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KYBERNET IKA — VOLUME 6 0 ( 2 0 2 4 ) , NUMBER 3 , PAGES 3 9 4 – 4 1 1

ASYMPTOTIC FUZZY CONTRACTIVE MAPPINGS
IN FUZZY METRIC SPACES

Dhananjay Gopal, Juan Mart́ınez-Moreno and Rosana Rodŕıguez-López

Fixed point theory in fuzzy metric spaces has grown to become an intensive field of research.
However, due to the complexity involved in the nature of fuzzy metrics, the authors need to
develop innovative machinery to establish new fixed point theorems in such kind of spaces. In
this paper, we propose the concepts of asymptotic fuzzy ψ-contractive and asymptotic fuzzy
Meir–Keeler mappings, and describe some new machinery by which the corresponding fixed
point theorems are proved. In this sense, the techniques used for the proofs in Section 5 are
completely new.

Keywords: fuzzy metric space, asymptotic fuzzy ψ-contractive mapping, asymptotic fuzzy
Meir–Keeler mapping, fixed point

Classification: 54H25, 47H10

1. INTRODUCTION

Asymptotic fixed point theory deals with the conditions describing the behavior of the
iterates of a mapping. In 2003, Kirk [13] obtained a result which is an asymptotic ver-
sion of the fixed point theorem by Boyd and Wong [2] (see also [12]), whereas Suzuki
introduced in [25] the notion of asymptotic contraction of Meir–Keeler type and gen-
eralized Kirk results. The beauty of asymptotic contractions is that they are not even
non-expansive and, hence, they are not iteratively equivalent to any class of contrac-
tions. However, at the same time, the most arduous part of research in this topic is to
give constructive proofs of metrical fixed point theorems for this kind of mappings (see,
for example, [12, 17]).

On the other hand, fuzzy metric fixed point theory seems to be more diverse than the
regular metric fixed point theory. This is due to the pliability exhibited in the concept
of fuzzy metric. Therefore, to study fixed point theory in such spaces, one might need
to use or develop new fuzzy mathematical tools (see, for example, [4, 5, 6, 8, 22, 23, 24],
in order of appearance). This aspect might be the reason that no results on asymptotic
mappings in the fuzzy setting have appeared in the literature, and even there are just
few results on the topic in the context of classical metric spaces. In this paper, we
make an attempt to introduce the fuzzy version of asymptotic contractions and to give
constructive proofs of the corresponding fixed point theorems.
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The structure of this paper is as follows. In Section 2, we show some preliminary
concepts and results that will be of interest for the remainder of the paper. In Section
3, we introduce the concept of asymptotic fuzzy ψ-contractive mappings and, then,
we establish a fixed point theorem for such mappings by proving a cycle of auxiliary
results. In Section 4, we first prove a characterization theorem for asymptotic fuzzy
ψ-contractive mappings on compact spaces. Consequently, an example is constructed
to show that the class of fuzzy asymptotic contractions is not equivalent to any known
classes of fuzzy contractive mappings (e. g., fuzzy ψ-contractions [19], fuzzy Meir–Keeler
contractions [26], fuzzy-Z-contractions [24]). In Section 5, we introduce the concepts
of asymptotic fuzzy contractions of Meir–Keeler type of first and second kinds, and
prove the corresponding fixed point theorems. The techniques used for the proofs in
this section are completely new. Finally, in Section 6, some conclusions are presented.

2. PRELIMINARIES

In this section, we state some basic concepts which will be needed in the sequel.

Definition 2.1. (Schweizer and Sklar [21]) A mapping ∗ : [0, 1]× [0, 1] → [0, 1] is called
a continuous triangular norm (t-norm, for short) if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative, i. e., a ∗ b = b ∗ a and a ∗ (b ∗ c) = (a ∗ b) ∗ c, for
all a, b, c ∈ [0, 1];

(ii) ∗ is continuous;

(iii) 1 ∗ a = a, for all a ∈ [0, 1];

(iv) a ∗ b ≤ c ∗ d, whenever a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1].

Some basic examples of t-norms are the minimum t-norm ∗m, a ∗m b = min{a, b}, the
product t-norm ∗p, a∗p b = ab, or the  Lukasiewicz t-norm ∗L, a∗L b = max{a+ b−1, 0},
for all a, b ∈ [0, 1].

We say that the t-norm ∗ satisfies the cancellation law if a ∗ b = a ∗ c implies a = 0,
or b = c.

In the following definition, we denote ∗ma := a∗ m· · · ∗a, for m ∈ N.

Definition 2.2. (Hadžić and Pap [11]) A t-norm ∗ is said to be of H-type if the sequence
{∗ma}∞m=1 is equicontinuous at a = 1, i. e., for all ε ∈ (0, 1), there exists η ∈ (0, 1) such
that, if a ∈ (1 − η, 1], then ∗ma > 1 − ε, for all m ∈ N.

The most important and well known continuous t-norm of H-type is ∗ = min. Other
examples can be found in [11].

Definition 2.3. (George and Veeramani [3]) A fuzzy metric space (for short, GV-
fuzzy metric space) is an ordered triple (X,M, ∗) such that X is a (nonempty) set, ∗ is
a continuous t-norm and M is a fuzzy set on X × X × (0,∞) satisfying the following
conditions, for all x, y, z ∈ X and t, s > 0:
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(GV1) M(x, y, t) > 0;

(GV2) M(x, y, t) = 1 if and only if x = y;

(GV3) M(x, y, t) = M(y, x, t);

(GV4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);

(GV5) M(x, y, ·) : (0,∞) → (0, 1] is continuous.

Remark 2.4. Note that, in this context, condition (GV2) in Definition 2.3 has the
following meaning:

M(x, x, t) = 1 for all x ∈ X and t > 0, and M(x, y, t) < 1 for all x ̸= y and t > 0.

For the topological properties of a fuzzy metric space, the reader is referred to [3].

Definition 2.5. (George and Veeramani [3]; Schweizer and Sklar [21]) Let (X,M, ∗)
be a fuzzy metric space and {xn} be a sequence in X. Then {xn} is called an M -
Cauchy sequence if, for each ε ∈ (0, 1) and each t > 0, there is n0 ∈ N such that
M(xn, xm, t) > 1 − ε, for all n,m ≥ n0.

The sequence {xn} is called convergent, and it converges to x, if, for each ε ∈ (0, 1)
and each t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1 − ε, for all n ≥ n0.

We say that the space (X,M, ∗) is M -complete if every M -Cauchy sequence in X is
convergent to some x ∈ X.

Definition 2.6. (George and Veeramani [3]) Let (X,M, ∗) be a fuzzy metric space.
A collection of non-empty sets {Ai}i∈I in X is said to have fuzzy diameter zero if,
for each r ∈ (0, 1) and t > 0, we can find ir,t ∈ I (depending on r and t) such that
M(x, y, t) > 1 − r for all x, y ∈ Air,t .

Definition 2.7. (Gregori et al. [9]) Let (X,M, ∗) be a fuzzy metric space. The fuzzy di-
ameter of a (non-empty) setA ofX, with respect to t, is the function ϕA : (0,+∞) → [0, 1] ,
also denoted by diam(A), given by ϕA(t) := inf{M(x, y, t) : x, y ∈ A}, for each t > 0.

Proposition 2.8. (Gregori et al. [9]) The function ϕA is well-defined and, in addition,
it satisfies the following properties:

(i) If s < t, then ϕA(s) ≤ ϕA(t).

(ii) If A ⊆ B, then ϕA(t) ≥ ϕB(t).

(iii) ϕA(t) = 1, for some t if, and only if, A is a singleton set.

We say that a mapping T : X → X has a contractive fixed point x∗, if x∗ = Tx∗

and Tnx → x∗ for all x ∈ X. Similarly, we say that a mapping T : X → X has
an approximate fixed point if there exists x ∈ X such that x ∈ Fix(T ) and, given a
sequence {xn}, if d(xn, Txn) → 0, then xn → x.
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3. MAIN RESULTS

Now, we state the main results of this paper.

Definition 3.1. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X → X is said
to be an asymptotic fuzzy ψ-contractive mapping if there exists a sequence of functions
ψn : [0, 1] → [0, 1] such that

(A1) M(x, y, t) > 0 ⇒M(Tnx, Tny, t) ≥ ψn(M(x, y, t)),

for all x, y ∈ X and for each t > 0,

(A2) ψn converges to ψ uniformly on [0, 1], and

(A3) ψ is continuous, non-decreasing, and ψ(t) > t, for every t ∈ (0, 1).

The following theorem is our main result.

Theorem 3.2. Let (X,M, ∗) be an M-complete fuzzy metric space, where ∗ is an
H-type t-norm, and let T : X → X be a uniformly continuous asymptotic fuzzy ψ-
contractive mapping such that the mapping ψ : [0, 1] → [0, 1] satisfies the condition:

lim sup
s→0+

ψ(s) > 0. (1)

Then T has a unique fixed point x∗. Moreover, x∗ is both contractive and approximate
fixed point.

The proof of Theorem 3.2 will be preceded by a cycle of auxiliary results.

First, we establish the following notation. Given a nondecreasing sequence {bn} ⊂
(0, 1] such that bn → 1 as n→ ∞, we define the family of sets:

An = {x ∈ X : M(x, Tx, t) ≥ bn}, n ∈ N. (2)

Lemma 3.3. Let T be a continuous asymptotic fuzzy ψ-contractive mapping from a
fuzzy metric space (X,M, ∗) into itself. Then

lim sup
n→∞

M(Tnx, Tny, t) = 1, for every x, y ∈ X and t > 0. (3)

P r o o f . The condition (3) is trivially true if x = y. So let x ̸= y and assume that
0 < l := lim sup

n→∞
M(Tnx, Tny, t) < 1. In the case where T kx = T ky for some k ∈ N and

x, y ∈ X, since T is continuous, we have T k+1x = T (T kx) = T (T ky) = T k+1y. This
implies that Tnx = Tny for every n ∈ N large enough and, hence,

lim
n→∞

M(Tnx, Tny, t) = 1.

So let T kx ̸= T ky for any k ∈ N and x, y ∈ X, then, by (A1), we have

M(Tn+kx, Tn+ky, t) ≥ ψn(M(T kx, T ky, t)), for every k ∈ N and t > 0,
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i. e.,

l = lim sup
n→∞

M(Tn+kx, Tn+ky, t) ≥ lim sup
n→∞

ψn(M(T kx, T ky, t)) = ψ(M(T kx, T ky, t)).

In particular, for every t > 0, l ≥ ψ(M(T kmx, T kmy, t)), where {km} is an increasing
sequence of positive integers such that M(T kmx, T kmy, t) → l as m→ ∞.

Therefore, using the continuity of ψ and taking the limit as m → ∞ in the previous
inequality, we have l ≥ ψ(l), which contradicts (A3). This proves that

lim sup
n→∞

M(Tnx, Tny, t) = 1,

for every x, y ∈ X and t > 0. □

Lemma 3.4. Let (X,M, ∗) be a fuzzy metric space, T : X → X be an asymptotic fuzzy
ψ-contractive mapping with lims→1 ψ1(s) = 1, and {xn} be a sequence in X such that
M(xn, Txn, t) → 1 as n→ ∞ for every t > 0. Then, for all k ∈ N,

lim
n→∞

M(xn, T
kxn, t) = 1, for every t > 0. (4)

P r o o f . We apply the induction principle. By hypothesis, condition (4) is satisfied
for k = 1. Assume that (4) holds for some k ∈ N. Then, by the asymptotic fuzzy
ψ-contractivity and the assumption on ψ1, we get

M(xn, T
k+1xn, t) ≥M(xn, Txn, t/2) ∗M(Txn, T (T kxn), t/2)

≥M(xn, Txn, t/2) ∗ ψ1(M(xn, T
kxn, t/2)) → 1 as n→ ∞.

Thus, lim
n→∞

M(xn, T
k+1xn, t) = 1, and (4) holds for k + 1. □

Remark 3.5. The conclusion of Lemma 3.4 is still valid if we replace the condition
lims→1 ψ1(s) = 1 by the uniform continuity of the mapping T , in the sense that

if lim
n→∞

M(xn, yn, t) = 1, ∀t > 0, then lim
n→∞

M(Txn, T yn, t) = 1, ∀t > 0.

Lemma 3.6. Let (X,M, ∗) be a fuzzy metric space and let the sets An be defined
by (2). Then diam(An) → 1 as n → ∞ iff given arbitrary sequences {xn} and {yn}
in An, conditions M(xn, Txn, t) → 1 and M(yn, Tyn, t) → 1 as n → ∞ imply that
M(xn, yn, t) → 1 as n→ ∞.

P r o o f . The necessity part is obvious because of the triangular property of the fuzzy
metric. To show the sufficiency, since An+1 ⊆ An, by Proposition 2.8(ii), we get
diam(An+1) ≥ diam(An). Since we have a monotonic sequence and bounded from
above (by 1), hence diam(An) → l, as n → ∞, for some l ∈ [0, 1]. Suppose that l ̸= 1,
i. e., 0 ≤ l < 1, then, there exists 0 < s ≤ l such that 0 ≤ diam(An) < 1 − s for every
n ∈ N. Hence, there are xn, yn ∈ An such that

0 ≤M(xn, yn, t) < 1 − s
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so that M(xn, yn, t) ̸→ 1 as n → ∞. On the other hand, by (2), we get that both the
sequences M(xn, Txn, t) → 1 and M(yn, T yn, t) → 1 as n → ∞. So, by hypothesis,
M(xn, yn, t) → 1, which is a contradiction. Thus, l = 1. □

Lemma 3.7. Let T be an asymptotic fuzzy ψ-contractive mapping with either T uni-
formly continuous, or lims→1 ψ1(s) = 1. Let An be defined by (2). Then diam(An) → 1,
as n→ ∞.

P r o o f . We apply Lemma 3.6. So let {xn} and {yn} be such that both sequences
{M(xn, Txn, t)} and {M(yn, T yn, t)} converge to 1, for all t > 0. Let an(t) = M(xn, yn, t)
and bn,k(t) = M(xn, T

kxn, t) ∗M(yn, T
kyn, t) for every k ∈ N. Let {ψn} and ψ be as in

Definition 3.1. Then, given ε ∈ (0, 1), there exists k ∈ N such that

ψk(t) > ψ(t) ∗ ε, ∀ t > 0. (5)

So, by (A1) and (5), we have

an(3t) ≥ M(xn, T
kxn, t) ∗M(yn, T

kyn, t) ∗M(T kxn, T
kyn, t)

≥ bn,k(t) ∗ ψk(M(xn, yn, t))

= bn,k(t) ∗ ψk(an(t))

≥ bn,k(t) ∗ ψ(an(t)) ∗ ε. (6)

Hence, by Remark 3.5 (or Lemma 3.4),

lim
n→∞

M(Txn, T
2xn, t) = 1, ∀t > 0

and, similarly,

lim
n→∞

M(xn, T
2xn, t) = 1, ∀t > 0.

Analogously,

lim
n→∞

M(xn, T
kxn, t) = 1, ∀t > 0,

for every k ∈ N, and, analogously for {yn}. This proves that limn→∞ bn,k(t) = 1, for
every k ∈ N. So, taking the limit on both sides of (6), we get

lim
n→∞

an(3t) ≥ ε ∗ lim
n→∞

ψ(an(t)). (7)

Since ε ∈ (0, 1) is arbitrary, we have

lim
n→∞

an(3t) ≥ lim
n→∞

ψ(an(t)).

Suppose that lim
n→∞

an(t) → s ̸= 1. Then, the above inequality reduces to lim
n→∞

an(3t) ≥
lim
n→∞

ψ(an(t)) i. e. s ≥ ψ(s) > s, a contradiction. Thus lim
n→∞

an(t) → 1 and it suffices to

apply Lemma 3.6 to completes the proof. □
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P r o o f . [Proof of Theorem 3.2] Let the sets An is defined by (2). Lemma 3.3 yields
that

lim
n→∞

M(Tnx, Tn+1x, t) = 1 for every x ∈ X and for every t > 0,

which implies that the sets An are non-empty.
Let x, y ∈ An. Then, we have

M(x, y, t) ≥ M(x, Tx, t/3) ∗M(y, Ty, t/3) ∗M(Tx, Ty, t/3)

≥ bn ∗ bn ∗ ψ(bn)

> bn ∗ bn = bn

(since ∗ is continuous H-type t-norm, so there exists a sequence {bn} such that bn ∈ (0, 1],
bn → 1 and bn ∗ bn = bn (see [11] Theorem 8 p. 366)), i. e., {An} has fuzzy diameter
zero. So we conclude that ⋂

n∈N
An = x∗ = Fix(T ).

We show that x∗ is an approximate fixed point. Assume that M(xn, Txn, t) → 1. Set
yn = x∗ for every n ∈ N. Then, by Lemma 3.6, we get M(xn, x

∗, t) → 1. In particular,
given x ∈ X if xn = Tnx, then M(xn, Txn, t) → 1 and the above arguments gives
Tnx→ x∗. i. e. x∗ is a contractive fixed point. □

Remark 3.8. Mimicking Remark 4 in ([12], p. 154), the following question is worthy to
consider:

Question: Does Theorem 3.2 remain true if “uniform continuity of T” is replaced by
continuity?

The following result will be used in the next section.

Proposition 3.9. Let ψ(t) = 1 for every t ∈ (0, 1). Then T is an asymptotic fuzzy
ψ-contraction iff fuzzy diam of Tn(X) is zero.

P r o o f . To prove the necessity, fix ϵ > 0. Then as ψ(t) = 1 for every t ∈ (0, 1) and
from (A3) ψ(t) > t, for every t ∈ (0, 1). So there is an m ∈ N such that ψm(t) > 1 − ϵ,
for every t ∈ (0, 1). Let x, y ∈ X, as T is an asymptotic fuzzy ψ-contraction. We have

M(Tnx, Tny, s) ≥ ψn(M(x, y, s)) > 1 − ϵ, for every n ≥ m; for every s > 0.

Hence we get ϕ(Tn(X)) > 1− ϵ,. That means the fuzzy diam of Tn(X) is zero. For the
sufficiency it is enough to set ψn(s) = fuzzy diam of Tn(X), for every n ∈ N. □

Proposition 3.10. Let (X,M, ∗) be a fuzzy metric space and T be an asymptotic
fuzzy-ψ-contraction. Then T is surjective iff X is a singleton.

P r o o f . Part ‘if’ is trivial. So let T be a surjective and suppose, on the contrary, that
fuzzy cardinality of X ̸= 1. Then the fuzzy diam of X = r < 1. Since T is an asymptotic
fuzzy-ψ-contraction. i. e. ϕX(t) := inf{M(x, y, t) : x, y ∈ X, for each t > 0} = r < 1.
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Then, we have ψ(M(x, y, t)) ≥ ψ(r) > r. Set ϵ = r
ψ(r) . By the hypothesis that T is an

asymptotic fuzzy-ψ-contraction, there is a k ∈ N such that

ψk(t) > ψ(t) · ϵ, for every t ∈ (0, 1).

Given x, y ∈ X, s > 0,

M(T kx, T ky, s) ≥ ψk(M(x, y, s)) > ψ(M(x, y, s)) · ϵ = r.

Hence the fuzzy diam of T k(X) > r i. e. fuzzy diam of T k(X) > fuzzy diam of X.
On the other hand T is surjective, so is T k. Thus T k(X) = X which violates the

fuzzy dimensionality of T k(X). So X must be a singleton. □

4. ASYMPTOTIC CONTRACTION ON COMPACT SPACES

Theorem 4.1. Assume that (X,M, ∗) is a compact and T is a continuous self map on
X. The following statements are equivalent:

(i) T is an asymptotic fuzzy-ψ-contraction;

(ii) the core Y = ∩n∈NT
n(X) is a singleton;

(iii) T is an asymptotic fuzzy ψ-contraction, where ψ1(t) = 1 for every t ∈ (0, 1).

P r o o f . (i) ⇒ (iii) following [16, proposition 2], T map Y onto Y and the restriction
T|Y is also an asymptotic fuzzy contraction, Proposition 3.10 yields Y is a singleton. (ii)
⇒ (iii) [16, proposition 2] also ensures that the fuzzy diam of Tn(X) → fuzzy diam of Y .
Hence, we get that the fuzzy diam of Tn(X) → 1, since Y is singleton. So it is suffices
to apply Proposition 3.9. (iii) ⇒ (i) a fortiori. Thus, condition (i)=(iii) are equivalent.

□

The following example (inspired from Jachymaki [12]) shows that there exits asymp-
totic fuzzy-ψ-contraction which are not fuzzy non-expansive. i. e. there are x, y ∈ X and
t > 0 such that M(Tx, Ty, t) < M(x, y, t). This shows that the class of all asymptotic
fuzzy-contraction is not equivalent to any class of known fuzzy contractive mappings
(e. g. fuzzy ψ-contraction [19], fuzzy Meir–Keeler contraction [26], fuzzy-Z-contraction
[24]).

Example 4.2. Let X = {xn : n ∈ N} ∪ {1}, where {xn} is an arbitrary sequence such
that xn ∈ (0, 1), xn < xn+1 for all n ∈ N and lim

n→∞
xn = 1. Define a fuzzy set M on

X ×X × (0,∞) by

M(x, y, t) =

{
1, if x = y;

min{x, y}, otherwise.
for all x, y ∈ X, t ∈ (0,∞).

Then (X,M, xm) is an M-complete fuzzy metric space. We define a mapping T as
follows: we consider the subsequence (x1, x1+2, x1+2+3, x1+2+3+4, ...) = (xn(n+1)/2)∞n=1.

Set kn = n(n+1)
2 and define

Tx0 = x0, where x0 = 1,
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Txkn = xkn+2−1, n ∈ N,

Txi = xi−1, i ∈ N \ {kn : n ∈ N}.

Then T is obviously continuous. Next, it can be verified that T kn+1−2(X) ⊂ [xkn , x0], n ∈
N. Since (Tn(X))∞n=1 is increasing, we get⋂

n∈N
Tn(X) =

⋂
n∈N

T kn+1−2(X) ⊂
⋂
n∈N

[xkn , x0] = {x0}.

This yields
⋂
n∈N T

n(X) = {x0}, since x0 is a core of T as a fixed point of it. Thus
by Theorem 4.1, T is an asymptotic fuzzy ψ-contraction. On the other hand, since
M(Tx2, Tx0, t) = min{x1, x0} = x1 < x2 = min{x2, x0} = M(x2, x0, t), i. e., T is not
fuzzy non-expansive and hence not any type of fuzzy contractive mappings.

5. ASYMPTOTIC FUZZY CONTRACTION OF MEIR–KEELER OF FIRST KIND

Definition 5.1. Let (X,M, ⋆) be a fuzzy metric space. A mapping T : X → X is
said to be an asymptotic fuzzy contraction of Meir–Keeler of first kind (AFCMKFK, for
short) if there exists a sequence ψn : [0, 1] → [0, 1] and the following conditions hold:

(C1) lim infn→∞ ψn(ϵ) ≥ ϵ, ∀ ϵ ∈ (0, 1);

(C2) ∀ϵ ∈ (0, 1),∃ a δ ∈ (0, 1) and v ∈ N such that,

ϵ ⋆ δ ≤ s ≤ ϵ⇒ ψv(s) ≥ ϵ; ∀s ∈ [ϵ ⋆ δ, ϵ];

(C3) M(Tnx, Tny) > ψn(M(x, y, t)), ∀n ∈ N and ∀x, y ∈ X with x ̸= y.

Proposition 5.2. Let (X,M, ⋆) be a fuzzy metric space and T be an asymptotic fuzzy
ψ- contractive mapping on X. Then T is also AFCMKFK.

P r o o f . Define a sequence (ψn) of functions from [0, 1] into itself by

ϕn(s) = ψn(s) · 1

e
s
n
, ∀s ∈ (0, 1) and n ∈ N.

We shall show that (ψn) satisfies (C1 −C3). Since ψn → ψ and ψ(s) > s, ∀s ∈ (0, 1), we
have

lim inf
n→∞

ϕn(s) = lim inf
n→∞

[ψn(s) · 1

e
s
n

] = ψ(s) ≥ s.

Thus (C1) holds.
Fix n ∈ N and x, y ∈ X with x ̸= y. Since M(x, y, t) > 0, we have

M(Tnx, Tny) > ψn(M(x, y, t))

> ψn(M(x, y, t)) · 1

e
M(x,y,t)

n

= ϕn(M(x, y, t)).
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Thus (C3) holds.
To prove (C2) assume that ∀ϵ ∈ (0, 1) there exists a δ ∈ (0, 1) such that ϵ ⋆ δ ≤ t.

Since ψ(ϵ) > ϵ and ψ is continuous, we can choose δ ∈ (0, 1) and v ∈ N such that

ψ(t) ≥ ψ(ϵ) · ϵ ⋆ δ
δ

· e 2t
v , ∀ t ∈ [ϵ ⋆ δ, ϵ],

and

ψv(t) ≥ ψ(t) · δ

(ϵ ⋆ δ) · e t
v

.

Then

ϕv(t) = ψv(t) ·
1

e
t
v

≥ ψ(t) · δ

(ϵ ⋆ δ) · e t
v

· 1

e
t
v

≥ ψ(ϵ) · ϵ ⋆ δ
δ

· e 2t
v

δ

(ϵ ⋆ δ)
· 1

e
2t
v

≥ ψ(ϵ).

Thus (C2) holds. □

Theorem 5.3. Let (X,M, ⋆) (where the t-norms ⋆ satisfies cancellation law) be a fuzzy
metric space. Let T be an AFCMKFK on X. Assume that T l is continuous for some
l ∈ N. Then there exists a unique fixed point z ∈ X. Moreover, limn→∞ Tnx = z for all
x ∈ X.

P r o o f . We note that

M(Tnx, Tny, t) ≥ ψn(M(x, y, t)) ∀ t > 0 and x, y ∈ X.

We first show that

lim
n→∞

M(Tnx, Tny, t) = 1, ∀ x, y ∈ X and ∀t > 0.

Assume α = α(t) = lim infnM(Tnx, Tny, t) < 1. Then from (C2), there exists v1 ∈ N
such that

ψv1(M(x, y, t)) ≥M(x, y, t).

So we have
M(T v1x, T v1y, t) > ψv1(M(x, y, t)) ≥M(x, y, t).

By (C3) and (C1), we get

α = lim inf
n→∞

M(TnT v1x, TnT v1y, t)

≥ lim inf
n→∞

ψnM(T v1x, T v1y, t)

≥M(T v1x, T v1y, t) > M(x, y, t).

By similar argument, we get α > M(T lx, T ly, t) ∀l ∈ N∪{0}. Thus {M(T lx, T ly, t)}
converges to α.
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Since 0 < M(x, y, t) < 1, there exists δ2 ∈ (0, 1) and v2 ∈ N such that

α ⋆ δ2 < t < α⇒ ψv2(t) ≥ α.

Then, we choose v3 ∈ N such that M(T v3x, T v3y, t) > α ⋆ δ2. Then, we have

M(T v2+v3x, T v2+v3y, t) > ψv2M(T 3x, T 3y, t) ≥ α.

This is a contradiction. Thus

lim
n→∞

M(Tnx, Tny, t) = 1. (8)

Let u ∈ X and define {un} by un=Tnu. From (8), we have lim infn→∞M(un, un+1, t)=
1.

We shall show that limn→∞ infm>nM(un, um, t) = 1. So let ϵ ∈ (0, 1) be fixed. Then
there exists δ4 ∈ (ϵ, 1) and v4 ∈ N such that ϵ ⋆ δ4 ≤ t ≤ ϵ⇒ ψv4(t) ≥ ϵ and there exist
v5 ∈ N such that

M(un, un+1, t)
v4 > δ4, ∀n ≥ v5. (9)

Arguing by contradiction, we assume that there exists l ∈ N such that m > l ≥ v5
and M(ul, um, t) < ϵ2 = ϵ ⋆ ϵ. Then, we put

k = min {j ∈ N : l < j, ϵ ⋆ δ4 ≥M(ul, uj , t)}, (10)

and
M(ul, um, t) < ϵ ⋆ ϵ < ϵ ⋆ δ4.

It is obvious that k ≤ m.
Since

δk−l4 ≤ ⋆k−lj=lM(uj , uj+1,
t

k − l
)v4 (11)

≤M(ul, uk, t)
v4

≤ (ϵ ⋆ δ4)v4

< (δ4 ⋆ δ4)v4

= δ2v44 ,

so, we have 2v4 < k − l and hence l < k − 2v4 < k − v4.
We have

(δ4 ⋆ M(ul, uk−v4 , t))
v4 = δv44 ⋆ M(ul, uk−v4 , t)

v4

≤ (⋆v4−1
j=0 M(uk−j−1, uk−j , t))

v4 ⋆ M(ul, uk−v4 , t)
v4

≤ (M(uk−v4 , uk, v4 · t))v4 ⋆ (M(ul, uk−v4 , t))
v4

= (M(uk−v4 , uk, v4 · t) ⋆ M(ul, uk−v4 , t))
v4

≤ (M(ul, uk, (v4 + 1)t))v4 ≤ (ϵ ⋆ δ4)v4 ,
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i. e.,
δ4 ⋆ M(ul, uk−v4 , t) ≤ ϵ ⋆ δ4,

and so, using cancellation law of t-norms ⋆, we get

ϵ ⋆ δ4 ≤M(ul, uk−v4 , t) ≤ ϵ.

Then, by (C2), we have

M(ul+v4 , uk, t) = M(T v4ul, T
v4uk−v4 , t)

> ψv4M(ul, uk−v4 , t) ≥ ϵ. (12)

This contradicts the definition of k. Therefore, m > n ≥ v5 implies M(un, um, t) ≥ ϵ2 =
ϵ ⋆ ϵ. So, {un} is a Cauchy sequence in X. Since X is complete, there exists z ∈ X such
that {un} converges to z.

Then from the continuity of T l, we have

z = lim
n→∞

T l+nu = lim
n→∞

T l ◦ Tnu = T l( lim
n→∞

Tnu) = T lz,

i. e., z is a fixed point of T l.

Since

lim
n→∞

M(Tnl+1u, Tz, t) = lim
n→∞

M(Tnl+1u, Tnl+1z, t) = lim
n→∞

M(Tnu, Tnz, t) = 1,

by (8), we have
Tz = lim

n→∞
Tnl+1u = lim

n→∞
Tnu = z,

i. e., z is a fixed point of T.
Further, if Tx = x, then M(z, x, t) = limn→∞(Tnz, Tnx, t) = 1 and hence x = z.

Therefore, a fixed point of T is unique. Since u is arbitrary, limn→∞ Tnu = z hold for
every u ∈ X. □

In order to avoid the assumption of cancellation property on t-norm in Theorem 5.3,
we introduce the following:

(C ′
2) ∀ϵ ∈ (0, 1),∃ a δ ∈ (0, 1) and ∀v ∈ N such that ϵ⋆δ ≤ t and δ⋆t ≤ δ⋆ϵ⇒ ψv(t) ≥ ϵ.

It is obvious from definition (C ′
2) and (C2) that (C ′

2) ⇒ (C2).

Instead of steps (11) up to (12) in the proof of Theorem 5.3, we prove it using new
condition (C ′

2) as follows: we have

M(ul, uk, t)
v4 ≥

(
⋆v4j=1M(ui+j−1, ui+j ,

t

2v4
)

)v4
⋆ M

(
ui+v4 , uk,

t

2

)v4
> δv44 ⋆ ϵv4

= (δ4 ⋆ ϵ)
v4 ,

i. e., M(ul, uk, t) > δ4 ⋆ ϵ, a contradiction of the definition of k.
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Remark 5.4.

1. From Proposition 5.2, we conclude that Theorem 3.2 becomes a particular case of
Theorem 5.3.

2. In the definition 5.1, if we only consider (C2), then we get

(C4) ∀ϵ ∈ (0, 1),∃ a δ ∈ (0, 1) and v = 1 ∈ N such that,

ϵ ⋆ δ ≤M(x, y, t) ≤ ϵ⇒ ψ1(t) = M(Tx, Ty, t) ≥ ϵ,

a fuzzy Meir–Keeler Type contractive mapping of first kind.

Indeed, our present definition of fuzzy Meir–Keeler Type contractive mapping is some
what different from the definition given by Zheng et al. in [26].

5.1. Asymptotic fuzzy contraction of Meir–Keeler of second kind

Definition 5.5. Let (X,M, ⋆) be a fuzzy metric space. A mapping T : X → X is said
to be an asymptotic fuzzy contraction of Meir–Keeler of second kind (AFCMKSK, for
short) if there exists a sequence ψn : [0, 1] → [0, 1] such that ψn converges to ψ uniformly
on [0, 1], ψ is continuous, non-decreasing and ψ(t) > t ∀, t ∈ (0, 1] and satisfies following
conditions:

(D1) lim infn→∞ ψn(ϵ) ≥ ϵ, ∀ ϵ ∈ (0, 1);

(D2) ∀ϵ ∈ (0, 1) and s ∈ (0, 1),∃ a δ ∈ (0, 1) such that s ⋆ (1 − δ) = 2 − ϵ− δ;

(D3) ∀ϵ ∈ (0, 1),∃ a δ ∈ (0, ϵ) and v ∈ N such that,

(1 − δ) ⋆ r ≤ 2 − ϵ− δ ⇒ (1 − δ) ⋆ ψv(r) ≥ 2 − ϵ− δ; ∀r ∈ (0, 1);

(D4) M(Tnx, Tny) > ψn(M(x, y, t)), ∀n ∈ N and ∀x, y ∈ X with x ̸= y.

Before proving our next Theorem, we mention the following [14]:

Let f : [0, 1] → [0,+∞] be a strictly decreasing function such that f(1) = 0 and
f(x) + f(y) is in the range of f or equal to f(0+) or +∞ for all x, y in [0, 1]. Then the
function T : [0, 1]2 → [0, 1] defined as T (x, y) = f−1(f(x) + f(y)) is a t-norm.

Theorem 5.6. Let (X,M, ⋆)(where the t-norm ⋆ with f homogeneous of order 1 ) be
a fuzzy metric space. Let T be an AFCMKSK on X. Assume that T l is continuous for
some l ∈ N. Then there exists a unique fixed point z ∈ X. Moreover, limn→∞ Tnx = z
for all x ∈ X.

P r o o f . We note that

M(Tnx, Tny, t) ≥ ψn(M(x, y, t)) ∀ t > 0 and x, y ∈ X.
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We first show that limn→∞M(Tnx, Tny, t) = 1, ∀ x, y ∈ X and ∀t > 0.
Assume α := lim infnM(Tnx, Tny, t) < 1. Then from (D2) and (D3), there exists

v1 ∈ N such that
(1 − δ) ⋆ ψv1(M(Tx, Ty, t)) ≥ 2 − ϵ− δ.

So we have
M(T v1x, T v1y, t) > ψv1(M(x, y, t)).

So

(1 − δ) ⋆ M(T v1x, T v1y, t) > (1 − δ) ⋆ ψv1(M(x, y, t)) ≥ 2 − ϵ− δ = (1 − δ) ⋆ M(x, y, t).

Now, we have

α = lim inf
n

M(TnT v1x, TnT v1y, t)

≥ lim inf
n

ψn(M(T v1x, T v1y, t))

≥M(T v1x, T v1y, t) > M(x, y, t).

By a similar argument, we get α > M(T lx, T ly, t), ∀l ∈ N∪{0}. Thus, {M(T lx, T ly, t)}
converges to α.

Since 0 < M(x, y, t) < 1, there exists δ2 ∈ (0, α) and v2 ∈ N such that

α ⋆ (1 − δ2) < 2 − α− δ2 ⇒ ψv2(s) ⋆ (1 − δ2) ≥ 2 − α− δ2.

Then, we choose v3 ∈ N such that

M(T v3x, T v3y, t) ⋆ (1 − δ2) ≥ 2 − α− δ2.

Then, we have

M(T v2+v3x, T v2+v3y, t) ⋆ (1 − δ2)

≥ ψv2M(T v3x, T v3y, t) ⋆ (1 − δ2)

≥ 2 − α− δ2 ≥ (1 − δ2) ⋆ α

and, by cancellation property of the t-norm ⋆, we get

M(T v2+v3x, T v2+v3y, t) ≥ α.

This is a contradiction.
Thus

lim
n→∞

M(Tnx, Tny, t) = 1. (13)

Let u ∈ X and define {un} by un=Tnu. From (13), we have lim infn→∞M(un, un+1, t)=
1.

We shall show that limn→∞ infm>nM(un, um, t) = 1. So let ϵ ∈ (0, 1) be fixed. Then
there exists δ4 ∈ (ϵ, 1) and v4 ∈ N such that ϵ ⋆ δ4 ≤ t ≤ ϵ⇒ ψv4(t) ≥ ϵ and there exist
v5 ∈ N such that

M(un, un+1, t)
v4 > δ4, ∀n ≥ v5. (14)
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Arguing by contradiction, we assume that there exists l ∈ N such that m > l ≥ v5
and M(ul, um, t) < ϵ2 = ϵ ⋆ ϵ. Then, we put

k = min {j ∈ N : l < j, ϵ ⋆ δ4 ≥M(ul, uj , t)}, (15)

and
M(ul, um, t) < ϵ ⋆ ϵ < ϵ ⋆ δ4.

It is obvious that k ≤ m.
Since

2(1 − δ4)v4 > v4(2 − ϵ− δ4) ≥ v4M(ul, uk, t))

≥ v4 ⋆
k−l
j=l M

(
uj , uj+1,

t

k − l

)
= ⋆k−lj=lv4M

(
uj , uj+1,

t

k − l

)
> ⋆k−lj=l (1 − δ4) = f−1((k − l)f(1 − δ4)).

Then
2v4f(1 − δ4) = f(2v4(1 − δ4)) < ((k − l)f(1 − δ4))

and
2v4 < (k − l),

and, hence,
l < k − 2v4 < k − v4.

We have

v4(2 − ϵ− δ4) ≥ v4M(ul, uk, t))

≥ v4(M(ul, uk−v4 , t/2) ⋆ M(uk−v4 , uk, t/2))

≥ v4M(ul, uk−v4 , t/2) ⋆v4−lj=0 M

(
uk−j−1, uk−j ,

t

2v4

)
v4

> v4M(ul, uk−v4 , t/2) ⋆ v4(1 − δ4)

= v4(M(ul, uk−v4 , t/2) ⋆ (1 − δ4)),

i. e.,
(2 − ϵ− δ4) > M(ul, uk−v4 , t/2 ⋆ (1 − δ4)),

so, by (D4), we have

(1 − δ4) ⋆ (M(ul+v4 , uk, t/2) = M(T v4ul, T
v4uk−v4 , , t/2) ⋆ (1 − δ4)

> ψv4M(ul, uk−v4 , t/2) ⋆ (1 − δ4) ≥ 2 − ϵ− δ4. (16)

Hence

v4M(ul, uk, t) ≥ ⋆v4j=1v4M

(
uj+l−1, ul+j ,

t

2v4

)
⋆ v4M(ul+v4 , uk, t/2)

> (1 − δ4) ⋆ v4M (ul+v4 , uk, t/2) = v4((1 − δ4) ⋆ M(ul+v4 , uk, t/2)). (17)
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Then
M(ul, uk, t) > (1 − δ4) ⋆ M(ul+v4 , uk, t/2)) ≥ 2 − ϵ− δ4,

a contradiction of the definition of k.
So {un} is a Cauchy sequence in X. Since X is complete, there exists z ∈ X such

that {un} converges to z.
The rest of the proof follows similar lines to Theorem 5.3. □

6. CONCLUSION

Most recently, Miñana et al. [20] showed the way to obtain fuzzy versions of two well-
known classical fixed point theorems in metric spaces namely- one due to Matkowski
and the other one proved by Meir and Keeler. Moreover, they pointed out some incon-
veniences on the applicability of fixed point theorem of fuzzy Meir–Keeler contractive
mappings due to Zheng and Wang [26].
These finding addon about the fact that fuzzy fixed point results are more versatile than
the regular metric fixed point results. Since the flexibility which the fuzzy concepts
inherently possess and therefore, it is not easy to translate the classical metric contrac-
tions and corresponding fixed point theorems in fuzzy setting. Following this direction
of research, we make an attempt to intoduce a fuzzy version of asymptotic contractive
mappings and forlmulted corresponding fixed point theory.

Indeed, we mentioned that (in Remark 5.4) our definition of fuzzy Meir–Keeler type
contractive mapping (i. e. (C4) ) is some what different from the definition given by
Zheng et al. in [26] and in the context of Miñana et al. [20] paper the following question
naturally arise:

Question : is it possible to obtain fuzzy versions of classical fixed point theorems of
asymptotic contractions mappings due to Kirk [13] and Suzuki [25] using the tech-
niques suggested by Miñana et al. in [20]?

Apart from the above, it will be interesting to formulat fuzzy Caristi asymptotic and
fuzzy Suzuki type asymptotic mappings and corresponding fixed point results as given
in [1, 5, 18].
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[9] V. Gregori, J. J. Miñana, B. Roig and A. Sapena: A characterization of p complete fuzzy
metric spaces. Fuzzy Sets Systems 444 (2022), 144–155. DOI:10.1016/j.fss.2021.12.001

[10] V. Gregori and A. Sapena: On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets
Systems 125 (2002), 245–252. DOI:10.1016/S0165-0114(00)00088-9
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[15] I. Kramosil and J. Michálek: Fuzzy metric and statistical metric spaces. Kybernetica 15
(1975), 326–334.

[16] S. Leader: Uniformly contractive fixed points in compact metric spaces. Proc. Amer.
Math. Soc. 86 (1982), 153–158. DOI:10.1090/S0002-9939-1982-0663887-2

[17] T. Lindstrom and D.A. Ross: A nonstandard approach to asymptotic fixed point theo-
rems. J. Fixed Point Theory Appl. 25 (2023), 35. DOI:10.1007/s11784-022-01028-6
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