ|∂Qk
6 0.

Then ϕ possesses a critical value c > α which can be characterized as

c := inf
h∈Γ

max
u∈Q

ϕk(h(u)),

where Γ := {h ∈ C(Qk, E) : h = id on ∂Qk}; here, id denotes the identity operator.

R em a r k 4.2. It is well known that Theorem 4.1 holds based on the deformation

lemma (see [12] or [16]). As shown in [1], the deformation lemma can be proved with

the weaker condition (C) replacing the usual (PS) condition, and it turns out that

the generalized mountain pass theorem holds true under condition (C).

Now we prove our main results. We only give the proofs of Theorem 1.4, The-

orem 1.7, Theorem 1.9, Corollary 1.11, Corollary 1.14, Corollary 1.16 and Corol-

lary 1.17. The other results can be proved similarly.

P r o o f of Theorem 1.4. Let X := W̃
1,p(t)
kT , V := R

N, recalling E = W
1,p(t)
kT , then

E = V ⊕X and dimV < ∞. From Lemma 3.3, we see that ϕk satisfies condition (C).

By virtue of Theorem 4.1 and Remark 4.2, we only need to verify the assertions:

(a) inf
u∈S

ϕk(u) > 0;

(b) sup
u∈Qk

ϕk(u) < ∞, sup
u∈∂Qk

ϕ(u) 6 0,

where S := W̃
1,p(t)
kT ∩ ∂B̺k

, Qk := {sek : 0 6 s 6 R1, ek(t) ∈ W̃
1,p(t)
kT } ⊕ {x ∈ R

N :

|x| 6 R2} and ̺k < R1. Firstly, by (F2) and (H0), we know that for any positive

constant ε1 < min{ck, 1/p
+kT cp

+

k }, there exists δ ∈ (0, ε1) such that

(4.1) F (t, x) 6 ε1|x|
p+

∀ |x| 6 δ and a.e. t ∈ [0, kT ].

Let ̺k ∈ (0, δ/ck) and by Proposition 2.5 set S = {u ∈ W̃
1,p(t)
kT : |u′|p(t) = ̺k} for all

u ∈ S, by Proposition 2.4, we get |u(t)| 6 ck|u
′|p(t) = ck̺k 6 δ. Since 0 < ̺k < 1,

then it follows from Proposition 2.1 (2), (4.1) and Proposition 2.4 that

ϕk(u) =

∫ kT

0

1

p(t)
|u′(t)|p(t) dt−

∫ kT

0

F (t, u(t)) dt

>
1

p+

∫ kT

0

|u′(t)|p(t) dt− ε1

∫ kT

0

|u(t)|p
+

dt

>
1

p+
|u′|p

+

p(t) − ε1kT c
p+

k |u′|p
+

p(t) =
( 1

p+
− ε1kT c

p+

k

)
̺p

+

k

= α > 0 ∀u ∈ S.

This establishes (a). Next, we check (b).
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Let f(t) := lim
|x|→∞

F (t, x)/|x|p
+

, E0 := {t ∈ [0, T ] : f(t) = 0}, then by (F3),

meas (E0) = 0 and f(t) > 0 on [0, T ] \ E0. Let Em := {t ∈ [0, T ] : f(t) > 1/m},

m ∈ N, then [0, T ] \ E0 =
∞⋃

m=1
Em, meas

( ∞⋃
m=1

Em

)
= T and lim

m→∞
meas (Em) = T .

Therefore, for any ε > 0, there exist a small number ε2 = ε2(ε) > 0 (which is

independent of k) and a subset Eε ⊂
∞⋃

m=1

Em ⊂ [0, T ] such that

T − ε 6 meas (Eε) 6 T and f(t) > 2ε2 on Eε.

Let Ek
ε :=

k−1⋃
j=0

(Eε + jT ), where Eε + jT := {t + jT : t ∈ Eε}, j = 0, 1, . . . , k − 1.

Then

kT − kε 6 meas (Ek
ε ) 6 kT,

hence,

(4.2) meas ([0, kT ] \ Ek
ε ) 6 kε.

Furthermore, by the periodicity of F (t, x) in t, we get

f(t) > 2ε2 on Ek
ε .

Again, by (F3) and (H0), there exists M5 = M5(ε) > 0 such that

F (t, x) > ε2|x|
p+

∀ |x| > M5 and t ∈ Ek
ε .

Therefore, for all x ∈ R
N and t ∈ Ek

ε we have

F (t, x) > ε2|x|
p+

− ε2M
p+

5 ,

which combining with (F1) implies that for all u ∈ W
1,p(t)
kT ,

(4.3)

∫ kT

0

F (t, u) dt >

∫

Ek
ε

F (t, u) dt > ε2

∫

Ek
ε

|u|p
+

dt− ε2M
p+

5 kT

= ε2

∫ kT

0

|u|p
+

dt− ε2M
p+

5 kT − ε2

∫

[0,kT ]\Ek
ε

|u|p
+

dt.

Choose ek := (sin(k−1ωt), 0, . . . , 0) ∈ W̃
1,p(t)
kT , where ω := 2π/T . Let W

1,p(t)

kT :=

R
N ⊕ span{ek}. Since dim(W

1,p(t)

T ) = n+ 1, one has

(4.4)

(∫ T

0

|u|p
+

dt

)1/p+

> C15

(∫ T

0

|u|2 dt

)1/2

∀u ∈ W
1,p(t)

T .
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Let |s|p̃ := max{|s|p
−

, |s|p
+

}, ωp̃∗

:= max{ωp−

, ωp+

}, A := (1/p−)ωp̃∗
∫ T

0
1×

|cosωt|p(t) dt. Bearing in mind that Qk = {sek : 0 6 s 6 R1} ⊕ {x ∈ R
N : |x| 6 R2}

with R1 > 1 > ̺k and R2 > 0 being specified below, observe that by (4.3), (4.4), (P)

and Hölder inequality, for x+ sek ∈ W̃
1,p(t)
kT , one has

(4.5) ϕk(x+ sek) =

∫ kT

0

1

p(t)
|se′k|

p(t) dt−

∫ kT

0

F (t, x+ sek) dt

6
1

p−
k−p−

ωp̃∗

|s|p̃
∫ kT

0

|cos k−1ωt|p(t) dt− ε2

∫ kT

0

|x+ sek|
p+

dt

+ ε2M
p+

5 kT + ε2

∫

[0,kT ]\Ek
ε

|x+ sek|
p+

dt

6
1

p−
k−p−+1ωp̃∗

|s|p̃
∫ T

0

|cosωt|p(t) dt+ ε2M
p+

5 kT

− ε2k

∫ T

0

|x+ se1|
p+

dt+ 2p
+

ε2

∫

[0,kT ]\Ek
ε

(|x|p
+

+ |s|p
+

) dt

6 Ak−p−+1|s|p̃ − ε2kC
p+

15

(∫ T

0

|x+ se1|
2 dt

)p+/2

+ ε2M
p+

5 kT + 2p
+

ε2kε(|x|
p+

+ |s|p
+

)

6 Ak−p−+1|s|p̃ − ε2kC
p+

15

(∫ T

0

(|x|2 + |s|2|e1|
2) dt

)p+/2

+ ε2M
p+

5 kT + 2p
+

ε2kε(R
p+

1 +Rp+

2 )

6 Ak−p−+1|s|p̃ − ε2kC16|x|
p+

− ε2kC16|s|
p+

+ ε2M
p+

5 kT

+ 2p
+

ε2kε(R
p+

1 +Rp+

2 ).

If k > (2A/ε2C16)
1/p−

, then we have

(4.6) k−1ϕk(x+ sek) 6 Ak−p−

|s|p̃ − ε2C16|s|
p+

+ ε2M
p+

5 T + 2p
+

ε2ε(R
p+

1 +Rp+

2 )

6
1

2
ε2C16|s|

p̃ − ε2C16|s|
p+

+ ε2M
p+

5 T + 2p
+

ε2ε(R
p+

1 +Rp+

2 )

and

(4.7) k−1ϕk(x+ sek) 6 Ak−p−

|s|p̃ − ε2C16|x|
p+

+ ε2M
p+

5 T + 2p
+

ε2ε(R
p+

1 +Rp+

2 )

6
1

2
ε2C16|s|

p̃ − ε2C16|x|
p+

+ ε2M
p+

5 T + 2p
+

ε2ε(R
p+

1 +Rp+

2 ).

Without loss of generality, we assume ε < C16/2
p++3 and M5 = M5(ε) >

(C16/4T )
1/p+

. Then

R := M5

( 4T

C16

)1/p+

> 1.
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Put R1 = R2 = R. Then for all x + R1ek ∈ ∂Qk, note |s|
p̃ = |s|p

+

for |s| > 1. It

follows from (4.6) that

1

ε2k
ϕk(x+R1ek) 6 −

1

2
C16R

p+

+Mp+

5 T + 2p
++1Rp+

ε 6 −
1

4
C16R

p+

+Mp+

5 T = 0,

and for all x+ sek ∈ ∂Qk with |x| = R2 it follows from (4.7) that

1

ε2k
ϕk(x+R1ek) 6

1

2
C16|s|

p̃ − C16|x|
p+

+Mp+

5 T + 2p
+

ε(Rp+

1 +Rp+

2 )

6 −
1

2
C16R

p+

+Mp+

5 T + 2p
++1εRp+

6 −
1

4
C16R

p+

+Mp+

5 T = 0.

It follows from (F1) that ϕk(x) = −
∫ kT

0
F (t, x) dt 6 0 for all x ∈ R

N. Hence, we get

ϕk(x+ sek) 6 0 ∀x+ sek ∈ ∂Qk,

which implies that (b) holds.

Furthermore, for all x+ sek ∈ Qk, by (F1) and (P), we have

ϕk(x+ sek) =

∫ kT

0

1

p(t)
|se′k|

p(t) dt−

∫ kT

0

F (t, x+ sek) dt

6
1

p−
k−p−

ωp̃∗

|s|p̃
∫ kT

0

|cos k−1ωt|p(t) dt

6 Ak−p−+1|s|p̃ 6 A|s|p̃ 6 Amax
{
M5

( 4T

C16

)1/p+

, 1
}p̃

.

Thus, for any positive integer k > (2A/ε2C16)
1/p−

, ϕk has at least one critical

point uk in W
1,p(t)
kT and

(4.8) ϕk(uk) 6 Amax
{
M5

( 4T

C16

)1/p+

, 1
}p̃

.

For k1 > (2A/(ε2C16))
1/p−

we obtain a k1T -periodic solution uk1 . We claim that

there exists a positive integer k2 > k1 such that ukk1 6= uk1 for all kk1 > k2. Other-

wise, ϕkk1 (ukk1) = kϕk1(uk1) → ∞ as k → ∞, which contradicts (4.8). Repeating

this process, we obtain a sequence {ukj
} of distinct nontrivial periodic solutions of

problem (1.1). This completes the proof of Theorem 1.4. �

P r o o f of Theorem 1.7. From Lemma 3.4, using the same arguments of Theo-

rem 1.4, we see that problem (1.1) has a sequence of distinct periodic solutions with

period kjT satisfying kj ∈ N and kj → ∞ as j → ∞. �

P r o o f of Theorem 1.9. Clearly, with the aid of Lemma 3.5 and the arguments of

Theorem 1.4, we can easily see that problem (1.1) has a sequence of distinct periodic

solutions with period kjT satisfying kj ∈ N and kj → ∞ as j → ∞. �

205



P r o o f of Corollary 1.11. Taking h(s) = sp
+

, by Theorem 1.4, we can obtain

that problem (1.1) has a sequence of distinct periodic solutions with period kjT

satisfying kj ∈ N and kj → ∞ as j → ∞ immediately. �

P r o o f of Corollary 1.14. From (F3) and (F4′) we conclude that F (t, x) is

positive and asymptotic-p+ for all |x| large enough and a.e. t ∈ [0, T ], thus, (F6)

is equivalent to (F6′). By Theorem 1.7, problem (1.1) has a sequence of distinct

periodic solutions with period kjT satisfying kj ∈ N and kj → ∞ as j → ∞. �

P r o o f of Corollary 1.16. Applying (F3), (F4′′) and (F7′), we have

(4.9) M >
|∇F (t, x)|

|x|p+−1
>

(∇F (t, x), x)

|x|p+ >
p+F (t, x)

|x|p+ > 0

for |x| large enough and a.e. t ∈ [0, T ]. From (4.9), we deduce that |∇F (t, x)| is pos-

itive and asymptotic-p+ for all |x| large enough and a.e. t ∈ [0, T ], which means (F7)

and (F7′) are equivalent. Then, by Theorem 1.9, problem (1.1) has a sequence of dis-

tinct periodic solutions with period kjT satisfying kj ∈ N and kj → ∞ as j → ∞. �

P r o o f of Corollary 1.17. By (F3′) and (F7′′), one has

F (t, x)

|x|p+ >
(∇F (t, x), x)

p+|x|p+ > 0

for |x| large enough and a.e. t ∈ [0, T ], which implies (F3) holds. Moreover, utilizing

(F3′) and (F4′′), we have

M >
|∇F (t, x)|

|x|p+−1
>

(∇F (t, x), x)

|x|p+ > 0.

Therefore, we know that |∇F (t, x)| is also positive and asymptotic-p+ for all |x| large

enough and a.e. t ∈ [0, T ]. From Corollary 1.16, we can deduce that problem (1.1)

has a sequence of distinct periodic solutions with period kjT satisfying kj ∈ N and

kj → ∞ as j → ∞. �

5. Example

In this section, we give an example to illustrate that our results are new even in

the case p(t) ≡ p = 2.

E x am p l e 5.1. Let

α(t) :=

{
sin(2π/T )t, t ∈ [0, 12T ],

0, t ∈ [ 12T, T ],
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and D(t) := 12− α(t)(4 ln(e + 4) + sin 4− ln2(e + 4)) > 0. Consider

F (t, x) =

{
|x|4, |x| 6 2,

α(t)(|x|2 ln(e + |x|2) + sin |x|2 − ln2(e + |x|2)) + |x|2 +D(t), |x| > 2.

It is easy to check that F (t, x) is superquadratic at infinity when t ∈ [0, 12T ] and

asymptotically quadratic at infinity when t ∈ [ 12T, T ]. Then, Theorem 1.2, The-

orem 1.3 and the conclusions of [5]–[7], [13]–[15], [17]–[20], [29], [32] cannot treat

this case. Furthermore, by simple computation, one has lim inf
|x|→∞

((∇F (t, x), x) −

2F (t, x))|x|−λ = 0 uniformly for a.e. t ∈ [0, 12T ] and all λ > 0, which implies that

F (t, x) does not satisfy the results of Theorem 1.1. However for all s > 0, select

h(s) = s2 ln(e + s2), θ1(s) = ln2(e + s2), a direct computation shows that F (t, x)

satisfies all conditions of Theorem 1.4 with p(t) ≡ p = 2. Hence, problem (1.1) with

p(t) ≡ p = 2 has a sequence of distinct periodic solutions with period kjT satisfying

kj ∈ N and kj → ∞ as j → ∞.
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