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Received March 6, 2022. Published online April 5, 2023.
Communicated by Dagmar Medková

Abstract. We introduce a class of rings which is a generalization of reflexive rings and
J-reversible rings. Let R be a ring with identity and J(R) denote the Jacobson radical of R.
A ring R is called J-reflexive if for any a, b ∈ R, aRb = 0 implies bRa ⊆ J(R). We give some
characterizations of a J-reflexive ring. We prove that some results of reflexive rings can be
extended to J-reflexive rings for this general setting. We conclude some relations between
J-reflexive rings and some related rings. We investigate some extensions of a ring which sat-
isfies the J-reflexive property and we show that the J-reflexive property is Morita invariant.
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1. Introduction

Throughout this paper all rings are associative with identity unless otherwise

stated. We write Mn(R) for the ring of all n× n matrices and Tn(R) for the ring of

all n× n upper triangular matrices over a ring R. Also we write R[x], R[[x]], N(R),

U(R) and J(R) for the polynomial ring, the power series ring over a ring R, the set

of all nilpotent elements, the set of all invertible elements and the Jacobson radical

of a ring R, respectively. The ring of integers is denoted by Z.

In [6], Mason introduced the reflexive property for ideals. Let R be a ring (without

identity) and I an ideal of R. Then I is called reflexive, if aRb ⊆ I for a, b ∈ R implies

bRa ⊆ I. It is clear that every semiprime ideal is reflexive. Also, the ring R is called

reflexive, if 0 is a reflexive ideal (i.e., aRb = 0 implies bRa = 0 for a, b ∈ R). In [4],

Kwak and Lee studied reflexive rings. They investigated the reflexive property of

rings related to matrix rings and polynomial rings. According to Cohn (see [2]), a

ring R is said to be reversible if for any a, b ∈ R, ab = 0 implies ba = 0. It is clear
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that every reversible ring is reflexive. Recently, as a generalization of reversible ring,

the so-called J-reversible ring has been studied in [1]. A ring R is called J-reversible,

if ab = 0 implies that ba ∈ J(R) for a, b ∈ R. As an application it is shown that

every J-clean ring is directly finite. Motivated by these studies, we introduce a class

of rings which generalize J-reversible rings and reflexive rings. A ring R is called

J-reflexive, if bRa ⊆ J(R) whenever aRb = 0 for a, b ∈ R.

We summarize the contents of this paper. In Section 2, we study main properties

of J-reflexive rings. We give some characterizations of J-reflexive rings. We prove

that every J-reversible ring is J-reflexive and we supply an example (Example 2.4)

to show that the converse is not true in general. Moreover, we see that if R is a

Baer ring, then J-reversible rings are J-reflexive. It is clear that reflexive rings are

J-reflexive. Example 2.6 shows that J-reflexive rings need not be reflexive.

We give a necessary and sufficient condition for a quotient ring to be J-reflexive.

Also we conclude some results which clarify relations between J-reflexive rings and

some class of rings. With our finding, we prove that every uniquely clean ring is

J-reflexive and quasi-duo rings are J-reflexive. Moreover, we show that the converse

is not true in general.

Having the Morita invariant property is very important for a class of rings. A ring-

theoretic property P is Morita invariant if and only if whenever a ring R satisfies P

so does eRe, for any idempotent e and Mn(R) with n > 1. There are a lot of studies

on the Morita invariant property of rings. In Section 3, we prove that the J-reflexive

property is Morita invariant. Furthermore, we study the J-reflexive property in

several kinds of ring extensions (Dorroh extension, upper triangular matrix ring,

Laurent polynomial ring, trivial extension etc.).

2. J-reflexive rings

In this section we define the J-reflexive property of a ring. We investigate some

properties of J-reflexive rings and exert relations between J-reflexive rings and some

related rings.

Definition 2.1. A ring R is called J-reflexive, if aRb = 0 implies that bRa ⊆

J(R) for a, b ∈ R.

For a nonempty subset X of a ring R, the set rR(X) = {a ∈ R : Xa = 0} is called

the right annihilator of X in R and the set lR(X) = {b ∈ R : bX = 0} is called the

left annihilator of X in R.

Now we give our main characterization for J-reflexive rings.
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Theorem 2.2. The following statements are equivalent for a ring R.

(1) R is J-reflexive.

(2) For all a ∈ R, rR(aR)Ra ⊆ J(R) and aRlR(Ra) ⊆ J(R).

(3) IRK = 0 implies KRI ⊆ J(R) for every nonempty subset I, K of R.

(4) 〈a〉〈b〉 = 0 implies 〈b〉〈a〉 ⊆ J(R) for any a, b ∈ R.

(5) IK = 0 implies KI ⊆ J(R) for every right (left) ideal I, K of R.

(6) IK = 0 implies KI ⊆ J(R) for every ideal I, K of R.

P r o o f. (1) ⇒ (2): Let b ∈ rR(aR). Then aRb = 0 for a, b ∈ R. Since R is

J-reflexive, bRa ⊆ J(R). So we have rR(Ra)Ra ⊆ J(R). Similarly, one can show

that aRlR(Ra) ⊆ J(R).

(2) ⇒ (1): Assume that aRb = 0 for a, b ∈ R. Then, b ∈ rR(aR). By (2) we have

bRa ⊆ J(R). So R is a J-reflexive ring.

(3) ⇒ (4) ⇒ (5)⇒ (6): It is clear.

(6) ⇒ (1): Let aRb = 0 for a, b ∈ R. Then RaRRbR = 0. By hypothesis,

RbRRaR ⊆ J(R). As bRa ⊆ RbRRaR, we have bRa ⊆ J(R).

(1) ⇒ (3): Assume that IRK = 0 for nonempty subsets I, K of R. Then for any

a ∈ I and b ∈ K, aRb = 0. As R is J-reflexive, bRa ⊆ J(R). This implies that

KRI ⊆ J(R). �

Examples of J-reflexive rings are abundant. All reduced rings, symmetric rings,

reversible rings and reflexive rings are J-reflexive. In the sequel, we show that every

J-reversible ring, uniquely clean ring and every right (left) quasi-duo ring is J-

reflexive.

Proposition 2.3. Every J-reversible ring is J-reflexive.

P r o o f. Let R be a J-reversible ring and aRb = 0 for some a, b ∈ R. Then

ab = 0 and abr = 0 for any r ∈ R. As R is J-reversible, bra ∈ J(R). Hence,

bRa ⊆ J(R). �

The converse of Proposition 2.3 is not true in general as the following example

shows.

E x am p l e 2.4. Consider the ring R = M2(Z). It can be easily shown that R

is a J-reflexive ring. Let A =

(

0 0

0 1

)

, B =

(

1 1

0 0

)

∈ R. Although AB = 0,

BA =

(

0 1

0 0

)

/∈ J(R). So R is not J-reversible.

Recall that a ring R is called Baer if the right (left) annihilator of every nonempty

subset of R is generated by an idempotent (see [3] for details). We show that the

converse of Proposition 2.3 is true for Baer rings.

227



Theorem 2.5. Let R be a Baer ring. Then the following statements are equiva-

lent.

(1) R is a J-reversible ring.

(2) R is a J-reflexive ring.

P r o o f. (1) ⇒ (2): It is clear by Proposition 2.3.

(2) ⇒ (1): Let ab = 0 for a, b ∈ R. Then abR = 0 and so a ∈ lR(bR). As R is a

Baer ring, there exists an idempotent e ∈ R such that lR(bR) = eR. Then we have

eRbR = 0. Since R is J-reflexive, bReR ⊆ J(R) and so ba ∈ J(R), as desired. �

Though reflexive rings are J-reflexive, J-reflexive rings are not reflexive as the

following example shows.

E x am p l e 2.6. Let R be a commutative ring. Consider the ring

S =











a b c

0 a d

0 0 a



 : a, b, c, d ∈ R







.

By [1], Propoosition 3.7, S is J-reversible and by Proposition 2.3, it is J-reflexive.

For A =





0 0 0

0 0 1

0 0 0



, B =





0 1 0

0 0 0

0 0 0



 ∈ S, ASB = 0 but BSA 6= 0. Thus, S is

not a reflexive ring.

The following result can be easily obtained by the definition of J-reflexive rings.

Corollary 2.7. The following statements are equivalent for a ring R.

(1) If R/J(R) is reflexive, then R is J-reflexive.

(2) If R/J(R) is commutative, then R is J-reflexive.

An element a in a ring R is called uniquely clean if a = e + u where e2 = e ∈ R

and u ∈ U(R) and this representation is unique. A ring R is called a uniquely clean

ring if every element of R is uniquely clean (see [7]).

Corollary 2.8. Every uniquely clean ring is J-reflexive.

P r o o f. Assume that R is uniquely clean. Then R/J(R) is Boolean by [7],

Theorem 20. Hence, R is J-reflexive by Corollary 2.7. �

The converse of Corollary 2.8 is not true in general as the following example shows.

E x am p l e 2.9. For a commutative ring R, consider the ring M2(R). Since

M2(R) is not an abelian ring, M2(R) is not a uniquely clean ring. Also, it can be

easily shown that M2(R) is a J-reflexive ring by Theorem 3.1.

Proposition 2.10. Let R be a ring. If N(R) ⊆ J(R), then R is J-reflexive.
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P r o o f. Assume that aRb = 0 for a, b ∈ R. Then for any r ∈ R, arb = 0 and so

ab = 0. Hence, (bra)2 = brabra = 0 for all r ∈ R. So bra ∈ N(R). By hypothesis we

have bra ∈ J(R), as asserted. �

A ring R is called right (left) quasi-duo if every right (left) maximal ideal of R is

an ideal (see [5]).

Corollary 2.11. Every right (left) quasi-duo ring is J-reflexive.

P r o o f. It is clear by [8], Lemma 2.3. �

We now give a necessary and sufficient condition for a quotient ring to be J-

reflexive.

Theorem 2.12. Let R be a ring and I a nilpotent ideal ofR. Then R is J-reflexive

if and only if R/I is J-reflexive.

P r o o f. Let R/I = R, a + I = a ∈ R and aRb = 0 for a, b ∈ R. So aRb ⊆ I.

As I is nilpotent there exists k ∈ Z
+ such that (RaRbR)k = 0. (RbRaR)k ⊆ J(R),

since R is J-reflexive. Thus RbRaR ⊆ J(R) as a Jacobson radical is semiprime.

Hence RbRaR ⊆ J(R)/I = J(R). So bRa ⊆ J(R).

Conversely, assume that aRb = 0 for a, b ∈ R. Then aRb = 0. So aRb ⊆ I and

RaRbR ⊆ I. Therefore there exists k ∈ Z
+ such that Ik = 0, and so (RaRbR)k =

RaRbRaRbR . . . RaRbR = 0. Hence, (RaRbR)k = 0. Since R/I is J-reflexive,

(RbRaRbRaR . . .RbRaR) = (RbRaR)
k

⊆ J(R). As the Jacobson radical is a

semiprime ideal, we have RbRaR ⊆ J(R). Thus, bRa ⊆ J(R). Hence, for all

r ∈ R, we have 1− (bra)x ∈ U(R) for some x ∈ J(R). Then, there exists s ∈ R such

that (1 − (bra)x)s = 1. Hence, 1 − (1 − bra)xs ∈ I. As every nilpotent ideal is nil,

1−(brax)s ∈ U(R). This implies that bra ∈ J(R) and so bRa ⊆ J(R), as desired. �

Corollary 2.13. Let R be a ring. Then the following statements hold.

(1) If J(R) is a nilpotent ideal, then R is J-reflexive if and only if R/J(R) is J-

reflexive.

(2) If R is an Artinian ring, then R is J-reflexive if and only if R/J(R) is J-reflexive.

P r o o f. (1) It is clear by Theorem 2.12.

(2) Since the Jacobson radical of an Artinian ring is nilpotent, it is clear by (1).

�

Proposition 2.14. Let R be a ring and I an ideal of R with I ⊆ J(R). If R/I is

J-reflexive, then R is J-reflexive.
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P r o o f. Let R = R/I and a = a+ I ∈ R/I. Assume that aRb = 0 for a, b ∈ R.

So aRb = 0. Since R is J-reflexive, bRa ⊆ J(R) and bra ∈ J(R) for any r ∈ R.

Thus, for all x ∈ R we have 1 − (bra)x ∈ U(R). Then, there exists s ∈ R such

that (1 − (bra)x)s = 1. Hence, 1 − (1 − brax)s ∈ I. As I is contained in J(R),

(1− brax)s ∈ U(R). This implies that bra ∈ J(R) and so bRa ⊆ J(R), as desired.

�

Proposition 2.15. Let R be a ring and I a reflexive ideal of R. Then R/I is

J-reflexive.

P r o o f. Let R = R/I and a = a+ I ∈ R/I. Suppose that aRb = 0 for a, b ∈ R.

Then aRb ⊆ I. Since I is a reflexive ideal, we have bRa ⊆ I. Hence, bRa = 0 ∈ J(R).

�

Theorem 2.16. Every subdirect product of a J-reflexive ring is J-reflexive.

P r o o f. Let R be a ring, I, K ideals of R and R a subdirect product of R/I and

R/K. Assume that R/I and R/K are J-reflexive. Let aRb = 0 for a, b ∈ R. Then

aRb = 0 in R/I and R/K. Since R/I and R/K are J-reflexive, bRa ⊆ J(R/I) and

bRa ⊆ J(R/K). Then for each x ∈ R we have 1− brax ∈ U(R/I) and 1− brax ∈

U(R/K). Hence, there exist y ∈ R/I and z ∈ R/K such that (1 − brax)y = 1 ∈ R/I

and (1− brax)z = 1 ∈ R/K. So 1 − (1 − brax)y ∈ I and 1 − (1 − brax)z ∈ K.

If we multiply the last two elements, we have (1 − (1 − brax)y)(1 − (1 − brax)z) ∈

IK ⊆ I ∩K = 0. Thus, 1 − (1 − brax)t = 0 and (1 − brax)t = 1. This implies that

bRa ⊆ J(R). �

Corollary 2.17. Let I and K be ideals of a ring R. If R/I and R/K are J-

reflexive, then R/I ∩K is J-reflexive.

P r o o f. Let α : R/(I ∩K) ⇒ R/I and β : R/(I ∩K) ⇒ R/K where

α(r + (I ∩K)) = r + I and β(r + (I ∩K)) = r +K.

It can be shown that α and β are surjective ring homomorphisms and kerα∩kerβ = 0.

Hence R/(I ∩K) is a subdirect product of R/I and R/K. Therefore, R/(I ∩K) by

Theorem 2.16. �

Corollary 2.18. Let R be a ring and I, K ideals of R. If R/I and R/K are

J-reflexive, then R/IK is J-reflexive.

P r o o f. Assume that R/I and R/K are J-reflexive. Since

R/I ∩K ∼= (R/IK)/(I ∩K/IK)

and (I ∩K/IK)2 = 0, we complete the proof by Theorem 2.12. �
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3. Extensions of J-reflexive rings

In this section we show that several extensions (Dorroh extension, upper triangular

matrix ring, Laurent polynomial ring, trivial extension etc.) of a J-reflexive ring

are J-reflexive. In particular, it is proved that the J-reflexive condition is Morita

invariant.

Two rings R and S are said to be Morita equivalent if the categories of all right

R-modules and all right S-modules are equivalent. Properties shared between equiv-

alent rings are called Morita invariant properties. P is Morita invariant if and only

if whenever a ring R satisfies P , then so does eRe for every idempotent e and so does

every matrix ring Mn(R) for every positive integer n.

Next result shows that the property of J-reflexivity is Morita invariant.

Theorem 3.1. Let R be a ring. Then we have the following statements.

(1) If R is J-reflexive, then eRe is J-reflexive for all idempotents e ∈ R.

(2) R is a J-reflexive ring if and only ifMn(R) is J-reflexive for any positive integer n.

P r o o f. (1) Assume that R is a J-reflexive ring. Let a, b ∈ eRe with aeReb = 0.

As R is J-reflexive, ebRae = ebRea ⊆ J(eRe) = eJ(R)e. This implies that eRe is a

J-reflexive ring.

(2) Assume that Mn(R) is a J-reflexive ring. It is clear that R is J-reflexive

by (1). Conversely, suppose that R is J-reflexive and I,K are ideals of Mn(R) such

that IK = 0. Then, there exist ideals I1, K1 of R such that I = Mn(I1) and

K = Mn(K1). So 0 = IK = Mn(I1)Mn(K1) = Mn(I1K1). Thus, I1K1 = 0. Since R

is J-reflexive, K1I1 ⊆ J(R). This implies that KI = Mn(K1)Mn(I1) = Mn(K1I1) ⊆

J(Mn(R)) = Mn(J(R)). This completes the proof. �

Corollary 3.2. LetM be finitely generated projective modules over a J-reflexive

ring R. Then EndR(M) is J-reflexive.

P r o o f. It is obvious by Theorem 3.1. �

Proposition 3.3. The following statements are equivalent for a ring R.

(1) R is J-reflexive.

(2) M =





























r x12 . . . x1n

0 r . . . x2n

...
...

...
...

0 . . . . . . r











: r ∈ R, xij ∈ R



















is J-reflexive.
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P r o o f. (1) ⇔ (2): Take

I =











0 x12 . . . x1n

0 0 . . . x2n

...
...

...
...

0 . . . . . . 0











.

The proof is clear by Theorem 2.12. �

Recall that the trivial extension of R by an R-module M is the ring denoted

by R ∝ M whose underlying additive group is R ⊕ M with multiplication given

by (r,m)(r′,m′) = (rr′, rm′ + mr′). The ring R ∝ M is isomorphic to S =
{(

x y

0 x

)

: x ∈ R, y ∈ M

}

under the usual matrix operations.

Proposition 3.4. The following statements are equivalent for a ring R.

(1) The trivial extension R ∝ R of the ring R is J-reflexive.

(2) R is a J-reflexive ring.

P r o o f. (1) ⇒ (2): Assume that R ∝ R is J-reflexive. Let aRb = 0 for

a, b ∈ R. Then, for A =

(

a 0

0 a

)

, B =

(

b 0

0 b

)

∈ R ∝ R, we have A(R ∝ R)B =
(

aRb aRb

0 aRb

)

=

(

0 0

0 0

)

. As R ∝ R is J-reflexive, B(R ∝ R)A ⊆ J(R ∝ R).

Hence, bRa ⊆ J(R).

(2) ⇒ (1): Suppose that R is J-reflexive. Let A(R ∝ R)B = 0 for A =

(

a x

0 a

)

,

B =

(

b y

0 b

)

∈ R ∝ R. Then for any M =

(

s t

0 s

)

∈ R ∝ R, we have AMB =
(

asb asy + atb+ xsb

0 asb

)

=

(

0 0

0 0

)

. Since R is J-reflexive and aRb = 0, we con-

clude that bsa ∈ J(R) for any s ∈ R. Note that J(R ∝ R) =

(

J(R) R

0 J(R)

)

. Hence,

B(R ∝ R)A ⊆ J(R ∝ R), as asserted. �

Proposition 3.5. Let {Ri}i∈I be an indexed set of the ring Ri. Then Ri is

J-reflexive for all i ∈ I if and only if
∏

i∈I

Ri is J-reflexive.

P r o o f. (⇒): Let
∏

i∈I

MiKi = 0 for ideals
∏

i∈I

Mi,
∏

i∈I

Ki of
∏

i∈I

Ri. Then
∏

i∈I

MiKi = 0. Therefore, MiKi = 0 for all i ∈ I. Since Ri is J-reflexive, KiMi ⊆

J(Ri) for all i ∈ I. So
∏

i∈I

Ki

∏

i∈I

Mi =
∏

i∈I

KiMi ⊆ J
(

∏

i∈I

Ri

)

=
∏

i∈I

J(Ri).

(⇐): Assume that MϕKϕ = 0 for ideals Mϕ, Kϕ of Rϕ. Choose M = (Mϕ)ϕ∈I

and K = (Kϕ)ϕ∈I as only ϕ components are a nonzero ideal. SoM and K are ideals

of
∏

i∈I

Ri. Also we have MK = 0. As
∏

i∈I

Ri is J-reflexive, KM ⊆ J
(

∏

i∈I

Ri

)

. Thus,

KϕMϕ ⊆ J(Rϕ). �
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Proposition 3.6. The following statements are equivalent for a ring R.

(1) R is a J-reflexive ring.

(2) Tn(R) is J-reflexive for any n ∈ Z
+.

P r o o f. (1) ⇒ (2): For n = 1 it is clear. Consider the ring T2(R). Choose the

ideal I =

(

0 R

0 0

)

. It is clear that I2 = 0. So T2(R)/I ∼= R×R. By Proposition 3.5,

T2(R)/I is J-reflexive. Hence T2(R) is J-reflexive by Theorem 2.12. By induction,

Tn(R) is J-reflexive for any n ∈ Z
+.

(2) ⇒ (1): It is evident from Theorem 3.1(1). �

Proposition 3.7. Let R be a ring and e2 = e ∈ R be central. Then, R is a

J-reflexive ring if and only if eR and (1− e)R are J-reflexive.

P r o o f. The necessity is obvious by Theorem 3.1. For the sufficiency suppose

that eR and (1−e)R are J-reflexive for a central idempotent e ∈ R. It is well-known

that R ∼= eR× (1− e)R. By Proposition 3.5, R is J-reflexive. �

For an algebra R over a commutative ring S, the Dorroh extension I(R;S) of R

by S is the additive abelian group I(R;S) = R⊕S with multiplication (r, v)(s, w) =

(rs, rw + vs+ vw).

Proposition 3.8. Let R be a ring and M = I(R;S) a Dorroh extension of R

by a commutative ring S. Assume that for all s ∈ S there exists s′ ∈ S such that

s+ s′ + ss′ = 0. Then the following statements are equivalent.

(1) R is J-reflexive.

(2) M is J-reflexive.

P r o o f. (1) ⇒ (2): Let (a1, b1)M(a2, b2) = (0, 0) for (a1, b1), (a2, b2) ∈ M . So

for any (x, y) ∈ M , we have (a1, b1)(x, y)(a2, b2) = (0, 0). Then

(a1xa2, a1xb2 + a1ya2 + b1xa2 + b1ya2 + a1yb2 + b1xb2 + b1yb2) = (0, 0).

Hence, a1xa2 = 0 and a1xb2+a1ya2+b1xa2+b1ya2+a1yb2+b1xb2+b1yb2 = 0. As R

is J-reflexive, a2xa1 ∈ J(R) for any x ∈ R. Thus, (a2, b2)(x, y)(a1, b1) = (a2xa1, ∗).

By hypothesis, (0, S) ⊆ J(M). It can be easy to show that (a2xa1, 0) ∈ J(M) for

every x ∈ R. Therefore, (a2, b2)S(a1, b1) ⊆ J(M).

(2) ⇒ (1): Let aRb = 0 for a, b ∈ R. Then (a, 0)M(b, 0) = (0, 0). Since M is

J-reflexive, (b, 0)M(a, 0) ⊆ J(M). By hypothesis, (0, S) ⊆ J(M). This implies that

(bRa, 0) ⊆ J(S). Hence, bRa ⊆ J(R). �
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If R is a ring and f : R → R is a ring homomorphism, let R[[x, f ]] denote the

ring of skew formal power series over R; that is all formal power series in x with

coefficients from R with multiplication defined by xr = f(r)x for all r ∈ R. Note

that J(R[[x, f ]]) = J(R) + 〈x〉. Since R[[x, f ]] ∼= I(R; 〈x〉) where 〈x〉 is the ideal

generated by x, we have the following result.

Corollary 3.9. Let R be a ring and f : R → R a ring homomorphism. Then the

following statements are equivalent.

(1) R is a J-reflexive ring.

(2) R[[x, f ]] is J-reflexive.

If f is taken as f = 1R : R → R (i.e., 1R(r) = r for all r ∈ R), we have that

R[[x]] = R[[x, 1R]] is the ring of formal power series over R.

Corollary 3.10. The following statements are equivalent for a ring R.

(1) R is a J-reflexive ring.

(2) R[[x]] is J-reflexive.

Let R be a ring and u ∈ R. Recall that u is right regular if ur = 0 implies r = 0

for r ∈ R. Similarly, a left regular element can be defined. An element is regular if

it is both left and right regular.

Proposition 3.11. Let R be a ring and M multiplicatively closed subset of R

consisting of central regular elements. Then the following statements are equivalent.

(1) R is J-reflexive.

(2) S = M−1R = {a/b : a ∈ R, b ∈ M} is J-reflexive.

P r o o f. (1) ⇒ (2): Let aSb = 0 for a, b ∈ S. So there exist a1, b1 ∈ R and

u−1, v−1 ∈ M such that a = a1u
−1 and b = b1v

−1. Then 0 = aSb = a1u
−1Sb1v

−1 =

a1Sbv
−1. Hence for any rs−1 ∈ S we have a1rs

−1bv−1. Thus, a1rb1 = 0 for each

r ∈ R. As R is J-reflexive, b1ra1 ∈ J(R). This implies that b1v
−1rs−1a1u

−1 ∈ J(R).

As J(R) ⊆ J(S), aSb ⊆ J(S).

(2) ⇒ (1): Let aRb = 0 for a, b ∈ R and u, v ∈ M . So we have auRbv = 0. Then

for any m ∈ M and r ∈ R, aurmbv = 0. Since S is J-reflexive, bvrmau ∈ J(S).

If we multiply bvrmau with inverses of u, m, v, then we have bra ∈ J(R) for any

r ∈ R. This completes the proof. �

The following result is a direct consequence of Proposition 3.11.

Corollary 3.12. Let R be a ring. Then the following statements are equivalent.

(1) R[x] is J-reflexive.

(2) R[x, x−1] is J-reflexive.
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