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Abstract. We investigate some nonlinear elliptic problems of the form

(P) ∆2v + σ(x)v = h(x, v) in Ω, v = ∆v = 0 on ∂Ω,

where Ω is a regular bounded domain in RN , N > 2, σ(x) a positive function in L∞(Ω), and
the nonlinearity h(x, t) is indefinite. We prove the existence of solutions to the problem (P)
when the function h(x, t) is asymptotically linear at infinity by using variational method
but without the Ambrosetti-Rabinowitz condition. Also, we consider the case when the
nonlinearities are superlinear and subcritical.

Keywords: asymptotically linear; mountain pass theorem; biharmonic equation; Cerami
sequence
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1. Introduction and main results

In this paper, we consider the quasilinear elliptic problem

(1.1)

{

∆2v + σ(x)v = h(x, v) in Ω,

v = ∆v = 0 on ∂Ω,

where Ω ⊂ R
N , N > 2, is a regular bounded domain in R

N and σ is a positive

function in L∞(Ω). We are interested in this type of equations because biharmonic

problems have many applications in micro-electro-mechanical systems, thin film the-

ory, surface diffusion on solids, interface dynamics, flow in Hele-Shaw cells and other

fields of science, see for example [5], [6], [9]. Also, asymptotically linear nonlineari-
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ties at infinity attract attention since they approximate linear cases. First in 1996,

Mironescu and Rădulescu in [18] investigated the harmonic problem

(1.2)

{

−∆u = h(x, u) in Ω,

u = 0 on ∂Ω,

where the reaction term h(x, t) did not depend on x and h(x, t) = µk(t) precisely for

µ > 0 and k(t) satisfying

(1.3) k is a positive, nondecreasing and convex function in C1[0,∞),

and

(1.4) lim
t→∞

k(t)

t
= ω ∈ (0,∞).

With this type of nonlinearities and harmonic extension problems, we can cite [1],

[7], [10], [14], [16]–[19], [21]. The generalization of the problem (1.1) to biharmonic

operators and the asymptotically linear nonlinearity satisfying (1.3) and (1.4) was

investigated in many works, we can cite [2], [11], [22] and the references therein.

In order to consider a larger class of asymptotically linear nonlinearities, Zhou

in 2007 studied the problem (1.2) (see [28]) but he made the following assumptions:

(F1) h(x, t) is in C(Ω×R), h(x, t) > 0 for all x ∈ Ω and t > 0 and h(x, t) = 0 for all

x ∈ Ω and t > 0.

(F2) lim
t→0

h(x, t)/t = p(x) and ‖p(x)‖∞ < θ1, where θ1 > 0 is the first eigenvalue

of the operator (−∆, H1
0 (Ω)) and lim

t→∞

h(x, t)/t = α uniformly for x ∈ Ω and

0 < α 6 ∞.
(F3) The function h(x, t)/t is nondecreasing with respect to t in (0,∞) for a.e. x ∈ Ω.

With these conditions, many second and fourth order partial differential equations

have been treated [3], [12], [15], [26]–[28].

In this paper, we suppose that the nonlinearities change sign and satisfy some

conditions of the same kind like those introduced in [28]. We suppose that:

(H1) h(x, t) is in C(Ω× R), h(x, t) > 0 for all t > 0 and h(x, t) = 0 for all t 6 0.

(H2) lim
t→0

h(x, t)/t = p(x) and ‖p(x)‖∞ < θ1, where θ1 > 0 is the first eigenvalue of

the operator (∆2 + σ(x), H2(Ω) ∩H1
0 (Ω)).

(H3) lim
t→∞

h(x, t)/t = α uniformly for x ∈ Ω and 0 < α 6 ∞.
(H4) lim

t→∞

h(x, t)/tp−1 = 0 uniformly in x ∈ Ω for some p ∈ (2, 2∗), here and hereafter

2∗ =







2N

N − 4
if N > 4,

∞ if N 6 4.
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(H5) The function h(x, t)/t is nondecreasing with respect to t in (0,∞) for a.e. x ∈ Ω.

The condition (H4) will be used in the investigation of the case where h(x, t) is

superlinear.

Henceforth, we suppose that σ(x) is a positive function in L∞(Ω) satisfying

(A) 0 < a0 6 σ(x) 6 a1 for all x ∈ Ω.

Also, we denote ϕ1 a normalised positive eigenfunction associated to θ1, the first

eigenvalue of the operator ∆2 + σ(x) with Navier boundary conditions on the open

domain Ω, that is,

(1.5)















∆2ϕ1 + σ(x)ϕ1 = θ1ϕ1 in Ω,

ϕ1 = ∆ϕ1 = 0 on ∂Ω,
∫

Ω

ϕ2
1 dx = 1.

Our results read as follows.

Theorem 1.1. If (H1), (H2) and (H3) hold and α ∈ (0,∞), then we get:

(i) When 0 < α < θ1 and the function h(x, t) satisfies the assumption (H5), there

is no positive solution for the problem (1.1).

(ii) When α > θ1, there exists a positive solution to the problem (1.1).

(iii) When α = θ1 and the function h(x, t) satisfies the assumption (H5), there

exists a positive solution v to the problem (1.1) if and only if v = c0ϕ1 and

h(x, v) = θ1v for some constant c0 > 0.

Theorem 1.2. Suppose that (H1)–(H5) hold and α = ∞. Then, the prob-
lem (1.1) has a positive solution.

In order to prove the existence of solution in variational methods, we often suppose

some complementary condition in order to prove the compactness property [4], [8],

[9], [13], [20], [23]–[25] and the references therein.

One of these conditions is the Ambrosetti-Rabinowitz condition ((AR) for short)

(see [4], [20]). Let

H(x, t) =

∫ t

0

h(x, s) ds,

the (AR) condition is:

(AR) There exists a constant λ > N and a constant δ > 0 such that

0 < λH(x, t) 6 h(x, t)t

for all |t| > δ and x ∈ Ω.
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In fact, the condition (AR) gives

lim
t→∞

H(x, t)

t2
= ∞,

hence lim
t→∞

h(x, t)/t = ∞. That is, h(x, t) must be superlinear with respect to t at
infinity but in this work, we deal with asymptotically linear nonlinearity in Theo-

rem 1.1 and so we prove the existence of nontrivial solutions without use of the (AR)

condition or any of its refinements.

This paper is organized as follows: in Section 2, we introduce some notations and

the variational setting. Section 3 is assigned to prove Theorem 1.1 and Section 4

proves Theorem 1.2. In the sequel, a constant C may change from line to another.

2. Preliminaries

Let Ω be a bounded open domain in R
N , N > 2. For v ∈ Lp(Ω), 1 6 p < ∞, we

recall the Lebesgue norm

‖v‖p =

(
∫

Ω

|v|p dx
)1/p

.

In this work, we consider the space H = H2(Ω) ∩ H1
0 (Ω) endowed with the inner

product

(2.1) 〈u, v〉 =
∫

Ω

(∆u∆v + σ(x)uv) dx

and the induced norm

(2.2) ‖v‖ =

(
∫

Ω

(|∆v|2 + σ(x)v2) dx

)1/2

.

We consider the following definition of solution (weak solution) for the problem (1.1).

Definition 2.1. A function v ∈ H is called the solution of the problem (1.1) if

(2.3)

∫

Ω

∆v∆ϕdx+

∫

Ω

σ(x)vϕdx =

∫

Ω

h(x, v)ϕdx ∀ϕ ∈ H.

Since the equation (1.1) has a variational form, let ψ be the functional defined

on H by

(2.4) ψ(v) =
1

2

∫

Ω

(|∆v|2 + σ(x)v2) dx−
∫

Ω

H(x, v) dx

where

H(x, s) =

∫ s

0

h(x, t) dt.

To prove the existence of a nonzero critical point of ψ, we use a different version of

the mountain pass theorem given in [9].
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Theorem 2.1 ([9]). Let X be a real Banach space and ψ ∈ C1(X,R) a functional

satisfying:

(i) There exist δ, τ > 0 such that for all v ∈ ∂B(0, δ), ψ(v) > τ .

(ii) There exists x1 ∈ X such that ‖x1‖ > δ and ψ(x1) < 0.

(iii) max{ψ(0), ψ(x1)} < τ.

Let c be the number characterized by

c := inf
γ∈Γ

max
t∈[0,1]

ψ(γ(t)),

where Γ := {η ∈ C([0, 1], X) : η(0) = 0 and η(1) = x1} is the set of continuous paths
joining 0 and x1 in X . Then, c > τ and there exists a sequence (vn) in X satisfying

the Cerami conditions

(2.5) ψ(vn) → c as n→ ∞

and

(2.6) (1 + ‖vn‖)‖ψ(vn)‖∗ → 0 as n→ ∞.

3. Proof of Theorem 1.1

We begin this section by the following elementary result.

Lemma 3.1. (H, ‖·‖) is a Hilbert space.
P r o o f. We know that (H, ‖·‖H2) is a Banach space where

‖u‖H2 = (‖u‖22 + ‖∆u‖22)1/2

is the standard norm in H2(Ω), see [15]. From the condition (A), we get

C0‖u‖H2 6 ‖u‖ 6 C1‖u‖H2 ,

where C1 = max{1,√a1} and C0 = min{1,√a0}. So, the norms ‖u‖H2 and ‖u‖ are
equivalent on H and thus (H, ‖·‖) is a Banach space. Therefore, (H, ‖·‖) is a Hilbert
space. �

Next, we prove the first geometric property of the functional ψ.

Lemma 3.2. Assume that the function h(x, t) satisfies the conditions (H1)–(H3).

Then, we have:

(i) There exist δ > 0 and τ > 0 such that for all v ∈ ∂B(0, δ), ψ(v) > τ .

(ii) When θ1 < α, ψ(tϕ1) → −∞ as t→ ∞.
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P r o o f. (i) Let ε > 0, there exists C = C(ε) > 0 such that for all t > 0 and for

all q > 1, we have

(3.1) H(x, t) 6
1

2
(‖p(x)‖∞ + ε)t2 + C|t|q+1.

Since

(3.2) ψ(v) =
1

2
‖v‖2 −

∫

Ω

H(x, v) dx,

then

ψ(v) >
1

2
‖v‖2 − 1

2
(‖p(x)‖∞ + ε)‖v‖22 − C‖v‖q+1

q+1.

If we choose 1 < q < 2∗ − 1, by the Sobolev embedding theorem we get

‖v‖q+1
q+1 6 C1‖v‖q+1.

Therefore

ψ(v) >
1

2
‖v‖2 − 1

2
(‖p(x)‖∞ + ε)‖v‖22 − C2‖v‖q+1.

From the property of θ1, we get

(3.3) ψ(v) >
1

2

(

1− ‖p(x)‖∞ + ε

θ1

)

‖v‖2 − C2‖v‖q+1.

If we consider ε > 0 such that ‖p(x)‖∞ + ε < θ1, then we can choose ‖v‖ = δ small

enough in order to have ψ(v) > τ for some τ > 0 sufficiently small.

(ii) Suppose that θ1 < α <∞. Let t > 0, we have

(3.4) ψ(tϕ1) =
t2

2

∫

Ω

(|∆ϕ1|2 + σ(x)|ϕ1|2) dx−
∫

Ω

H(x, tϕ1) dx.

From (1.5), we obtain

(3.5) ψ(tϕ1) =
t2

2
θ1 −

∫

Ω

H(x, tϕ1) dx.

Then, by the use of Fatou’s lemma,

lim
t→∞

ψ(tϕ1)

t2
6

1

2
θ1 −

∫

Ω

lim
t→∞

H(x, tϕ1)

(tϕ1)2
ϕ2
1 dx.

Since h(x, t) is asymptotically linear, we get

(3.6) lim
t→∞

H(x, t)

t2
=
α

2
·

Therefore

(3.7) lim
t→∞

ψ(tϕ1)

t2
6

1

2
(θ1 − α).

Then, lim
t→∞

ψ(tϕ1) = −∞. �
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P r o o f of Theorem 1.1. (i) Assume that 0 < α < θ1. Suppose that v ∈ H is a
positive solution of the problem (1.1). In this case, from the conditions (H1)–(H3)

and (H5), we get

(3.8)

∫

Ω

(|∆v|2 + σ(x)v2) dx =

∫

Ω

h(x, v)v dx 6

∫

Ω

αv2 dx.

So, θ1 6 α and this contradicts the hypothesis of this first case. Then, Theorem 1.1 (i)

is proved.

(ii) Assume that θ1 < α and (H1)–(H3) hold. The functional ψ introduced by (2.4)

is C1 and satisfies ψ(0) = 0. By Lemma 3.2, there exist δ > 0, τ > 0 and x1 ∈ H
such that ‖x1‖ > δ and ψ(x1) < 0. Since max{ψ(0), ψ(x1)} < τ , from Theorem 2.1,

there exists a sequence (vn) ⊂ H satisfying (2.5) and (2.6). It follows that

(3.9) ψ(vn) =
1

2
‖vn‖2 −

∫

Ω

H(x, vn) dx→ c as n→ ∞

and

(3.10) ‖ψ′(vn)‖∗ → 0 as n→ ∞.

Suppose that (vn) is bounded in H. Since (H, ‖·‖) is a reflexive space, then there
exist v ∈ H and a subsequence of (vn), still denoted (vn), satisfying

vn ⇀ v weakly in H as n→ ∞,

vn → v strongly in L2(Ω) as n→ ∞,

vn(x) → v(x) a.e. in Ω as n→ ∞.

From (3.10), for all ϕ ∈ H we have

(3.11)

∫

Ω

(∆vn∆ϕ+ σ(x)vnϕ) dx−
∫

Ω

h(x, vn)ϕdx→ 0 as n→ ∞,

that is,

(3.12) ∆2vn + σ(x)vn − h(x, vn) → 0 in H′,

where H′ is the dual space of H.
Note that by (H1), h(x, vn) → h(x, v) in L2(Ω) and since the dual space of L2(Ω)

is the space L2(Ω) and L2(Ω) →֒ H′, we have

(3.13) ∆2vn + σ(x)vn → h(x, v) in H′.
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Therefore, by using the fact that the operator L = ∆2 + σ(x) is an isomorphism

from H to H′, we get

(3.14) vn → L−1(h(x, v)) in H.

From (3.14) and the uniqueness of the limit, we deduce that the sequence (vn)

converges to the function v in H. So, v is a critical point of the functional ψ and
then a nontrivial solution of the problem (1.1).

In order to finish the proof, we have to demonstrate that the sequence (vn) is

bounded inH. For this, we argue by contradiction. Suppose that (vn) is not bounded
in H. So, up to a subsequence, ‖vn‖ → ∞. Let

(3.15) zn =
vn

‖vn‖
, tn = ‖vn‖.

Since (zn) is bounded in H, up to a subsequence, there exists z ∈ H such that

zn ⇀ z weakly in H,
zn → z strongly in L2(Ω),

zn(x) → z(x) a.e. in Ω.

We claim that

(3.16) ∆2z + σ(x)z = αz+ in Ω.

For the proof of the claim (3.16), we divide (3.11) by tn = ‖vn‖. We get

(3.17)

∫

Ω

(∆zn∆ϕ+ σ(x)znϕ) dx−
∫

Ω

h(x, vn)

‖vn‖
ϕdx→ 0 ∀ϕ ∈ H.

That is

(3.18) ∆2zn + σ(x)zn − h(x, vn)

‖vn‖
→ 0 in (H)′.

We have
h(x, vn)

‖vn‖
=
h(x, vn)

vn
zn.

In Ω1 = {x ∈ Ω: zn(x) → z(x) and z(x) > 0}, since vn = ‖vn‖zn, we obtain
lim
n→∞

vn = ∞. So by using condition (H2), we get

lim
n→∞

h(x, vn)

vn
zn = αz+.
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In Ω2 = {x ∈ Ω: zn(x) → z(x) and z(x) < 0}, since vn = ‖vn‖zn, we obtain
lim
n→∞

vn = −∞. Since z+ = 0, by using conditions (H1), we get

lim
n→∞

h(x, vn)

vn
zn = 0z(x) = 0 = αz+.

In Ω3 = {x ∈ Ω: zn(x) → z(x) and z(x) = 0}, we obtain lim
n→∞

vn/‖vn‖ = 0. Then

lim
n→∞

vn = c1 ∈ R. From (H1), h is continuous so admits a limit. We deduce that

lim
n→∞

h(x, vn)

vn
zn = b1z = 0 = αz+

for a constant b1 in R.

Now, the sequence zn → z in L2(Ω). By Theorem IV.9 in [5] zn is dominated

in L2(Ω), up to a subsequence. Therefore, (h(x, vn)/vn)zn is dominated and then

converges to αz+ in L2(Ω).

Since L2(Ω) →֒ H′, from (3.18), we get the equation (3.16) and so the claim is

proved. Therefore,

(3.19)

{

∆2z + σ(x)z = αz+ in Ω,

z = 0 on ∂Ω.

By applying the maximum principle we obtain that z > 0 and then z = z+ solves

the problem (3.19).

It follows that z = cϕ1 for some constant c > 0 and α = θ1, which contradicts the

fact that θ1 < α <∞.
(iii) Let α = θ1. Suppose that v is a positive solution for the problem (1.1). On

one hand, if we take ϕ = ϕ1 in (2.3), we obtain

(3.20)

∫

Ω

(∆v∆ϕ1 + σ(x)vϕ1) dx =

∫

Ω

h(x, v)ϕ1 dx.

On the other hand, consider the equation (1.5) and take v as a test function, we then

obtain

(3.21)

∫

Ω

(∆v∆ϕ1 + σ(x)vϕ1) dx = α

∫

Ω

vϕ1 dx.

So,
∫

Ω

(h(x, v) − αv)ϕ1 dx = 0.

Now, from (H1)–(H3) and (H5) and the fact that ϕ1 > 0, we get h(x, v) = αv

a.e. in Ω. Hence, h(x, v) = θ1v a.e. in Ω and the result follows from the fact that

the eigenvalue θ1 is simple. Conversely, if α = θ1 for v = c0ϕ1 with some constant

c0 > 0 and h(x, v) = θ1v, then that v is an eigenfunction satisfying (1.5) and so a

solution of the problem (1.1). �
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4. Proof of Theorem 1.2

We start by proving the geometric properties for the functional ψ introduced

by (2.4).

Lemma 4.1. Suppose that (H1)–(H3) and (H5) hold, α = ∞ and the function
h(x, t) is subcritical at t = ∞ uniformly on x a.e. in Ω. We have

(i) There exist positive constants δ, β > 0 such that ψ(v) > β for all v ∈ H with
‖v‖ = δ.

(ii) lim
t→∞

ψ(tϕ1) = −∞.

P r o o f. (i) In this subcritical case, the condition (H4), which is

(4.1) lim
t→∞

h(x, t)

tr−1
= 0 for some r ∈ (2, 2∗),

and the condition (H2) give that for any ε > 0, there exists C = C(ε) > 0 such that

for all t ∈ R and x ∈ Ω,

(4.2) H(x, t) 6
1

2
(‖p(x)‖∞ + ε)t2 + C|t|r,

and so

ψ(v) >
1

2
‖v‖2 − 1

2
(‖p(x)‖∞ + ε)‖v‖22 − C‖v‖rr.

Since 2 < r < 2∗, by the Sobolev embedding theorem we have ‖v‖rr 6 C1‖v‖r for
some constant C1 > 0 and then

(4.3) ψ(v) >
1

2
‖v‖2 − 1

2
(‖p(x)‖∞ + ε)‖v‖22 − C2‖v‖r.

We use a characterization of θ1, which is θ1‖v‖22 6 ‖v‖2 for all v ∈ H and so

(4.4) ψ(v) >
1

2

(

1− ‖p(x)‖∞ + ε

θ1

)

‖v‖2 − C2‖v‖r.

Now, we can choose ε > 0 in (4.4) such that ‖p(x)‖∞ + ε < θ1 and ‖v‖ = δ small

enough in order to have ψ(v) > β for β > 0 sufficiently small.

(ii) Since the positive function ϕ1 is in C(Ω). Let Ω0 ⊂ R
N be an open domain

such that Ω0 ⊂ Ω0 ⊂ Ω and let γ > 0 be a number satisfying ϕ1(x) > γ > 0 for all

x ∈ Ω0. From the condition (H5), we obtain

(4.5) 0 6 2H(x, t) 6 th(x, t)

and then the function H(x, t)/t2 is nondecreasing with respect to t > 0 for a.e.

x ∈ Ω0. We have that when α = ∞, it implies that

lim
t→∞

H(x, t)

t2
= ∞.
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So, for all x ∈ Ω0 and t > 0,

(4.6)
H(x, tϕ1(x))

t2ϕ2
1(x)

>
H(x, tγ)

t2γ2
.

For all B > 0, there exists t1 satisfying for all t > t1 and for all x ∈ Ω0

H(x, tϕ1(x))

t2ϕ2
1(x)

> B,(4.7)

ψ(tϕ1)

t2
=

1

2

∫

Ω

(|∆ϕ1|2 + σ(x)ϕ2
1) dx−

∫

Ω

H(x, tϕ1)

(tϕ1)2
ϕ2
1 dx.(4.8)

So,

(4.9)
ψ(tϕ1)

t2
6

1

2

∫

Ω

ϕ2
1 dx−

∫

Ω0

H(x, tϕ1)

(tϕ1)2
ϕ2
1 dx.

From (4.7) and (4.9) we get

ψ(tϕ1)

t2
6

1

2
θ1

∫

Ω

ϕ2
1 dx−B

∫

Ω0

ϕ2
1 dx

and so
ψ(tϕ1)

t2
6

1

2
θ1 −Bγ2|Ω0|.

We can choose B > 0 large enough so that

ψ(tϕ1)

t2
6 −C < 0,

where C > 0 is a positive constant. Therefore

lim
t→∞

ψ(tϕ1) = −∞.

�

Before we start the proof of the second existence result, Theorem 1.2, we recall

the following result whose proof is similar to [25], Lemma 2.3.

Lemma 4.2. Let ψ be the functional defined by (2.4). Suppose that (H5) holds

and

〈ψ′(vn), vn〉 → 0 as n→ ∞.

Then, (vn) has a subsequence, still denoted (vn), satisfying for all t > 0 and for all

n > 0

ψ(tvn) 6
1 + t2

2n
+ ψ(vn).
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P r o o f of Theorem 1.2. Suppose that α=∞, the conditions (H1)–(H3) and (H5)
hold and h(x, t) is subcritical at ∞ uniformly a.e. on x ∈ Ω. From Lemma 4.1 and

Theorem 2.1, there exists a sequence (vn) satisfying the Cerami conditions (2.5)

and (2.6) and so (3.9) and (3.10) hold.

We only need to prove that the sequence (vn) is bounded inH and the proof we will
use is the same as the proof of Theorem 1.1 (ii). We proceed by contradiciton, which

means that, we suppose that (vn) is not bounded in H, then, up to a subsequence,
‖vn‖ → ∞ when n→ ∞.
Let d > 0 be a positive number and set

(4.10) zn =
vn

d‖vn‖
, tn =

1

d‖vn‖
.

Since the sequence (zn) is bounded in H, there exists z ∈ H such that, up to a
subsequence, zn ⇀ z weakly in H, zn → z strongly in L2(Ω) and zn(x) → z(x)

a.e. in Ω. As a consequence,

z+n → z+ in L2(Ω),

where z+n = 1
2 (zn + |zn|) and

z+n → z+ a.e. in Ω.

From the formula (2.4), we obtain

ψ(zn) =
1

2
‖zn‖2 −

∫

Ω

H(x, zn) dx.

From the condition (H1), we get

(4.11) ψ(zn) =
1

2
‖zn‖2 −

∫

Ω

H(x, z+n ) dx.

Let Ω+ = {x ∈ Ω: z+(x) > 0}. For x ∈ Ω+,

v+n (x) = dz+n (x)‖vn‖ → ∞

and so, for any B > 0, there exists n1 = n1(x) > 0 such that for all n > n1, we have

(4.12)
h(x, v+n (x))

v+n (x)
> B.

Also, z+n (x) → z+(x) and then there exists n2 = n2(x) > 0 such that for all n > n2,

we have

(4.13) z+n (x) >
z+(x)

2
.
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From (4.11) and (4.12), we get

h(x, v+n (x))

v+n (x)
(z+n (x))

2
> B

(z+(x))2

4
.

So, for n large enough and for all x ∈ Ω+,

(4.14) lim
n→∞

h(x, v+n (x))

v+n (x)
(z+n (x))

2
> B

(z+(x))2

4
.

From (3.11), by taking the test function ϕ = vn, we get

‖vn‖2 −
∫

Ω

h(x, vn)vn dx→ 0,

hence

(4.15)
1

d2
−
∫

Ω

h(x, vn)

vn
(zn)

2 dx→ 0.

From (4.15) and the condition (H1), we obtain

(4.16) lim
n→∞

∫

Ω

h(x, v+n )

v+n
(z+n )

2 dx =
1

d2
.

Therefore, by Fatou’s lemma

1

d2
> lim

n→∞

∫

Ω+

h(x, v+n )

v+n
(z+n )

2 dx >

∫

Ω+

lim
n→∞

h(x, v+n (x))

v+n (x)
(z+n (x))

2.

By (4.14), we have then

(4.17)
1

d2
>
B

4

∫

Ω+

(z+(x))2 dx

and this holds for all B > 0. So, |Ω+| = 0 and then z+ ≡ 0. From (4.11), we obtain

(4.18) lim
n→∞

ψ(zn) =
1

2d2
.

On the other hand, by Lemma 4.2 and up to a subsequence, we get

(4.19) ψ(zn) = ψ(tnvn) 6
1

2n
(1 + t2n) + ψ(vn).

From (3.9), (4.10), (4.18) and (4.19)

1

2d2
6 c

for all d > 0 which is impossible and so the sequence (vn) is bounded in H and
Theorem 1.2 follows. �
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