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MINIMIZING RISK PROBABILITY FOR INFINITE
DISCOUNTED PIECEWISE DETERMINISTIC
MARKOV DECISION PROCESSES

Haifeng Huo, Jinhua Cui and Xian Wen

The purpose of this paper is to study the risk probability problem for infinite horizon piece-
wise deterministic Markov decision processes (PDMDPs) with varying discount factors and
unbounded transition rates. Different from the usual expected total rewards, we aim to mini-
mize the risk probability that the total rewards do not exceed a given target value. Under the
condition of the controlled state process being non-explosive is slightly weaker than the corre-
sponding ones in the previous literature, we prove the existence and uniqueness of a solution
to the optimality equation, and the existence of the risk probability optimal policy by using
the value iteration algorithm. Finally, we provide two examples to illustrate our results, one
of which explains and verifies our conditions and the other shows the computational results of
the value function and the risk probability optimal policy.

Keywords: piecewise deterministic Markov decision processes, risk probability criterion,
optimal policy, the value iteration algorithm

Classification: 90C40, 60E20

1. INTRODUCTION

Piecewise deterministic Markov decision processes (PDMDPs) are significant dynamic
programming models that are widely used in many fields such as finance [5], commu-
nication networks [9, 15], neuro medicine [9, 15]. As is well known, the popularly used
performance criteria in PDMDPs are the expected criteria, see, (i) The finite horizon
expected criterion [5, 8, 9, 16]. Specifically, Davis [8, 9] considered the finite horizon
optimality problem for the uncontrolled case with bounded cost functions and bounded
jump rates, and established the relationship between the expected value and the op-
timality equation by exploiting an infinitesimal approach. Using the embedded chain
technique, Bauerle and Rieder [5] transformed the optimal control problem of PDMDPs
into discrete-time Markov decision processes (DTMDPs), and proved the existence of
the optimal policy and the optimality equation under the compactness-continuity condi-
tion. Different from the literature [5], Huang and Guo [16] established the corresponding
Hamilton-Jacobi-Bellman equation, and proved the existence of an optimal policy by us-
ing the infinitesimal approach. (ii)The expected average criterion [3, 10]. Costa et al. [3]
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studied the expected average control problem and established the optimality equation
by the discrete embedded chain technique. Dufour et al. [10] formulated the existence
condition of an optimal average continuous control through the vanishing factor method.
(iii) The discounted expected criterion [1, 4]. Almudevar [1] converted the infinite dis-
counted optimization problem from PDMDPs to DTMDPs and exploited the dynamic
programming method to compute the value function. Dufou and Costa [4] investigated
the infinite discounted expectation problem by using the infinitesimal approach, and es-
tablished the conditions for the existence and uniqueness to the solution of the optimality
equation.

All existing works are focused on investigating the performance of PDMDPs in terms
of the expected rewards. However, the expected criteria are risk-neutral and cannot
effectively describe the control system’s risk situation. Therefore, it is necessary to
introduce the risk probability criterion, which measures the probability that the total
rewards of the control system do not exceed a given value over a fixed period. The risk
probability performance analysis plays a vital role in the field of risk control, which is
widely applied to finance and insurance, such as ruin problems [5], reliability [17], and
maintenance [21]. According to the characteristics of holding time distribution of the
system states, the existing literature on the risk probability problems can be divided
into three categories:

(i) discrete-time Markov decision processes (DTMDPs), where the sojourn time of a
system state is a fixed constant; see, [23, 26, 27],

(ii) semi-Markov decision processes (SMDPs), where the sojourn time of a system state
follows arbitrary probability distribution; see, [18, 17],

(iii) continuous-time Markov decision processes (CTMDPs), where the sojourn time of
a system state follows an exponential distribution; see, [20, 19].

A common feature of all previous studies is that the system state remains unchanged
between jumps. PDMDPs [5, 9, 15] are more generalized stochastic models in which the
system states between jumps change according to a given flow function. On the other
hand, in many economic and financial systems (i. e., uncertain interest rates), the dis-
count factors are usually considered non-constant depending on the system states. These
features motivate us to investigate the risk probability criterion for infinite discounted
PDMDPs with the state-dependent factors.

In this paper, our goal is to establish the existence condition and the computational
method of the risk probability optimal policies for infinite discounted PDMDPs. Differ-
ent from considering only the system state in the expected case, to solve the risk proba-
bility optimality for PDMDPs, the reward levels need to be considered as a component
of extended states. Thus, the existing results of the expected rewards for PDMDPs
[3, 5, 8, 9, 10, 16] cannot be applied directly to our model. Since the choice of an action
under any policy in PDMDPs depends on the reward (or cost) levels and past states
as well as decision epochs, the history-dependent policies should be redefined with a
k-component internal history, see Definition 2.1. However, the system states are deter-
mined by a given flow function and the transition rates, the theoretical results of the
risk probability for DTMDPs [22, 23, 26], SMDPs [17, 18] and CTMDPs [19, 20] are not
suitable for the model of PDMDPs, see Remark 2.3 and 3.1.
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As a consequence, for any given redefined policy, initial system state and reward level,
we need to expand the state space and reconstruct the probability space (7) by the well-
known Ionescu Tulcea theorem. On account of the transition rate are unbounded, the
state process may be explosive. Then, a generalized drift condition needs to be estab-
lished to ensure that the state process is non-explosive, which is more general than those
in [17, 18, 19, 20] for SMDPs and CTMDPs, see Lemma 3.4 and Remark 3.5. To assure
the existence of the optimal policy of the risk probability based on the non-explosive
condition, we first establish a new fact in Theorem 3.7. Secondly, we use the dynamic
programming approach and the value iteration technique to solve the risk probability
optimality problem, including establishing the optimality equation, and the existence
and uniqueness of the solution for the optimality equation in Theorem 3.10, see Remark
3.11. Moreover, the value iteration algorithm is developed to approximate the risk prob-
ability optimal value, which together with Theorem 3.7 proves the existence of a risk
probability optimal policy. Finally, we explain the main results through two examples,
one of which is used to verify our conditions, and the other shows the effectiveness and
feasibility of the value iteration algorithm to calculate the value function and the optimal
policy.

Compared with the existing works [20, 25], there are three features in this paper: (i)
Our model is a generalization of CTMDPs, where a given drift function determines the
states between jumps, while the states between jumps remain unchanged in CTMDPs
[20]. Moreover, the state-dependent discount factor in this paper is more suitable to
the applications in the financial and engineering fields [13, 27], while only the constant
discount factor is considered in [20], see Remark 2.3. (ii) We provided an iteration
technique to establish the optimality equation, and prove that the value function is the
unique solution to the corresponding optimality equation. Since our model is different
from those in [20], we know that the optimality equation in Theorem 3.10 is different
from those in [20], see Remark 3.1. (iii) Although our model is more general, our
condition is weaker than that for CTMDPs with discounted risk probability [20]. To
assure the existence of the optimal policy of the risk probability, we establish the new
fact in Theorem 3.7 by only using the condition that the controlled state process is
non-explosive. In [20, 25], the non-explosive and first arrival conditions are both used
to assure the existence of optimal risk probability policies, as described in Remark 3.11.

The main structure of the present article comprises four parts. Section 2 describes the
infinite discounted risk probability control model of PDMDPs. Section 3 introduces the
solution to the optimality problem of the risk probability, including the existence and
computation of both the value function and the optimal policy of the risk probability.
Section 4 describes the use of a technique called value iteration to resolve the optimal
risk probability investment problem.

2. THE CONTROL MODEL

The model of infinite discounted risk probability PDMDPs contains a six-tuple of the
subsequent parts:

{E, (A(x) ⊆ A, x ∈ E), q(dy|x, a), ϕ(x, t), r(x, a), α(x)}, (1)
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(a) E represents a Borel state space endowed with a Borel σ-algebra B(E).

(b) A denotes a Borel action space endowed with a Borel σ-algebra B(A); A(x) ∈ B(A)
denotes a set of actions that can be selected in state x ∈ E; K := {(x, a)|x ∈ E, a ∈
A(x)} describes the admissible state-action pairs in the set.

(c) q(·|x, a) represents the transition rate,which is a signed kernel on B(E) given K
satisfying 0 ≤ q(D|x, a) ≤ +∞ with (x, a) ∈ K,x ̸∈ D ∈ B(E). Moreover, it is
assumed that the transition rates are conservative (i. e., q(E|x, a) = 0) and stable
(i. e., q∗(x) := supa∈A(x) qx(a) < ∞), where qx(a) := −q({x}|x, a) ≥ 0 for all
(x, a) ∈ K.

(d) ϕ(x, s) denotes a deterministic flow, which is a Borel-measurable function from
E ×R to E, and satisfies the following properties:

(i) for any s, t ≥ 0 and x ∈ E,

ϕ(x, t+ s) = ϕ(ϕ(x, t), s); (2)

(ii) for any x ∈ E, ϕ(x, ·) is continuous on R+ where R+ := [0,+∞).

In particular, for the case of ϕ(x, s) = x for any s ≥ 0, our model reduces to the
model of CTMDPs for [11, 12, 24].

(e) r(x, a) denotes the reward function, called a nonnegative measurable function from
K to R+.

(f) α(x) denotes the discount factor, which is related to the state x ∈ E.

The risk probability discounted piecewise deterministic Markov decision process elab-
orates as the following: At the initial time s0 = 0, the system state x0 is observed by
the decision maker. Meanwhile, there exists a reward level (goal) λ0 ∈ R+ for the
decision-maker to attempt to control the total rewards of the system operation are not
larger than the initial reward level λ0. Based on the observation information (x0, λ0)
of the system, the decision-maker selects the control action a0 ∈ A(x0). Consequently,
the system evolves in two ways: (i) The change of the system state is based on the
flow ϕ(x0, s)(s ∈ [s0, s1)) up to the time s1. Now, the system state jumps into a new
state x1 ∈ E, which is governed by transition rate q(dx1|x0, a0). (ii) During the pe-
riod [s0, s1), the decision maker obtains the rewards

∫ s1
0

e−
∫ s
0
α(ϕ(x0,t))dtr(ϕ(x0, s), a0)ds.

Then, a new decision-making moment s1 arrives. Here, considering the influence of the
varying discount factor, the remaining reward goal becomes λ̂1 = e

∫ s1
0 α(ϕ(x0,t))dt(λ0 −∫ s1

0
e−

∫ s
0
α(ϕ(x0,t))dtr(ϕ(x0, s), a0)ds). In terms of the historical information (x0, λ0, s1, x1,

λ̂1), the decision maker selects a control action a1 from the set A(x1). The evolution
of the system state is repeated in a manner similar to (i) and (ii). At the nth deci-
sion time sn, n = 0, 1, . . .., the decision-maker observes a series of historical information
(x0, λ̂0, θ1, x1, λ̂1, . . . , θn, xn, λ̂n) where λ̂0 := λ0, xn+1 is the system’s state after the

jump time sn+1; λ̂n represents the reward goal, and it satisfies

λ̂n+1 := e
∫ θn+1
0 α(ϕ(xn,t))dt(λ̂n −

∫ θn+1

0

e−
∫ s
0
α(ϕ(xn,t))dtr(ϕ(xn, s), an)ds), (3)
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by considering the varying discount factor into consideration. θn+1 := sn+1−sn denotes
the time interval between two neighborly jumps, an denotes the action. Thus, the
decision maker aims to minimize probability of the full rewards that cannot reach the
reward goal, which is defined by (9) below.

Different from the classical expectation criterion, the choice of an action under any
policy in risk probability PDMDPs depends on the additional reward (or cost) levels and
past states as well as decision epochs. To ensure a reasonable model, we first establish
the probability space. Now, the measurable space (Ω,F ) is established as follows: the
sample space Ω :=

⋃∞
n=0 Ωn

⋃
(E×R)×((0,+∞)×E×R)∞), and the corresponding Borel

σ-algebra F := B(Ω), where E∆ := E
⋃
{∆}, Ωn := {(x0, λ0, θ1, x1, λ1, . . . , θn, xn,

λn, θn+1, . . . ,∞,∆, ∞, . . .)| x0 ∈ E, λ0 ∈ R, xl ∈ E, λl ∈ R, θl ∈ (0,∞), for each
1 ≤ l ≤ n+ 1, n ≥ 0} with an artificial cemetery state ∆ ̸∈ E.

For any n ≥ 0, ω := (x0, λ0, θ1, x1, λ1, . . . , θn, xn, λn, θn+1, . . .) ∈ Ω, let hn(ω) :=
(x0, λ0, θ1, x1, λ1, . . . , θn, xn, λn) be the n-component history for n ≥ 1 and h0(ω) :=
(x0, λ0). Moreover, for n ≥ 0, some random variables Xn,Λn, Sn on (Ω,F ) are defined
as follows:

S0(ω) := θ0 = 0, Xn(ω) := xn,Λn(ω) := λn, Sn+1(ω) := sn+1 =

n+1∑
l=1

θl. (4)

In the following sections, the parameter ω is omitted for convenience. Then, the state
process {ξs, s ≥ 0} is defined by

ξs(ω) :=
∑
n≥0

I{Sn≤s<Sn+1}ϕ(Xn(ω), s− Sn(ω)) + ∆I{s≥S∞}, (5)

where S∞ := limn→∞ Sn, ID describes an indicator function on the setD. The controlled
operation after the moment S∞ is assumed to be embedded in the artificial cemetery
state ∆ ̸∈ E. Hence, it is recorded as q(·|∆, a∆) := 0, r(∆, a∆) := 0, A∆ := A ∪ {a∆}
with an isolated point a∆.

The idea of more general policies is introduced to effectively represent the optimiza-
tion problem.

Definition 2.1. A history-dependent policy π(ω, s) denotes a sequence π = {fn, n ≥ 0}
of Borel measurable mapping from Ω toA∆. For any ω = (x0, λ0, θ1, x1, λ1, . . . , θn, xn, λn,
. . .) ∈ Ω and s ≥ 0,

π(ω, s) = I{s=0}f0(x0, λ0) +
∑
n≥0

I{Sn<s≤Sn+1}fn(hn(ω)) + I{s≥S∞}δa∆
(da), (6)

where δa∆(da) represents the Dirac measure at the point a∆. Π stands for the set of all
deterministic history-dependent policies.

A policy π = {f0, f1, . . .} ∈ Π is called a Markov one, if fn(hn(ω)) = fM
n (xn, λn)

(n ≥ 0) for some measurable mapping fM
n from E∆ × R to A∆. The class of entire

Markov policies is described by Πm.
A Markov policy π = {fM

0 , fM
1 , . . .} ∈ Πm is called to be stationary, if fM

n (xn, λn) =
f(xn, λn)(n ≥ 0) for a measurable function f from E∆ × R to A∆. This stationary
policy is represented by f , and the set of all stationary policies is described as Πs for
simplicity. Clearly, Πs ⊂ Πm ⊂ Π.
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The set of histories up to the time s ≥ 0 is denoted by H0 = E × R and Hn =
(E × R) × ((0,∞] × E∆ × R)n, n = 1, 2, . . .. For each initial probability measure γ
on E × R and a policy π = {f0, f1, . . .} ∈ Π, the unique probability Pπ

γ on (Ω,F ) is
established by a theorem (Ionescu Tulcea) (e. g., Proposition 7.45 in [6]), which satisfies
the following properties:

Pπ
γ (Γ× (dθn+1,dxn+1,dλn+1)) :=

∫
Γ

Pπ
γ (dhn)I{θn<∞}q(dxn+1|ϕ(xn, θn+1), fn(hn))

× exp{−
∫ θn+1

0

qϕ(xn,u)(fn(hn))du} (7)

×δ
[e

∫ θn+1
0 α(ϕ(xn,t))dt(λn−

∫ θn+1
0 e−

∫u
0 α(ϕ(xn,t))dtr(ϕ(xn,u),fn(hn))du)]

(dλn+1) dθn+1,

Pπ
γ (Γ× (∞,∞,∆)) :=

∫
Γ

Pπ
γ (dhn){I{θn=∞} + I{θn<∞} (8)

× exp{−
∫ ∞

0

qϕ(xn,u)(fn(hn)) du}},

for Γ ∈ B(Hn), the corresponding expectation operator is described as Eπ
(x,λ) versus

the probability measure Pπ
(x,λ). If the distribution γ depends on state (x, λ), Pπ

(x,λ) and
Eπ
(x,λ) are used instead of Pπ

γ and Eπ
γ , respectively.

For any (x, λ) ∈ E × R, π ∈ Π, we define the infinite discounted risk probability of
PDMDPs:

Uπ(x, λ) := Pπ
(x,λ)

(∫ +∞

0

e−
∫ s
0
α(ξu)dur(ξs, πs)ds ≤ λ

)
, (9)

where r(ξs, πs)(ω) := r(ξs(ω), π(ω, s)) for all ω ∈ Ω and t ≥ 0. This criterion can be
used to measure the risk probability that the total rewards are no more than the reward
goal λ under the policy π.

Definition 2.2. The value function U∗(x, λ) of the infinite discounted risk probability
optimization problem is defined as

U∗(x, λ) = inf
π∈Π

Uπ(x, λ) for each (x, λ) ∈ E ×R. (10)

An optimal policy of risk probability policy is denoted by π∗ ∈ Π, if

Uπ∗
(x, λ) = U∗(x, λ). (11)

Remark 2.3. In contrast to risk probability problems for CTMDPs [20], the infinite
discounted risk probability problems appear more complicated because the deterministic
flow function and the state-dependent discount factor should be considered, while the
states evolve according to the deterministic flow function are unchanged and the state-
dependent discount factor is fixed constant in CTMDPs [20].

The current work aims to solve the infinite discounted risk probability optimality
problem for PDMDPs, investigate the condition for the existence of a risk probability
optimal policy, and build an approach to derive the value function.
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3. MAIN RESULTS

Let Um be the class of entire Borel-measurable mappings U : E × R → [0, 1], which
satisfies U(x, λ) = 0 for each (x, λ) ∈ E × (−∞, 0). For any U ∈ Um, x ∈ E, a ∈ A(x)
and f ∈ Πs, the operators Mf ,M on Um are defined as the following: if λ ≥ 0,

MaU(x, λ) := I[0,λ]

(∫ +∞

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), a)ds

)
e−

∫ +∞
0

qϕ(x,s)(a)ds

+

∫ +∞

0

∫
E\{ϕ(x,u)}

U
(
y, e

∫ u
0

α(ϕ(x,t))dt

×(λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), a)ds)

)
×e−

∫ u
0

qϕ(x,s)(a)dsq(dy|ϕ(x, u), a)du,
MfU(x, λ) := MfU(x, λ), (12)

MU(x, λ) := inf
a∈A(x)

MaU(x, λ). (13)

If λ < 0,

MfU(x, λ) = MaU(x, λ) = MU(x, λ) := 0, (14)

where qϕ(x,s)(a) := −q(ϕ(x, s)|ϕ(x, s), a).
Furthermore, the operators (Mf )n,Mn, n ≥ 2 on Um are also defined as follows:

(Mf )nU(x, λ) = Mf ((Mf )n−1U(x, λ)) and MnU(x, λ) = M(Mn−1U(x, λ)).

Let Ũm be the set of all Borel measurable functions Ṽ : E × R → [−1, 1], where

Ṽ (x, λ) = 0 if λ < 0. For any (x, λ) ∈ E×R, Ṽ ∈ Ũm, f ∈ Πs, the operators (M̃
f )nṼ , n ≥

1 are defined as the following:

M̃f Ṽ (x, λ) :=

∫ +∞

0

∫
E\{ϕ(x,u)}

Ṽ
(
y, e

∫ u
0

α(ϕ(x,t))dt

×(λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f(x, λ))ds)

)
×e−

∫ u
0

qϕ(x,s)(f)dsq(dy|ϕ(x, u), f(x, λ))du,
(M̃f )nṼ (x, λ) := Mf ((Mf )n−1Ṽ (x, λ)), n ≥ 2. (15)

Remark 3.1. Compared with the operators (12) and (14) in CTMDPs [20], we know
that the infinite discounted risk probability case in PDMDPs is more complex and
difficult to deal with than the case in CTMDPs [20].

Based on [5, 11, 20], the following condition is established to ensure the existence of
optimal policies.

Assumption 3.1. For any (x, λ) ∈ E ×R,
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(a) A(x) is compact.

(b) For all x, y ∈ E, the function c(x, a) and q(y|x, a) are continuous in a ∈ A(x).

(c) For each fixed U ∈ Um,
∫ +∞
0

∫
E\{ϕ(x,u)} U

(
y, eα(x)u(λ−

∫ u

0
e−α(x)sr(ϕ(x, s), a)ds)

)
×e−

∫ u
0

qϕ(x,s)(a)ds q(dy|ϕ(x, u), a)du is lower semi-continuous in a ∈ A(x).

Remark 3.2. Assumption 3.1 is also referred to as the continuity-compactness condi-
tion. The feature of the flow function makes Assumption 3.1 more extensive than the
standard continuity-compactness condition in [11, 20] for CTMDPs.

The operators have the following characteristics.

Lemma 3.3. Under Assumption 3.1, the subsequent assertions are fulfilled.

(a) If U, V ∈ Um, and U ≥ V , then MaU(x, λ) ≥ MaV (x, λ) for each a ∈ A(x), and
MU(x, λ) ≥ MV (x, λ) for each (x, λ) ∈ E ×R.

(b) If U ∈ Um, then an f ∈ Πs exists such that MU(x, λ) = MfU(x, λ) for each
(x, λ) ∈ E ×R.

P r o o f . (a) According to the definition of the operator M , it can be known that part
(a) is satisfied.

(b) For any (x, λ) ∈ E×R, under the continuity-compactness condition in Assumption
3.1, it can be seen from the measurable selection theorem (proposition D.5 in [14]) that
the existence of f ∈ Πs is proved. □

The state process can be explosive due to the unbounded transition rates, which
means that the state process jumps infinitely in a limited time. To avoid this situation,
the following condition needs to be established.

Assumption 3.2. For each π ∈ Π, (x, λ) ∈ E ×R, Pπ
(x,λ)(S∞ = ∞) = 1.

Assumption 3.2 is also referred to as the non-explosive condition of the state process
{ξs, s ≥ 0}. To verify Assumption 3.2, a generalized “drift condition” is established
based on [11, 13, 19] through the determined flow and transition rates.

Lemma 3.4. If W ≥ 1 on E with the parameters c0 > 0, b0 ≥ 0 represents a
measurable mapping satisfying

(a)
∫
E
W (ϕ(y, s))q(dy | x, a) ≤ c0W (ϕ(x, s)) + b0, for any (x, a) ∈ K, s ≥ 0;

(b) There is a sequence {En, n ≥ 1, En ⊆ E} which satisfies En ↑ E, limn→∞ infx/∈En

W (ϕ(x, s)) = ∞, supx∈En
q∗(x)< ∞ for all n ≥ 1 with s ≥ 0, q∗(x) = supa∈A(x) qx(a).

Then, Assumption 3.2 holds.
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P r o o f . Lemma 3.4 can be proved from [12, 16]. The histories include reward levels
and the structure of the probability measure Pπ

γ in (7) is slightly different from that in
[12, 16] for the expected criterion, there are some slight differences between our proof
and those in [12, 16], e. g., the equalities (A3) in [12, 16]. □

Remark 3.5. (a) The conditions of Lemma 3.4 are the extension of the drift condition
for CTMDPs [19, 20]. The main difference is that our model imposes the drift condition
on the transition rates and the determined flow function, while the model of CTMDPs
in [19, 20] only imposes some conditions on the transition rates. When the determined
flow function ϕ(x, s) = x for s ≥ 0, our conditions degenerate to the case of CTMDPs
in [19, 20].

(b) Under the bounded transition rates (i. e., supx∈E q∗(x)< ∞), Assumption 3.2 is
fulfilled by considering W ≡ 1, En ≡ E.

For any (x, λ) ∈ E×R and π ∈ Π, under Assumption 3.2, the state process {ξs, s ≥ 0}
is non-explosive. By the continuity of a probability measure, Uπ(x, λ) can be represented
as follows:

Uπ(x, λ) = Pπ
(x,λ)

(∫ +∞

0

e−
∫ s
0
α(ξt)dtr(ξs, πs)ds ≤ λ

)
= Pπ

(x,λ)

( ∞∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(ξt)dtr(ξs, πs)ds ≤ λ

)
= Pπ

(x,λ)

( ∞⋂
n=1

n∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(ξt)dtr(ξs, πs)ds ≤ λ

)
= lim

n→∞
Pπ
(x,λ)

( n∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(ξt)dtr(ξs, πs)ds ≤ λ

)
:= lim

n→∞
Uπ
n (x, λ).

Then, a monotone non-increasing sequence {Uπ
n (x, λ), n = −1, 0, 1, . . .} with Uπ

−1(x, λ) :=
I[0,∞)(λ) can be obtained.

To prove that U∗ is a solution to the corresponding optimality equation, several
lemmas need to be given.

Lemma 3.6. Assume that Assumptions 3.1 and 3.2 hold. Then, for any (x, λ) ∈ E ×
R,n ≥ −1, π = {f0, f1, . . .} ∈ Π.

(a) Uπ
n ∈ Um and Uπ ∈ Um;

(b) Uπ
n+1(x, λ) = Mf0U

1π
n (x, λ) and Uπ(x, λ) = Mf0U

1π(x, λ), where 1π := {f̃0, f̃1, ...}
denotes the 1-shift policy of π, f̃k(x1, λ1, . . . , θk+1, xk+1, λk+1) := fk+1(x, λ, θ1, x1,
λ1, . . . , θk+1, xk+1, λk+1), k = 0, 1, . . ..

When for any π = f ∈ Πs, U
f (x, λ) = MfUf (x, λ).



366 H.F. HUO, J.H. CUI, AND X. WEN

P r o o f . (a) For any (x, λ) ∈ E×(−∞, 0), π ∈ Π, by Remark 2.3, we know that part (a)
is true. For any (x, λ) ∈ E×R+, π ∈ Π, we prove parts (a) and (b) together by induction
for n ≥ −1. Clearly, Uπ

−1 = 1 ∈ Um. Assume that the results hold for n = −1, 0, . . . , k.
Then, by (7), the following is attained,

Uπ
k+1(x, λ)

= Pπ
(x,λ)

( k+1∑
m=0

∫ Sm+1

Sm

e−
∫ s
0
α(ξt)dtr(ξs, πs)ds ≤ λ

)
= Eπ

(x,λ)[I{
∫ S1
0 e−

∫ s
0 α(ϕ(x,t))dtr(ϕ(x,s),πs)ds≤λ,S1=∞}]

+Eπ
(x,λ)[I{

∑k+1
m=0

∫ Sm+1
Sm

e−
∫ s
0 α(ξt)dtr(ξs,πs)ds≤λ,S1<∞}

]

= I[0,λ](

∫ +∞

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)e

−
∫ +∞
0

qϕ(x,s)(f0)ds

+Eπ
(x,λ)[E

π
(x,λ)[I{

∑k+1
m=0

∫ Sm+1
Sm

e−
∫ s
0 α(ξt)dtr(ξs,πs)ds≤λ,S1<∞}

|ξS0 ,Λ0, S1, ξS1 ,Λ1]]

= I[0,λ](

∫ +∞

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)e

−
∫ +∞
0

qϕ(x,s)(f0)ds

+

∫ +∞

0

∫
E\{ϕ(x,u)}

Pπ
(x,λ)

( k+1∑
m=1

∫ Sm+1

Sm

e−
∫ s
0
α(ξt)dtr(ξs, πs)ds

≤ λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds|ξS0

= x,Λ0 = λ, S1 = u,

ξS1 = y,Λ1 = e
∫ u
0

α(ϕ(x,t))dt(λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)

)
×e−

∫ u
0

qϕ(x,s)(f0)dsq(dy|ϕ(x, u), f0)du

= I[0,λ](

∫ +∞

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)e

−
∫ +∞
0

qϕ(x,s)(f0)ds

+

∫ +∞

0

∫
E\{ϕ(x,u)}

Pπ
(x,λ)

( k+1∑
m=1

∫ Sm+1

Sm

e−
∫ l+u
0

α(ξt)dtr(ξl+u, πl+u)dl

≤ λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds|ξS0

= x,Λ0 = λ, S1 = u, ξS1
= y,

Λ1 = e
∫ u
0

α(ϕ(x,t))dt(λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)

)
×e−

∫ u
0

qϕ(x,s)(f0)dsq(dy|ϕ(x, u), f0)du

= I[0,λ](

∫ +∞

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)e

−
∫ +∞
0

qϕ(x,s)(f0)ds

+

∫ +∞

0

∫
E\{ϕ(x,u)}

P
1π

(y,e
∫u
0 α(ϕ(x,t))dt(λ−

∫ u
0

e−α(x)sr(ϕ(x,s),f0)ds))

×
( k∑

m=0

∫ Sm+1

Sm

e−
∫ s
0
α(ξt)dtr(ξs, πs)ds ≤ e

∫ u
0

α(ϕ(x,s))dt
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×(λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)

)
e−

∫ u
0

qϕ(x,s)(f0)dsq(dy|ϕ(x, u), f0)du

= I[0,λ](

∫ +∞

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)e

−
∫ +∞
0

qϕ(x,s)(f0)ds

+

∫ +∞

0

∫
E\{ϕ(x,u)}

U
1π
k

(
y, e

∫ u
0

α(ϕ(x,t))dt(λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), f0)ds)

)
×e−

∫ u
0

qϕ(x,s)(f0)dsq(dy|ϕ(x, u), f0)du
:= Mf0U

1π
k (x, λ).

Thus, through the induction, it can be obtained that Uπ
n ∈ Um and limn→∞ Uπ

n = Uπ ∈
Um.

(b) For each (x, λ) ∈ E ×R,n ≥ −1, according to the proof of part (a), we have

Uπ
n+1(x, λ) = Mf0U

1π
n (x, λ).

Letting n → ∞, based on the dominated convergence theorem, Uπ(x, λ) = Mf0U
1π(x, λ)

is attained. In particular, if π = f ∈ Πs, U
f (x, λ) = MfUf (x, λ). □

Theorem 3.7. Under Assumptions 3.1 and 3.2, for any (x, λ) ∈ E × R, f ∈ Πs, the
following assertions hold.

(a) If u, v ∈ Um, n ≥ 1, then (M̃f )n(u− v)(x, λ) ≤ P f
(x,λ)(Sn < ∞) on E ×R.

(b) If u, v ∈ Um, u(x, λ) − v(x, λ) ≤ M̃f (u(x, λ) − v(x, λ)), then u(x, λ) ≤ v(x, λ) on
E ×R.

(c) Uf ∈ Um is the unique solution to the equation Uf (x, λ) = MfUf (x, λ) on E ×R.

P r o o f . (a) The following expression is proved by induction

(M̃f )n(u− v)(x, λ) ≤ P f
(x,λ)(Sn < ∞) ∀ (x, λ) ∈ E ×R,n ≥ 1. (16)

When n = 1, for any (x, λ) ∈ E ×R, f ∈ Πs, since u, v ∈ Um, by (12), we know that

M̃f (u− v)(x, λ)

=

∫ +∞

0

∫
E\{ϕ(x,t)}

(u− v)
(
y, e

∫ t
0
α(ϕ(x,l))dl(λ−

∫ t

0

e−
∫ s
0
α(ϕ(x,l))dlr(ϕ(x, s), f)ds)

)
×e−

∫ t
0
qϕ(x,s)(f)dsq(dy|ϕ(x, t), f)dt,

≤
∫ +∞

0

∫
E\{ϕ(x,t)}

e−
∫ t
0
qϕ(x,s)(f)dsq(dy|ϕ(x, t), f)dt. (17)
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Moreover, by (7), we have

P f
(x,λ)(S1 < ∞)

= Ef
(x,λ)[E

f
(x,λ)[I{S1<∞}|ξS0 ,Λ0, S1, ξS1 ,Λ1]]

=

∫ +∞

0

∫
E\{ϕ(x,t)}

e−
∫ t
0
qϕ(x,s)(f)dsq(dy|ϕ(x, t), f)dt. (18)

Comparing (17) with (18), we know that (16) holds for n = 1.
Suppose that (16) is valid for n = k. For (x, λ) ∈ E × R, the following relation can

be derived from the induction

(M̃f )k+1(u− v)(x, λ)

= M̃f (M̃f )k(u− v)(x, λ)

=

∫ +∞

0

∫
E\{ϕ(x,t)}

(M̃f )k(u− v)
(
y, e

∫ t
0
α(ϕ(x,l))dl

(λ−
∫ t

0

e−
∫ s
0
α(ϕ(x,l))dlr(ϕ(x, s), f)ds)

)
×e−

∫ t
0
qϕ(x,s)(f)dsq(dy|ϕ(x, t), f)dt,

≤
∫ +∞

0

∫
E\{ϕ(x,t)}

P f

(y,e
∫ t
0 α(ϕ(x,l))dl(λ−

∫ t
0
e−

∫ s
0 α(ϕ(x,l))dlr(ϕ(x,s),f)ds))

(Sk < ∞)

×e−
∫ t
0
qϕ(x,s)(f)dsq(dy|ϕ(x, t), f)dt. (19)

Alternatively, by the characteristic of conditional expectation, we obtain

P f
(x,λ)(Sk+1 < ∞)

= Ef
(x,λ)[E

f
(x,λ)[I{Sk+1<∞}|ξS0 ,Λ0, S1, ξS1 ,Λ1]]

=

∫ +∞

0

∫
E\{ϕ(x,t)}

P f
(x,λ)

(
Sk+1 < ∞|ξS0 = x,Λ0 = λ, S1 = t,

ξS1
= y,Λ1 = e

∫ t
0
α(ϕ(x,l))dl(λ−

∫ t

0

e−
∫ s
0
α(ϕ(x,l))dlr(ϕ(x, s), f)ds)

)
×e−

∫ t
0
qϕ(x,s)(f)dsq(dy|ϕ(x, t), f)du

=

∫ +∞

0

∫
E\{ϕ(x,t)}

P f

(y,e
∫ t
0 α(ϕ(x,l))dl(λ−

∫ t
0
e−

∫ s
0 α(ϕ(x,l))dlr(ϕ(x,s),f)ds))

(Sk < ∞)

×e−
∫ t
0
qϕ(x,s)(f)dsq(dy|ϕ(x, t), f)dt. (20)

Comparing (19) with (20), the induction hypothesis holds. Thus, part (a) is proved.

(b) For each (x, λ) ∈ E ×R, f ∈ Πs, since u(x, λ)− v(x, λ) ≤ M̃f (u(x, λ)− v(x, λ)),
by induction and part (a), we have

u(x, λ)− v(x, λ) ≤ (M̃f )n(u− v)(x, λ) ≤ P f
(x,λ)(Sn < ∞) ∀n ≥ 1. (21)
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Letting n → ∞ in (21), and utilizing Assumption 3.2, the following expression holds

u(x, λ)− v(x, λ) ≤ lim
n→∞

P f
(x,λ)(Sn < ∞) = 0,

which implies u(x, λ) ≤ v(x, λ).

(c) According to Lemma 3.6 (b), it can be seen that Uf ∈ Um is a solution to the
equation Uf = MfUf on E×R for any f ∈ Πs. Suppose that there exists V

′ ∈ Um such
that V

′
= MfV

′
. Now, the definition of the operator yields V

′ − Uf = M̃f (V
′ − Uf )

on E ×R. Then, based on part (b), it can be seen that V
′
= Uf , and the uniqueness of

Uf is proved. □

Theorem 3.8. Assume that Assumptions 3.1 and 3.2 hold, for each (x, λ) ∈ E×R, let
U∗
−1 := I[0,+∞)(λ), U

∗
n+1 := MU∗

n, n ≥ −1. Then, limn→∞ U∗
n = U∗.

P r o o f . For any (x, λ) ∈ E × R, since U∗
n+1 := MU∗

n, n ≥ −1, by the monotonicity
of the operator M and U∗

−1 := I[0,+∞)(λ), we obtain 0 ≤ U∗
n+1 ≤ U∗

n ≤ 1. Then,

limn→∞ U∗
n := Ũ exists. We will prove that Ũ = U∗.

To prove Ũ ≤ U∗ by induction

U∗
n(x, λ) ≤ Uπ

n (x, λ), (22)

for any (x, λ) ∈ E ×R, π ∈ Π, n ≥ −1. When n = −1, for any π ∈ Π, since U∗
−1(x, λ) =

Uπ
−1(x, λ) := I[0,+∞)(λ), this fact holds. Assume that U∗

k (x, λ) ≤ Uπ
k (x, λ) for (x, λ) ∈

E × R, π ∈ Π. Then, the following expression can be obtained from the induction
hypothesis and Lemma 3.6(b):

U∗
k+1(x, λ) = MU∗

k (x, λ) ≤ MU
1π
k (x, λ) ≤ Mφ0

U
1π
k (x, λ) = Uπ

k+1(x, λ).

Thus, the induction hypothesis holds and U∗
n(x, λ) ≤ Uπ

n (x, λ) for any (x, λ) ∈ E×R, π =
{φ0, φ1, . . .} ∈ Π. Hence, letting n → ∞, we obtain Ũ(x, λ) ≤ Uπ(x, λ), indicating that
Ũ ≤ U∗ as π is arbitrary.

To show the opposite, it is first shown that for each (x, λ) ∈ E × R and n ≥ −1,
there exists a policy η ∈ ΠRM such that U∗

n(x, λ) = Uη
n(x, λ). This fact trivially holds

for n = −1, that is for any π ∈ ΠRM , U∗
−1(x, λ) = Uπ

−1(x, λ) = I[0,+∞)(λ). Assume that
there exists a policy η ∈ ΠRM such that U∗

k (x, λ) = Uη
k (x, λ) for k ≥ −1. Moreover,

the existence of f ∈ Πs satisfying MfU∗
k (x, λ) = MU∗

k (x, λ) is guaranteed from Lemma
3.3(b). Then, Letting θ = {f, η} ∈ ΠRM . Now, from the induction hypothesis and
Lemma 3.6(b), we obtain

U∗
k+1(x, λ) = MU∗

k (x, λ) = MfU∗
k (x, λ) = MfUη

k (x, λ) = Uθ
k+1(x, λ),

and the fact holds. Then, we further prove that there is a policy ξ ∈ ΠRM such that

U∗
n(x, λ) = Uξ

n(x, λ) ≥ Uξ(x, λ) ≥ U∗(x, λ),

which implies that letting n → ∞, Ũ ≥ U∗. This proves Ũ = U∗. □
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Remark 3.9. For each (x, λ) ∈ E × R, based on Theorem 3.8, we develop a so-called
the value iteration algorithm to derive the value U∗ as follows: Let U∗

−1 := I(−∞,0)(λ)
and U∗

n+1 = MU∗
n, n ≥ −1. Then, limn→∞ U∗

n = U∗.

Theorem 3.10. Under Assumptions 3.1 and 3.2, for any (x, λ) ∈ E×R, the subsequent
conclusions can be derived.

(a) U∗ is the unique solution of the corresponding optimality equation U∗ = MU∗.

(b) There exists a policy f∗ ∈ Πs such that U∗ = Mf∗
U∗ and U∗ = Uf∗

. Then,
the optimal policy of risk probability π∗ := {f̃∗

0 , f̃
∗
1 , . . . , f̃

∗
k , . . .} is optimal, where

f̃∗
0 (x, λ) := f∗(x, λ), f̃∗

1 (x, λ, θ1, x1, λ1) := f∗(x1, λ̂1), . . . ,

f̃∗
k (x, λ, θ1, x1, λ1, . . . , θk, xk, λk) := f∗(xk, λ̂k) for any (x, λ, θ1, x1, λ1, . . . , θk, xk, λk)
∈ Hk, k ≥ 0.

P r o o f . (a) For each (x, λ) ∈ E×R, π = {f0, f1, . . .} ∈ Π, based on Lemma 3.6(b) and
(13), the following expression holds

Uπ(x, λ) = Mf0U
1π(x, λ) ≥ Mf0U∗(x, λ) ≥ MU∗(x, λ),

which implies U∗(x, λ) ≥ MU∗(x, λ), as π is arbitrary.
To prove the converse, for any (x, λ) ∈ E × R, a ∈ A(x), by using Theorem 3.8 and

(13), we have
U∗
n+1(x, λ) = MU∗

n(x, λ) ≤ MaU∗
n(x, λ).

Hence, by applying the dominated convergence theorem and part (a), letting n → ∞,
we obtain

U∗(x, λ) ≤ MaU∗(x, λ),

which implies U∗(x, λ) ≤ MU∗(x, λ), as a ∈ A(x) is arbitrary. Then, U∗ = MU∗ is
proved.

For any (x, λ) ∈ E ×R, since U∗ = MU∗, according to Lemma 3.3(b), we know that
there exists a policy f∗ ∈ Πs such that

U∗ = Mf∗
U∗. (23)

Besides, suppose that U
′ ∈ Um is another solution to the risk probability optimality

equation U
′
= MU

′
. Correspondingly, the existence of f

′ ∈ Πs fulfilling

U
′
= Mf

′

U
′
. (24)

is guaranteed from Lemma 3.3(b). Combining (23) and (24), we have U∗ − U
′ ≤

M̃f
′

(U∗ − U
′
) and U

′ − U∗ ≤ M̃f∗
(U

′ − U∗), which together with Theorem 3.7(b)
indicates that U∗ = U

′
. The uniqueness of the solution U∗ has been proved. Since

U∗ = MU∗ = Mf∗
U∗ by Theorem 3.7(c), we obtain that U∗ = Uf∗

.

(b) For any (x, λ) ∈ E×R, k ≥ 0, let f̃∗
0 (x, λ) := f∗(x, λ), f̃∗

k (x, λ, θ1, x1, λ1, . . . , θk, xk,

λk) := f∗(xk, λ̂k), π
∗ := {f̃∗

0 , f̃
∗
1 , . . . , f̃

∗
k , . . .}. By part (b), (3), (6) and (7), for all k ≥ 0,

it can be obtained that P f∗

γ,k = Pπ∗

γ,k, which indicates that P f∗

γ = Pπ∗

γ , P f∗

γ (
∫ +∞
0

e−
∫ s
0
α(ξt)dt

r(ξs, π
∗
s ) ds ̸=

∫ +∞
0

e−
∫ s
0
α(ξt)dtr(ξs, f

∗) ds) = 0 and Uπ∗
(x, λ) = Uf∗

(x, λ) = U∗(x, λ).
Therefore, π∗ is optimal. □



Minimizing risk probability for infinite discounted piecewise deterministic Markov decision. . . 371

Remark 3.11. The new fact (16) in Theorem 3.7 is established using the condition
of Assumption 3.2 to guarantee the existence of the optimal policy of risk probability,
that is the controlled state process is non-explosive. However, the authors in [20] need to
establish the additional first passage condition, indicating that the system will gradually
reach the target set within a finite time for all the initial states. Then, it can be concluded
that the established condition is weaker than that in [20].

According to Theorem 3.10,the value iteration method could be employed to derive
the value U∗ as follows:

The value iteration algorithm:

Step 1: Let U∗
−1(x, λ) := I[0,∞)(λ), for (x, λ) ∈ E ×R.

Step 2: For each fixed (x, λ) ∈ E ×R, a ∈ A(x), n ≥ 0,

MaU∗
n(x, λ) = I[0,λ](

∫ +∞

0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), a)ds)e−

∫ +∞
0

qϕ(x,s)(a)ds

+

∫ +∞

0

∫
E\{ϕ(x,u)}

U
(
y, e

∫ u
0

α(ϕ(x,t))dt(λ−
∫ u

0

e−
∫ s
0
α(ϕ(x,t))dt

×r(ϕ(x, s), a)ds)
)
e−

∫ u
0

qϕ(x,s)(a)dsq(dy|ϕ(x, u), a)du,

U∗
n+1(x, λ) = min

a∈A(x)
{MaU∗

n(x, λ)}.

Step 3: If |U∗
n+1 − U∗

n| < 10−12, the value U∗
n+1 is approximately received as the

value function U∗. Otherwise, the program continues to run step 2 for n+ 1.

4. EXAMPLES

In this section, two examples are used to illustrate the main results of the discounted
optimality PDMDPs. The first example verifies the existence condition of the optimal
policy and the optimality equation. The second example uses the value iteration algo-
rithm to show the numerical calculations of the value function and the optimal policy
of risk probability.

Example 4.1. (Optimal control of an investment system) Consider a controlled invest-
ment system with the state x describing the enterprise’s capital value. When the status
of the system is x ∈ E := [0,+∞), the reward level is λ ∈ R+, the decision-maker can
borrow a loan a from a finite set A(x) ⊂ [0, x] to make a new investment plant. After
this action is selected, the system state evolves according to the determined flow function
ϕ(x, s) until the new state jump time. At this time, the system will reach a new state
Now, the system state jumps into a new state x1 ∈ E, which is governed by transition
rate q(dx1|x, a), and get some rewards at the rate r(x, a) ≥ 0. We formulate this system
as a piecewise deterministic MDPs with the state space E = [0,∞), the action space
A = [0,∞), the set of admissible actions A(x), the deterministic flow ϕ(x, s) = xe−s.
The transition rates can be described as

q(C|x, a) = (x− a+ 1)
[ ∫

C\{x}

1

x− a+ 1
e−y/(x−a+1)dy − δ{x}(C)

]
, (25)
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for (x, a) ∈ K,C ∈ B(E). For the system, the purpose of the decision maker is to derive
an optimal policy of risk probability.

The existence of the optimal policy of risk probability for the proposed model is
investigated. First, Assumption 3.2 is verified by taking W (x) = x+ 1. For (x, a) ∈ K,
we obtain ∫

E

W (ϕ(y, s))q(dy | x, a)

=

∫ ∞

0

(ye−s + 1)(x− a+ 1)
[ 1

x− a+ 1
e−y/(x−a+1)dy − δ{x}(dy)

]
= e−s(x− a+ 1)(1− a)

≤ e−s(x+ 1)

= W (ϕ(x, s)).

Then, condition (a) in Lemma 3.4 holds, where c0 = 1, b0 = 0.
Taking En = [0, n], n = 1, . . ., then En ↑ E, supx∈En

q∗(x) = n + 1 < ∞, and
limn→∞ infx/∈En

W (ϕ(x, s)) = limn→∞(ne−s +1) = ∞ for s > 0. Thus, condition (b) in
Lemma 3.4 is also verified. It follows from Lemma 3.4, we know that Assumption 3.2
holds. Since A(x) is a bounded closed set for x ∈ E, and it is confirmed that Assumption
3.1 and 3.2 hold. Also, the existence of an optimal policy of the risk probability is
guaranteed by using Theorem 3.10.

Example 4.2. (Optimal production management) Consider a production management
system of a industry corporation where the state x ∈ E := [0,+∞) denotes the number
of products, the constant k > 0 represents the product quantity threshold. At the initial
moment s = 0, when the company has a small number of products x ∈ (0, k), the
decision maker can use the production plan a ∈ {a11, a12} to expand the production
scale.When the company has a lot of products x ∈ [k,+∞), based on the initial reward
level λ0, the decision maker can choose the production plan a ∈ {a11, a12, a21, a22}.
Consequently, the change of the system state is based on the flow ϕ(x, s)(s ∈ [0, s1))
up to the time s1. At a new decision-making moment s1, the system state jumps
into a new state x1 ∈ E according to the transition rate q(dx1|x, a0). Considering
the influence of the varying discount factor α(·), the decision maker obtains the rewards∫ s1
0

e−
∫ s
0
α(ϕ(x,t))dtr(ϕ(x, s), a)ds. The system state undergoes repeated evolution. When

the company doesn’t have any products x = 0, the decision-maker cannot choose any
production plan (which is denoted by a01) and will not receive any reward r(0, a01) = 0.

We formulate this idle fund management system as a PDMDP, where the system
states between two jumps change according to the determined drift function ϕ(x, s) =
xes. The model parameters are provided as follows: The state threshold k = 2; the
state space E = [0,+∞); the action sets A(0) = {a01}, A(x) = {a11, a12} for x ∈ (0, 2);
A(x) = {a11, a12, a21, a22} for x ∈ [2,+∞); the discount factor is given by

α(x) =


1, x = 0;

x, 0 < x < 1;
1
2x , x ≥ 1.

(26)
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The transition rates are assumed to be as follows: for each D ∈ B(E), q(D|0, a01) = 0.
For x ∈ (0, 2) ∪ (2,+∞),

q(D|x, a11) =


0.056, D = {0};
−0.28, D = {x};
0.224, D = {2};
0, others.

q(D|x, a12) =


0.056, D = {0};
−0.08, D = {x};
0.024, D = {2};
0, others.

(27)

For x = 2,

q(D|2, a11) =


0.28, D = {0};
−0.28, D = {2};
0, others.

q(D|2, a12) =


0.08, D = {0};
−0.08, D = {2};
0, others.

(28)

For x ∈ [2,+∞),

q(D|x, a21) =


0.084, D = {0};
0.056, D = {1};
−0.14, D = {x};
0, others.

q(D|x, a22) =


0.13, D = {0};
0.13, D = {1};
−0.26, D = {x};
0, others.

(29)

For each x ∈ E, the reward rates is provided as

r(0, a01) = 0, r(x, a11) = x, r(x, a12) = 2x, r(x, a21) =
√
x, r(x, a22) = 2

√
x.

For this system, the decision-maker mainly focuses on the existence of the optimal risk
probability policy and the calculation of the value function.

First, we need to verify Assumption 3.2 to assure the existence of the optimal policy
of the risk probability. Since the set A(x) is finite for any x ∈ E, by Remark 3.2 we know
that Assumption 3.1 is satisfied. Based on the uniform boundedness of the transition
rates in (27)-(29), we know that Assumption 3.2 holds. Then, from Theorem 3.10, the
existence of the discounted optimal policy of the risk probability.

To further show the feasibility and effectiveness of the algorithm, we choose the
calculation result of the system in state x ∈ {0, 1, 2} as an example. When the system
appears in other states, it can be calculated similarly. Since r(0, a01) = 0, we know
that U∗(0, λ) = I[0,+∞)(λ). The value iteration method is exploited to derive the value
U∗(1, λ) and U∗(2, λ) as follows :

Step 1: For λ ∈ R+ and x ∈ [0,+∞), let U∗
−1(x, λ) := 1.

Step 2: For x = 1, n ≥ 0,

Ma11U∗
n(1, λ) = 0.2× (1− e−0.56 ln(λ/2+1))

+ 0.8× 0.28×
∫ +∞

0

U∗
n(2, e

0.5u(λ−
∫ u

0

e0.5sds))e−0.28u du, (30)
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Ma12U∗
n(1, λ) = 0.3× (1− e−0.16 ln(λ/4+1))

+ 0.7× 0.08×
∫ +∞

0

U∗
n(2, e

0.5u(λ− 2

∫ u

0

e0.5sds))e−0.08u du,

U∗
n+1(1, λ) = min{Ma11U∗

n(1, λ),M
a12U∗

n(1, λ)}.

For x = 2, n ≥ 0,

Ma11U∗
n(2, λ) = 1− e−0.6 ln(1+ 3

8λ),

Ma12U∗
n(2, λ) = 1− e−

8
75 ln(1+ 3

16λ),

Ma21U∗
n(2, λ) = 0.6× (1− e−0.56 ln(

√
2λ
8 +1))

+0.4× 0.14×
∫ +∞

0

U∗
n(1, e

0.25u(λ−
√
2

∫ u

0

e0.25sdds))e−0.14u du,

Ma22U∗
n(2, λ) = 0.5× (1− e−1.04 ln(

√
2λ
16 +1))

+0.5× 0.26×
∫ +∞

0

U∗
n(1, e

0.25u(λ− 2
√
2

∫ u

0

e0.25sds))e−0.26u du,

U∗
n+1(2, λ) = min{Ma11U∗

n(2, λ),M
a12U∗

n(2, λ),M
a21U∗

n(2, λ),M
a22U∗

n(2, λ)}.

Step 3: If |U∗
n+1 −U∗

n| < 10−12, the program goes to step 4. Then, U∗
n+1 is approxi-

mately received as the value function U∗; otherwise, the program continues to run step
2 for n+ 1.

Step 4: Drawing the figures of MaU∗
n(x, λ), U

∗(x, λ), x ∈ {1, 2} by using Matlab
software, see Figure 1 and Figure 2.

Remark 4.1. It is worth pointing out that the integral in (30) is calculated by the
trapezoidal integration method in [21] with t = e0.5u(λ + 2) − 2eu, which is shown as
follows:∫ +∞

0

U∗
n(2, e

0.5u(λ−
∫ u

0

e0.5sds))e−0.28u du

=

∫ +∞

0

U∗
n(2, (e

0.5u(λ+ 2)− 2eu))e−0.28u du

= 2

∫ λ

0

U∗
n(2, t)(

(λ+ 2) +
√

(λ+ 2)2 − 8t

4
)−1.56 1√

(λ+ 2)2 − 8t
dt

≈
l−1∑
k=0

[U∗
n(2, kh)(

(λ+ 2) +
√
(λ+ 2)2 − 8kh

4
)−1.56 1√

(λ+ 2)2 − 8kh

+U∗
n(2, (k + 1)h)(

(λ+ 2) +
√
(λ+ 2)2 − 8(k + 1)h

4
)−1.56 1√

(λ+ 2)2 − 8(k + 1)h
]
h

2
,

where k ≤ l, k, l ∈ N, lh = λ, h is the step length, N is the set of all positive integers.
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Fig. 1. The function MaU∗(x, λ).

Reward level λ 

0 50 100 150

U
* (x

,λ
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

U
*
(1,λ)

U
*
(2,λ)

Fig. 2. The value function U∗(x, λ).

According to the value function calculation and Figures 1 and 2, we obtain the fol-
lowing conclusions.
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(a) In Figure 1, we know that when the system state x = 1, λ ∈ (0, 20.9), the value
Ma12U∗(1, λ) is lower than thatMa11U∗(1, λ); if λ ∈ [20.9,+∞), the valueMa11U∗(1, λ)
is lower than that Ma12U∗(1, λ). When the system state x = 2, λ ∈ (0, 79.9), the value
Ma22U∗(2, λ) is the minimum value. λ ∈ [79.9,+∞), the value Ma21U∗(2, λ) is the
minimum value. This implies that in state x = 1, if λ ∈ (0, 20.9), the decision maker
should choose low-risk action a12 instead of the action a11. Conversely, if λ ∈ [20.9,+∞),
the decision maker should choose low-risk action a11 instead of the action a12. In state
x = 2, if λ ∈ (0, 79.9), the decision maker should choose low-risk action a22 instead of
other actions. if λ ∈ [79.9,+∞), the decision maker should choose low-risk action a21
instead of other actions.

(b) As seen in Figures 1 and 2, when the system state x ∈ {1, 2}, the choice of optimal
action is based on the following expression:

f∗(1, λ) =

{
a12, 0 ≤ λ < 20.9;

a11, λ ≥ 20.9.
, f∗(2, λ) =

{
a21, 0 ≤ λ < 79.9;

a22, λ ≥ 79.9.
(31)

At the initial time s0 = 0, if the system state (x0, λ0) and (31) the control action
f̃∗
0 (x0, λ0) := f∗(x0, λ0) ∈ A(x0) is chosen by the decision maker. Consequently, accord-
ing to ϕ(x0, s) = x0e

s(s ∈ [s0, s1)) the system states evolve up to the time s1. Now,
the system enters a new state x1. During the period [s0, s1), the decision maker gets
the reward

∫ s1
0

e−
∫ s
0
α(ϕ(x0,t))dtr(ϕ(x0, s), f̃

∗
0 )ds. At time s1, according to the histori-

cal information (x0, λ0, θ1, x1, λ̂1) and (31), the decision-maker selects a control action

f̃∗
1 (x0, λ0, θ1, x1, λ1) := f∗(x1, λ̂1) ∈ A(x1), where the remaining reward goal becomes

λ̂1 = e
∫ θ1
0 α(ϕ(x0,t))dt(λ0 −

∫ θ1
0

e−
∫ s
0
α(ϕ(x0,t))dtr(ϕ(x0, s), f̃

∗
0 )ds). The development of the

system is repeated. Now, the optimal policy of the risk probability π∗ = {f̃∗
0 , f̃

∗
1 , . . .} is

determined from Theorem 3.10 and (31).
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