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Abstract. For a given direction b ∈ C
n \ {0} we study non-homogeneous directional

linear higher-order equations whose all coefficients belong to a class of joint continuous
functions which are holomorphic on intersection of all directional slices with a unit ball.
Conditions are established providing boundedness of L-index in the direction with a pos-
itive continuous function L satisfying some behavior conditions in the unit ball. The
provided conditions concern every solution belonging to the same class of functions as
the coefficients of the equation. Our considerations use some estimates involving a di-
rectional logarithmic derivative and distribution of zeros on all directional slices in the
unit ball.
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1. Introduction

American mathematician Lepson in [20] and his scholar MacDonnell in [21] were

the first to introduce the notion of bounded index for entire functions of one variable.

An entire function f : C → C is called a function of bounded index if there exists

m ∈ Z+ such that for every p ∈ Z+ and all z ∈ C one has

(1.1)
|f (p)(z)|

p!
6 max

06s6m

|f (s)(z)|

s!
.
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The least such integer m satisfying (1.1) is called the index of the function f.

These functions have fascinating properties: some local regular behavior (see [14]),

a uniform distribution of zeros and a bounded logarithmic derivative outside an ex-

ceptional set (see [15]), their antiderivative has bounded value distribution (see [16]),

etc. Moreover, every entire solution of a linear higher-order homogeneous differential

equation with constant coefficients possesses property (1.1), i.e., it is of bounded

index (see [24]). Later a similar fact was established when the coefficients aj = aj(z)

of the equation f (n)(t) +
n−1∑
j=0

ajf
(j)(t) = 0 are polynomials (see [25]). It is obviuos

that every polynomial has bounded index. However, Shah in [26] and Hayman

in [16] proved that each entire function having bounded index is a function of

exponential type.

Therefore, Kuzyk and Sheremeta proposed an extension of this notion introduc-

ing a function of bounded l-index (see [18]). They replaced p! and s! by p! lp(z)

and s! ls(z) in the previous definition, respectively, where l : C → R+ belongs to

continuous functions. Such a class of functions having bounded l-index is very

wide. If the multiplicities of zeros of an entire function are uniformly bounded,

then there exists a positive continuous function l providing boundedness of the l-

index for the entire function (see [12], [28]). This notion was also generalized for

functions of several complex variables by two approaches. The first approach uses

all possible partial derivatives in the definition (bounded index in joint variables,

see [6], [22], [23]) and the second approach uses directional derivatives in the defi-

nition (bounded index in a direction, see [5], [7], [17]). Although the first approach

seems more natural, the second approach allows to deduce more multi-dimensional

analogs of known one-dimensional propositions describing properties of functions

having bounded index. In particular, the bounded index in direction helps to obtain

an analog of logarithmic criterion even for bounded index in joint variables (see [1]).

This criterion is a central tool in applications of the theory of a bounded index to

differential equations.

Recently, we started to study a sufficiently general class of holomorphic functions.

Our researches were inspired by the following Favorov’s problem (see [8]):

Q u e s t i o n 1.1 ([8]). Are deducible known propositions on properties of analytic

functions having bounded L-index in the direction b ∈ Cn \ {0} for joint continuous

and holomorphic on the slices {z0 + tb : t ∈ C} functions?

Here we continue our investigations initialized in [2], [3], [4]. A concept of L-index

boundedness in direction for slice analytic functions of several complex variables was

introduced and many criteria of L-index boundedness in direction were obtained.

We present some applications of these criteria to consider slice analytic solutions
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of directional differential equations. Since functions of bounded index have many

applications in analytic theory of differential equations (see [6], [10], [23]), we study

the local behavior of slice holomorphic functions of bounded L-index in direction

which satisfies some linear higher-order directional differential equations.

In [11], a question was considered on the additional conditions, providing index

boundedness of every slice entire solution for linear higher-order directional differ-

ential equation with slice entire coefficients. Here we consider the question for slice

holomorphic functions in the unit ball.

Let us introduce some notations from [2]. Let R+ = (0,∞), R∗
+ = [0,∞), 0 =

(0, . . . , 0), 1 = (1, . . . , 1), b = (b1, . . . , bn) ∈ Cn \ {0} be a given direction, Bn =

{z ∈ Cn : |z| < 1} be a unit ball, D = {z ∈ C : |z| < 1} be a unit disc, L : Bn → R+

be a continuous function. For a given z ∈ Bn, we denote Sz = {t ∈ C : z+ tb ∈ Bn}.

Clearly, D = B1. The slice functions on Sz for fixed z∗ ∈ Bn will be denoted as

gz∗(t) = F (z∗ + tb) and lz∗(t) = L(z∗ + tb) for t ∈ Sz .

Let H̃b(B
n) be a class of functions which are holomorphic on every slice {z∗+ tb :

t ∈ Sz∗} for each z∗ ∈ B
n and let Hb(B

n) be a class of functions from H̃b(B
n)

which are joint continuous. The notation ∂bF (z) stands for the derivative of the

function gz(t) at the point 0, i.e., for every p ∈ N, ∂p
b
F (z) = g

(p)
z (0), where gz(t) =

F (z + tb) is an analytic function of complex variable t ∈ Sz for given z ∈ Bn.

Besides, we denote by 〈a, c〉 =
n∑

j=1

ajcj the Hermitian inner product in Cn, where

a, c ∈ Cn.

The hypothesis on joint continuity together with the hypothesis on holomorphy

in one direction do not imply holomorphy in whole n-dimensional unit ball. Some

examples to demonstrate it were presented in [2].

A function F ∈ H̃b(B
n) is said to be of bounded L-index in the direction b ∈

Cn \ {0} (we denote this class by Bb(L,B
n)) (see [2]) if there exists m0 ∈ Z+ such

that for all m ∈ Z+ and each z ∈ Bn, inequality

(1.2)
|∂m

b
F (z)|

m!Lm(z)
6 max

06k6m0

|∂k
b
F (z)|

k!Lk(z)

holds. The least such integer number m0, obeying (1.2), is called the L-index in the

direction b of the function F and is denoted by Nb(F,L,B
n). For n = 1, b = 1,

L(z) = l(z), and z ∈ C instead z ∈ B, inequality (1.2) defines a function of bounded

l-index with the l-index N(F, l) ≡ N1(F, l,C) (see [19], [28], [29]), and if in addition

l(z) ≡ 1, then we obtain a definition of index boundedness with index N(F ) ≡

N1(F, 1,C) (see [20], [21]). It is also worth mentioning paper [31], which introduces

the concept of generalized index. It is quite close to the bounded l-index.
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To obtain constructive and sufficiently general results, one must impose additional

restrictions on the function L, since continuity alone is not enough for this.

For z ∈ Bn we denote

λb(η) = sup
{

sup
t,τ∈Sz

{ L(z + tb)

L(z + τb)
: |t− τ | 6

η

min{L(z + tb), L(z + τb)}

}
: z ∈ B

n
}
.

Let Qb(B
n) be the class of positive continuous functions L : Bn → R+ satisfying for

given β > 1 and for every η ∈ [0, β] the condition

λb(η) < ∞

and for all z ∈ B
n the inequality

(1.3) L(z) >
β|b|

1− |z|
.

The last condition (1.3) is, in a sense, final.

2. Auxiliary propositions

Throughout this section, we will assume that L ∈ Qb(B
n), F ∈ H̃b(B

n), where

b ∈ C \ {0}, n > 2. Let us formulate several theorems proved in articles [3], [4],

which we will use in what follows. The following theorem from [4] describes sufficient

conditions for the boundedness of L-index in direction in terms of the local behavior

of the maximum of the modulus of the function.

Theorem 2.1 ([4]). If there exist r1, r2 ∈ (0, β], r1 < r2, and exists P1 > 1 for

all z ∈ Bn such that

max{|F (z + tb)| : |t| = r2/L(z)} 6 P1 max{|F (z + tb)| : |t| = r1/L(z)},

then F ∈ Bb(L,B
n).

We also need the following analogue of the theorem obtained by Fricke (see [15])

for entire functions of bounded index of one complex variable.

Theorem 2.2 ([4]). If F ∈ Bb(L,B
n), then for all R ∈ (0, β) there exists

P2(R) > 1, exists η(R) ∈ (0, R) and for all z ∈ Bn there exists r = r(z) ∈ [η(R), R]

such that

(2.1) max{|F (z + tb)| : |t| = r/L(z)} 6 P2(R)min{|F (z + tb)| : |t| = r/L(z)}.
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Also, we use an analogue of logarithmic criterion for function from the class

H̃b(B
n). The one-dimensional analogue of the criterion is efficient to investigate

boundedness of l-index of infinite products (see [13], [27], [30]). As a necessary con-

ditions the criterion was obtained by Fricke (see [14], [15]) for entire functions of one

complex variable having bounded index. We put

Gr(F ) := Gb

r (F ) :=
⋃

a∈Bn : F (a)=0

{a+ tb : t ∈ C, |t| < r/L(a)}.

For given z ∈ B
n and r > 0 we denote by

nz(r) = nb(r, z, 1/F ) :=
∑

|a0

k
|6r

1

the counting function of zeros a0k of the slice function gz(t) = F (z + tb) in the disc

{t ∈ C : |t| 6 r}. If for given z ∈ Bn and for all t ∈ Sz : gz(t) = F (z + tb) ≡ 0, then

we put nz(r) = −1. Denote also n(r) = sup
z∈Bn

nz(r/L(z)).

Theorem 2.3 ([4]). If F ∈ Bb(L,B
n), then

(1) for all r ∈ (0, β] there exists P = P (r) > 0 and for all z ∈ Bn \Gb

r (F ):

|∂bF (z)| 6 PL(z)|F (z)|;

(2) for all r ∈ (0, β] there exists ñ(r) ∈ Z+ and for all z
0 ∈ Bn, F (z0 + tb) 6≡ 0:

nb(r/L(z
0), z0, 1/F ) 6 ñ(r).

The following statement is actually obtained in the proof of Theorem 2.3 in [4]:

Lemma 2.1. If F ∈ Bb(L,B
n), then for all z0 ∈ B

n \Gb

r (F ), r ∈ (0, β), and for

all ãk = z0 + a0kb ∈ Bn, F (ãk) = 0, we have

(2.2) |z0 − ãk| >
r|b|

2L(z0)λb(r)
.

The following (Theorem 2.4) is an analogue of Hayman’s theorem (see [16]) proved

for entire functions of single variable.

Theorem 2.4 ([3]). A function F ∈ H̃b(B
n) is of bounded L-index in the direc-

tion b if and only if there exists p ∈ Z+, exists C > 0 and for all z ∈ Bn:

|∂p+1
b

F (z)|

L(p+1)(z)
6 Cmax

{ |∂k
b
F (z)|

L−k(z)
: 0 6 k 6 p

}
.
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In the proof of Lemma 2.2 we will use methods from a proof of its counterparts in [7]

for another class of functions which are analytic in some domain from n-dimensional

complex space.

Lemma 2.2. Let F ∈ Bb(L,B
n). Then for all r > 0 and for all m ∈ N there

exists P = P (r,m) > 1 such that for all z ∈ B
n \Gb

r (F ) : |∂m
b
F (z)| 6 PLm(z)|F (z)|.

P r o o f. By Theorem 2.2 with R = r/(2λb(r)), there exist P2 = P2(R) > 1,

η = η(R) ∈ (0, R) such that for every z ∈ Bn and some r∗ = r∗(z) ∈ [η(R), R], in-

equality (2.1) is true with r = r∗. Applying the Cauchy inequality, for r = r∗ we have

1

m!
|∂m

b
F (z)| 6

(L(z)
r

)m
max

{
|F (z + tb)| : |t| =

r

L(z)

}
.

Hence, by inequalities (2.1) and η 6 r = r∗ we get

1

m!
|∂m

b
F (z)| 6 P2

(L(z)
η

)m
min

{
|F (z + tb)| : |t| =

r∗

L(z)

}
.

Inequality (2.2) from Lemma 2.1 implies that F (z + tb) 6= 0 on the set {t : |t| 6

r/(2λb

2 (r)L(z))} for every z ∈ Bn \ Gb

r (F ). By the maximum modulus principle in

variable t ∈ C for the function 1/F (z + tb) one has

1

|F (z)|
6

1

min{|F (z + tb)| : |t| = r∗/L(z)}
,

i.e., |F (z)| > min{|F (z + tb)| : |t| = r∗/L(z)}. Thus,

|∂m
b
F (z)| 6 m!P2η

−mLm(z)|F (z)|.

Since z is arbitrary, we finally obtain the required inequality with P = P2m! η−m. �

3. The main result

Let us consider the directional differential equation

(3.1) h0(z)∂
p
b
w + h1(z)∂

p−1
b

w + . . .+ hp(z)w = h(z),

where hj , h are functions from the class Hn
b
, j ∈ {0, 1, . . . , p}. For entire functions

of bounded L-index in direction p = 2 and entire functions h0, h1, h2, h, the equa-

tion was investigated in [5], [10], and in the case of holomorphic in the unit ball

coefficients hj , h, equation (3.1) was studied in [7].
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Here we consider the equation under a much weaker assumption that the coeffi-

cients of (3.1) are slice holomorphic functions in the unit ball. Let us remind that a

case of entire on directional slices functions was examined in [11]. Denote

H(z) = h(z)

p∏

j=0

hj(z), n(r,H) = sup
z∈Bn

nb(r/L(z), z, 1/H),

r∗ = sup
s>1

s− 1

8(n(s,H) + 1)λb(s)
, E(F ) =

⋃

z∈ZF :

∀ t∈C,F (z+tb)≡0

{z + tb : t ∈ C},

where ZF is a zero set of the function F. We also denote Gr = (Gr(h) \ E(h)) ∪

Gr(g0) ∪
p⋃

j=1

(Gr(hj) \ E(hj)).

We prove the following theorem.

Theorem 3.1. Let L ∈ Qb(B
n) with β > 3 in condition (1.3) and {h0(z), . . . ,

hp(z), h(z)} ⊂ Hb(B
n) ∩ Bb(L,B

n). If there exist r ∈ (0;min{ 1
3β, r

∗}) and T > 0

such that Bn \Gr 6= ∅ and for all z ∈ Bn \Gr(h0) and for all j ∈ {1, . . . , p} it is

(3.2) |hj(z)| 6 TLj(z)|h0(z)|,

then every solution F ∈ Hb(B
n) of equation (3.1) has bounded L-index in the direc-

tion b.

P r o o f. Our proof is based on some ideas from [11]. It is easy to see that the

condition F ∈ Hb(B
n) implies ∂m

b
F ∈ Hb(B

n) for all m ∈ N. It should also be

noted that Theorem 2.3 and the restrictions of Theorem 3.1 provide the validity of

the inequalities n(r,H) < ∞ and r∗ > 0.

Since by condition Bn \Gr 6= ∅, from conditions of Theorem 3.1 and Lemma 2.2

by inequality (3.2) it follows that exists r ∈ (0,min{β; r∗}), exists T ∗ = max{P, T,

P · T } > 0 for all z ∈ Bn \Gr :

|∂bh(z)| 6 P |h(z)|L(z) 6 T ∗|h(z)|L(z),(3.3)

|hj(z)| 6 T ∗|h0(z)|L
j(z), j ∈ {1, 2, . . . , p, },

|∂bhj(z)| 6 PL(z)|hj(z)| 6 P · T |h0(z)|L
j+1(z)

6 T ∗|h0(z)|L
j+1(z), j ∈ {0, 1, 2, . . . , p, }.(3.4)

Let us now apply the derivative ∂b to both sides of equation (3.1):

h0(z)∂
p+1
b

F (z) +

p∑

j=1

hj(z)∂
p+1−j
b

F (z) +

p∑

j=0

∂bhj(z)∂
p−j
b

F (z) = ∂bh(z).
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Then using inequalities (3.3), (3.4) and |h(z)| 6
p∑

j=0

|hj(z)||∂
p−j
b

F (z)| for all z ∈

B
n \Gr, we successively obtain

|∂bh(z)| 6 T ∗|h(z)|L(z) 6 T ∗L(z)

p∑

j=0

|hj(z)||∂
p−j
b

F (z)|

and

|h0(z)||∂
p+1
b

F (z)|

6 |∂bh(z)|+

p∑

j=1

|hj(z)||∂
p+1−j
b

F (z)|+

p∑

j=0

|∂bhj(z)||∂
p−j
b

F (z)|

6 T ∗L(z)

p∑

j=0

|hj(z)||∂
p−j
b

F (z)|+

p∑

j=1

|hj(z)||∂
p+1−j
b

F (z)|

+

p∑

j=0

|∂bhj(z)||∂
p−j
b

F (z)|

6 T ∗|h0(z)||L
p+1(z)|

(
(T ∗ + 1)

p∑

j=0

|∂p−j
b

F (z)|

Lp−j(z)
+

p∑

j=1

|∂p+1−j
b

F (z)|

Lp+1−j(z)

)

6 P3|h0(z)|L
p+1(z) max

06j6p

|∂j
b
F (z)|

Lj(z)
,

where P3 = T ∗((T ∗ + 1)(p+ 1) + p) > 0. Thus, for all z ∈ Bn \Gr,

(3.5) L−(p+1)(z)|∂p+1
b

F (z)| 6 P3 max{L−j(z)|∂j
b
F (z)| : 0 6 j 6 p}.

For any point z′ ∈ A := H(h0) \
p⋃

j=1

(Gr(hj) \ E(hj)) there exists a sequence of

the points zm ∈ Bn \ Gr satisfying (3.5) with z = zm and such that zm → z′

as m → ∞. Substituting z = zm in (3.5) and passing to the limit as m → ∞,

by the joint continuity of the function F , we obtain that inequality is valid for all

z ∈ A ∪ (Bn \Gr).

If all zeros of the function H belong to E(H), i.e., Bn = A ∪ (Bn \ Gr), then

by Theorem 2.4 the function F , asa function from the class Hb(B
n), has bounded

L-index in the direction b. Otherwise, n(s,H) > 1.

It is easy to see that for r ∈ (0,min{ 1
3β, r

∗}) and r∗ = sup
s>1

(s−1)/(8(n(s,H)+1)×

λb(s)), there exists r
′ ∈ [1, 13β) such that r 6 (r′ − 1)/(8(n(r′, H) + 1)λb(r

′)).

Let z∗ ∈ Bn be an arbitrary point and K∗ = {z∗ + tb : |t| 6 r′/L(z∗)}. The slice

holomorphic functions h0, h1, . . . , hp, h have bounded L-index in the direction b,

therefore by Theorem 2.3, the set K∗ contains at most n(r′, H) zeros of these func-

tions or K∗ ⊂ ZH .
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Let c∗m be the points such that H(z∗+ c∗mb) = 0 (i.e., c∗m are the zeros of the slice

function H) and z∗ + c∗mb ∈ K∗ ∩ (Zh \ E(h)) ∪
p⋃

j=0

(Zhj
\ E(hj)), where m ∈ N,

m 6 n(r′, H). Remark, that L(z∗ + c∗mb) > L(z∗)/λb(r
′), because L ∈ Qb(B

n).

Then, obviously,

K̃∗
m :=

{
z∗ + tb : |t− c∗m| 6

r

L(z∗ + c∗mb)

}

⊂
{
z∗ + tb : |t− c∗m| 6

r′ − 1

8(n(r′, H) + 1)λb(r′)L(z∗ + c∗mb)

}

⊂ K∗
m :=

{
z∗ + tb : |t− c∗m| 6

r′ − 1

8(n(r′, H) + 1)L(z∗)

}
.

Therefore, for each point z∗ + tb ∈ K∗ \
⋃

z∗+c∗mb∈K∗

K∗
m, inequality (3.5) is true and

thus, for these points z∗ + tb from inequalities L(z∗) > L(z∗ + tb)/λb(r
′) and (3.5)

it follows

|∂p+1
b

F (z∗ + tb)|

Lp+1(z∗)
6 (λb(r

′))p+1 |∂
p+1
b

F (z∗ + tb)|

Lp+1(z∗ + tb)
(3.6)

6 P3(λb(r
′))p+1 max

06j6p

{ |∂j
b
F (z∗ + tb)|

Lj(z∗ + tb)

}

6 P3(λb(r
′))p+1 max

06j6p

{ |∂j
b
F (z∗ + tb)|

Lj(z∗)
(λb(r

′))j
}

6 P3(λb(r
′))2p+1 max

06j6p

{ |∂j
b
F (z∗ + tb)|

Lj(z∗)

}
= P4wz∗(t),

where wz∗(t) = max{|∂j
b
F (z∗ + tb)|/Lj(z∗) : 0 6 j 6 p} and P4 = P3(λb(r

′))2p+1.

Let D be a sum of diameters K∗
m. Then D 6 2(r′ − 1)n(r′, H)/(8(n(r′, H) + 1)×

L(z∗)) < r′ − 1/(4L(z∗)). Therefore there exist numbers r1 ∈ [ 14r
′, 1

2r
′] and r2 ∈

[ 14 (3r
′ + 1); r′] such that for z∗ + tb ∈ Cj = {z∗ + tb : |t| = rj/L(z

∗)}, j ∈ {1, 2},

one has z∗ + tb ∈ K∗ \
⋃

c∗m∈K∗

K∗
m. Let z∗ + t1b ∈ C1 and z∗ + t2b ∈ C2 be

arbitrary points. We connect these points z∗ + t1b, z
∗ + t2b by a smooth curve

γ = {z∗ + t(s)b : 0 6 s 6 1} (i.e., z∗ + t(0)b = z∗ + t1b, z
∗ + t(1)b = z∗ + t2b) such

that wz∗(t) 6= 0 and γ ⊂ K∗ \
⋃

c∗m∈K∗

K∗
m.

Let us describe in detail the construction of this curve γ, using the ideas from the

proof in [9] with adapting them for the unit ball. First, let ℓ : t(s) = (t2 − t1)s+ t1,

s ∈ [0, 1] be the line segment connecting the points t1 and t2. Let t
∗
k = (t2−t1)sk+t1,

sk ∈ (0, 1) be points such that wz∗(t∗k) = 0. The number m0 = m0(z
∗+ t1b, z

∗+ t2b)
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of such points t∗k is finite. Without loss generality of our reasoning, we can assume

that (t∗k) is the sequence of these points in ascending order of values |t1 − t∗k|, k ∈

{1, 2, . . . , p}. We choose

r0 ∈
(
0,min

{
|t∗k − t∗k+1|, |t

∗
1 − t1|, |t

∗
m0

− t2|,
r′

4πL(z∗)
: 1 6 k 6 m0 − 1

})
.

We now choose circles γk centered at the points t
∗
k and with radii r

′
k < r0/2

k such

that wz∗(t) 6= 0 for all t on these circles. It is possible because F 6≡ 0.

Every such circle γk is divided into two semicircles by the line ℓ. The required

piecewise-analytic curve ℓ∗ consists of segments of line ℓ, which connect the circles

in series between themselves or with the points t1, t2, and of arcs of semicircles

of the constructed circles. If the curve ℓ∗ intersects a set K∗
m, then we replace

part of the curve ℓ∗ ∩ K∗
m with a semicircle centered at the point c

∗
m and radius

r′/(8(n(r′, H) + 1)L(z∗)). For the resulting curve, we keep the notation γ = ℓ∗.

From the construction of the curve γ described above, it can be seen that the

following estimate is valid for the length of the curve

(3.7) |γ| 6 |b|
(

πr1
L(z∗)

+
r2 − r1
L(z∗)

+
πr0

L(z∗)
+

πn(r′, H)r′

8(n(r′, H) + 1)L(z∗)

)

<
|b|

L(z∗)

(
πr′

2
+ r′ +

πr′

8

)
<

3|b|r′

L(z∗)
.

Then on γ, inequality (3.6) is valid, that is,

|∂p+1
b

F (z∗ + t(s)b)|

Lp+1(z∗)
6 P4wz∗(t(s)) for 0 6 s 6 1.

From the construction of the curve γ described above, it is also clear that the function

z = z∗+t(s)b : [0, 1] → C is piecewise analytic. Hence, for arbitrary k ∈ Z+, j ∈ Z+,

k 6 p, either

(3.8) (∀s ∈ [0, 1]) :
|∂k

b
F (z∗ + t(s)b)|

Lk(z∗)
≡

|∂j
b
F (z∗ + t(s)b)|

Lj(z∗)
,

or there exists a finite set of points sm ∈ [0; 1] such that

(3.9)
|∂k

b
F (z∗ + t(s)b)|

Lk(z∗)

∣∣∣∣
s=sm

=
|∂j

b
F (z∗ + t(s)b)|

Lj(z∗)

∣∣∣∣
s=sm

.

Hence, for the function wz∗(t(s)) = max{|∂j
b
F (z∗ + t(s)b)|/Lj(z∗) : 0 6 j 6 p}, two

cases are possible:
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(1) In an interval of analyticity of the curve γ the function wz∗(t(s)) identi-

cally equals simultaneously to some derivatives, that is, (3.8) holds. It means

that wz∗(t(s)) ≡ |∂j
b
F (z∗ + t(s)b)|/Lj(z∗) for some j 6 p. Clearly, the function

∂j
b
F (z∗ + t(s)b) is analytic. Then |∂j

b
F (z∗ + t(s)b)| is a continuously differentiable

function on the interval of analyticity except the points where this derivative equals

zero: |∂j
b
F (z∗ + t(s)b)| = 0. However, there are not the points, because in the

opposite case wz∗(t(s)) = 0. But it contradicts the construction of the curve γ.

(2) In an interval of analyticity of the curve γ, the function wz∗(t(s)) equals si-

multaneously to some derivatives at a finite number of points sk, that is, (3.9) holds.

Then the points sk divide the interval of analyticity into a finite number of seg-

ments, in which of them wz∗(t(s)) equals to one from the partial derivatives, i.e.,

wz∗(t(s)) ≡ |∂j
b
F (z∗ + t(s)b)|/Lj(z∗) for some j 6 p. As above, in each of these seg-

ments the functions |∂j
b
F (z∗ + t(s)b)|, and wz∗(t(s)) are continuously differentiable

except the points sk.

Therefore, the function |gz∗(t(s))| is continuous on [0, 1] and continuously differen-

tiable except, possibly, a finite set of points. Moreover, for a complex-valued function

of real variable the inequality

d

ds
|ϕ(s)| 6

∣∣∣
d

ds
ϕ(s)

∣∣∣

holds except the points s where ϕ(s) = 0. Therefore in view of (3.6) we obtain

d

ds
|gz∗(t(s))| 6 max

06j6p

{ d

ds

|∂j
b
F (z∗ + t(s)b)|

Lj(z∗)

}

6 max
06j6p

{ |∂j+1
b

F (z∗ + t(s)b)|

Lj+1(z∗)
|t′(s)|L(z∗)

}

6 max
06j6p+1

{ |∂j
b
F (z∗ + t(s)b)|

Lj(z∗)

}
|t′(s)|L(z∗)

6 P5|gz∗(t(s))||t′(s)|L(z∗),

where P5 = max{1, P4}. Hence, using (3.7), we have

∣∣∣ ln
|gz∗(t2)|

|gz∗(t1)|

∣∣∣ =
∣∣∣∣
∫ 1

0

1

|gz∗(t(s))|

d

ds
|gz∗(t(s))| ds

∣∣∣∣ 6 P5L(z
∗)

∫ 1

0

|t′(s)| ds

6 P5L(z
∗)|γ| 6 3|b|r′P5,

that is,

(3.10) |gz∗(t2)| 6 |gz∗(t1)| exp{3|b|r
′P5}.
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It is possible to choose t2 such that |gz∗(t2)| = |F (z∗ + t2b)| = max{|F (z∗ + tb)| :

z∗ + tb ∈ C2}. Hence and from inequality (3.10) we get

(3.11) max
{
|F (z∗ + tb)| : |t| =

3r′ + 1

4L(z∗)

}
6 max{|F (z∗ + tb)| : z∗ + tb ∈ C2}

= |F (z∗ + t2b)| = |gz∗(t2)|

6 |gz∗(t1)| exp{3|b|r
′P5}.

Recalling that z∗ + t1b ∈ C1 = {z∗ + tb : |t| = r1/L(z
∗)} and r1 ∈ [ 14r

′, 1
2r

′], for all

j ∈ {1, 2, . . . , p}, by Cauchy’s inequality in variable t on the circle {t ∈ C : |t− t1| =

r′/(4L(z∗))} we obtain

r′j

(4L(z∗))j
|∂j

b
F (z∗ + t1b)| 6 j! max

{
|F (z∗ + tb)| : |t− t1| =

r′

4L(z∗)

}

6 p! max
{
|F (z∗ + tb)| : |t| =

3r′

4L(z∗)

}
.

Thus,

(3.12) |gz∗(t1)| 6 p! max{1, (4/r′)p}max
{
|F (z∗ + tb)| : |t| =

3r′

4L(z∗)

}
.

We put P6 = p! max{1, (4/r′)p} exp{3|b|r′P5}. Then inequalities (3.11) and (3.12)

imply that

max
{
|F (z∗ + tb)| : |t| =

3r′ + 1

4L(z∗)

}
6 P6 max

{
|F (z∗ + tb)| : |t| =

3r′

4L(z∗)

}
.

Finally, by Theorem 2.1, the function F ∈ Bb(L,B
n). �
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