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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 60 (2024), 125–134

ON MANIFOLDS HOMOTOPY EQUIVALENT TO
THE TOTAL SPACES OF S7-BUNDLES OVER S8

Ajay Raj and Tibor Macko

Abstract. We calculate the structure sets in the sense of surgery theory of to-
tal spaces of bundles over eight-dimensional sphere with fibre a seven-dimensional
sphere, in which manifolds homotopy equivalent to the total spaces are organi-
zed, and we investigate the question, which of the elements in these structure
sets can be realized as such bundles.

1. Introduction

For a closed topological manifold X, the topological structure set, denoted by
S(X), is the set of equivalence classes of homotopy equivalences f : Y → X, where
Y is a closed topological manifold, modulo the equivalence relation given by the
homeomorphism of the source manifolds which is compatible with given homotopy
equivalences (see Section 2). For example, the Generalized Poincare Conjecture
tells us that S(Sn) consists of a single element represented by the identity map for
all n. We are interested in the structure set S(E), where E is the total space of an
S7-bundle over S8.

In [4] Crowley and Escher classified the total spaces of S3-bundles over S4. As a
by-product of their Lemma 5.3 and the exact sequence (7), it can be stated that
each element in the structure set S(E), where E is any S3-bundle over S4, can be
realized with the source manifold the total space of some S3-bundle over S4, see
Remark 3.7 for more details.

We consider fibre bundles over S8 with total space M , fibre S7, and the structure
group SO(8). Equivalence classes of such bundles are in one-to-one correspondence
with elements in π7(SO(8)) ∼= Z⊕Z. Consider the generators ρ and σ of π7(SO(8))
defined as follows (see [17]):

(1) ρ(x)y = xyx−1 and σ(x)y = xy ,

where x and y are vectors in S7, which is identified with octonions of norm 1. For
every pair (m,n) of integers we get an element mρ+ nσ ∈ π7(SO(8)). This gives
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us a vector bundle γm,n and corresponding sphere bundle

(2) pm,n : Mm,n := S(γm,n)→ S8.

Tamura [15], [16] used methods similar to Milnor [10] to study S7-bundles over
S8, and he constructed explicit homeomorphisms between Mm,n and Mm′,n′ for
some specific values of (m,n) and (m′, n′) using foliations. Some results on smooth
structures of S7-bundles over S8 were obtained by Shimada [14] and later complete
diffeomorphism classification was achieved by Grey [6], who also gave some partial
results on the homeomorphism classification.

Note that a change in orientation of the fibre yields Mm,n
∼= Mm+n,−n and a

change in orientation of the base yields Mm,n
∼= M−m,−n. Hence we may assume

n ≥ 0.

Our main result is the following theorem and its corollary below.

Theorem 1.1. Let N be a closed 15-dimensional manifold. If (n, 28) = 1 then
N is homotopy equivalent to Mm,n from (2) if and only if N is homeomorphic to
Mm′,n where m′ = m+ 120j for some j ∈ Z.

Here (n, 28) denotes the greatest common divisor of n and 28. As a consequence
of this, and of the calculation of S(Mm,n) in display (3), we obtain:

Corollary 1.2. If (n, 28) = 1, then all the elements of S(Mm,n) ∼= Zn can be
realized with the source manifold an S7-bundle over S8.

What happens when (n, 28) 6= 1, including the case n = 0, is described in detail
in Remark 3.4. The methods of the proofs are an adaptation of those used in [4]
to the dimensions in which we work, combined with some additional necessary
considerations, such as those in our Proposition 3.2 below.

Parts of this work will be used in the PhD thesis of Ajay Raj.
Acknowledgement. We thank the anonymous referee for useful comments.
This work was supported by grants VEGA 1/0596/21, UK/126/2020 and
UK/237/2022.

2. Preliminaries

Let n > 0 and α8 be the standard generator of H8(S8). The Euler class of the
bundle γm,n is e(γm,n) = nα8 (see [6], Lemma 2.2.1). A simple calculation using
Gysin sequence tells us that

H0(Mm,n) ∼= H15(Mm,n) ∼= Z ;
H8(Mm,n) ∼= Zn ;
Hi(Mm,n) ∼= 0 for i 6= 0, 8, 15 .

Let us also adopt the notation Wm,n for the total space of the disk bundle

D8 ↪→ Wm,n

pm,n−−−→ S8 associated to the bundle γm,n, so that ∂(Wm,n) = Mm,n.
Obviously, both Mm,n and Wm,n are simply connected.
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Given a vector bundle ξ over a compact manifold B, we denote by D(ξ) the
total space of the associated disk bundle, by −ξ the stable inverse of ξ, by τB the
stable tangent bundle of B and by νB = −τB its stable normal bundle. As in [4,
Fact 3.1] we use the following observation:

Fact 2.1. We have bundle isomorphisms

νS(ξ) ∼= p∗ξ(νB ⊕−ξ) and τS(ξ) ∼= p∗ξ(τB ⊕ ξ) .

Analogous statement holds for the associated disk bundle D(ξ) instead of S(ξ).

For the second Pontryagin class of the vector bundle γm,n we have that p2(γm,n) =
6(2m+n) ·α8 ∈ H8(S8), see [15, Theorem 4.4], and for the second Pontryagin class
of Mm,n we have that p2(Mm,n) = 12m · p∗m,n(α8) ∈ H8(Mm,n), see [15, Theorem
6.2], and [16, Theorem 2.2].

Next we summarize some background from surgery theory in the topological
category and in the simply connected situation that we use. For a compact ma-
nifold X with boundary ∂X, the structure set S(X) consists of the equivalence
classes of pairs (Y, f) where Y is a compact manifold with boundary ∂Y and
f : (Y, ∂Y ) → (X, ∂X) is a homotopy equivalence of pairs modulo the following
equivalence relation. Two pairs (Y1, f1), (Y2, f2) are called equivalent if there exists
a homeomorphism g : (Y1, ∂Y1)→ (Y2, ∂Y2) such that f2 ◦ g is homotopic to f1.

Given an oriented manifold X with boundary ∂X, a degree one normal to
(f, f̄) : (Y, ∂Y )→ (X, ∂X) is a map of manifolds with boundary which is of degree
one and it is covered by a bundle map

(νY , ν∂Y ) (ζ, ζ|∂X)

(Y, ∂Y ) (X, ∂X)

f̄

f

where ζ is some topological microbundle and νY is the stable topological normal
microbundle [7]. The set N (X) of normal invariants of X is the set of equivalence
classes of degree one normal maps with target X modulo the normal bordism
relation, which means bordism in the source equipped with suitable bundle data.

For an oriented (X, ∂X) we can map elements [f : (Y, ∂Y ) → (X, ∂X)] of the
structure set S(X) to the set of normal invariants N (X), by equipping (Y, ∂Y )
with an orientation so that the homotopy equivalence f : (Y, ∂Y )→ (X, ∂X) is of
degree one and using any homotopy inverse f−1 : (X, ∂X)→ (Y, ∂Y ) to obtain the
required bundle data by defining ζ := (f−1)∗(νY ).

Let X be a simply connected closed oriented manifold of dimension k ≥ 5. The
structure set S(X) fits into the surgery exact sequence, which in this case is a short
exact sequence of abelian groups of the shape:

0→ S(X) ηk−−−→ N (X) σk−−−→ Lk(Z)→ 0 ,
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see [11, Proposition 20.3], where

Lk(Z) =


Z, if k ≡ 0 (mod 4) ;
0, if k ≡ 1 (mod 4) ;
Z2, if k ≡ 2 (mod 4) ;
0, if k ≡ 3 (mod 4) .

For X a simply connected compact oriented manifold of dimension k ≥ 5 with
non-empty simply connected boundary ∂X the corresponding surgery exact se-
quence has trivial L-groups, so that we have an isomorphism of abelian groups

ηk : S(X)
∼=−−→ N (X) ,

see [18, §4, §10] or [3, Theorem 1.65] and [11, Remark 19.10].
There exists the classifying space of stable topological microbundles BTOP, such

that the stable isomorphism classes of topological microbundles over a manifold X
are in bijection with the set [X,BTOP] of homotopy classes of maps from X to
BTOP. Any topological microbundle has an associated spherical fibration, which
is reflected by the existence of the canonical map BTOP→ BG, with the target
the classifying space BG of the stable spherical fibrations.

Further information from surgery theory that is needed is the following (see [13,
Chapter 13] and [18, §10]):
Fact 2.2.

(1) Denoting by G /TOP the homotopy fibre of the canonical map j : BTOP→
BG we have a bijection

N (X) ∼= [X,G /TOP]

(2) For k > 5 and denoting by i : ∂X → X the inclusion of the boundary we
have the commutative diagram

S(X) N (X)

S(∂X) N (∂X) ,
i∗

η

i∗

η

where both maps i∗ are given by restriction.
We apply topological surgery theory to the 15-dimensional manifold with

boundary (Wm,n,Mm,n). By the above facts the structure set and normal in-
variant set coincide for both Wm,n and Mm,n. Via primary (and the only) obs-
truction to null homotopy, we can identify [Wm,n, G/TOP ] ∼= H8(Wm,n) and
[Mm,n, G/TOP ] ∼= H8(Mm,n) (see [2, Theorem 13.11 in Chapter VII] and note
that for k > 0 we have πk(G/TOP ) ∼= Lk(Z)). This gives us in the case n > 0 the
following commutative diagram

(3)
S(Wm,n) N (Wm,n) H8(Wm,n) Z

S(Mm,n) N (Mm,n) H8(Mm,n) Zn,
i∗

η∼=

i∗

∼=

i∗

∼=

η∼= ∼= ∼=
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where the right vertical map is simply just reduction modulo n. When n = 0 the
bottom right corner is Z and the right vertical map is the identity.

We further need some background on spherical fibrations and their relation to
vector bundles, following [5]. Note that the fibre homotopy equivalence classes
of spherical fibration are in bijection with homotopy equivalence classes of their
total spaces. Given k ≥ 1 denote by SH(k), the topological monoid of orientation
preserving self homotopy equivalences of Sk−1. Via clutching construction we
have that the fibre homotopy equivalence classes of Sk−1-spherical fibrations
over Sl for l ≥ 3 are in bijection with πl−1(SH(k)), an analogue of the fact
that oriented vector bundles over Sl are in bijection with πl−1(SO(k)). We have
natural inclusions ik : SO(k)→ SH(k) obtained by restricting the transformations
from SO(k) to Sk−1. For any two bundles ξ1 and ξ2 the corresponding sphere
fibrations S(ξ1) and S(ξ2) are fibre homotopy equivalent if and only if we have
(ik)∗(ξ1) = (ik)∗(ξ2) ∈ πl−1(SH(k)) (see [5], Theorem 6.2 and Corollary 7.4).

3. Proofs of main results

The Propositions 3.1 and 3.3 below are adaptations of Lemmas 5.2 and 5.3
respectively from [4] to the case of S7-bundles over S8 in the topological category.
In Proposition 3.3 a calculation using Kervaire–Milnor braid is needed, which is
more complicated than its analogue in Lemma 5.3 of [4], so we separate it to
Proposition 3.2.

Proposition 3.1. Let n ≥ 0 and let m, j ∈ Z be arbitrary. Then there exists a
fibre homotopy equivalence fj : Mm+120j,n →Mm,n.

Proof. First we show that there is an isomorphism π7(SH(8)) ∼= Z120 ⊕ Z such
that

(i8)∗(γm,n) = (m mod 120, n).

Let SF (8) be the subspace of SH(8) consisting of orientation preserving self
homotopy equivalence of S7 which fix a base point u. Observe that SF (8) =
Ω7

1(S7), the component of the identity in Ω7(S7). Note that Ω7
1(S7) ' Ω7

0(S7),
the component of the constant map (see [19, (2.6)]). This together with the usual
adjoint correspondence gives us an isomorphism I7,7 : π7(SF (8)) ∼= π14(S7) (see [9,
Pages 46-47]). The space SF(8) is the fibre of the fibration

π : SH(8)→ S7

f 7→ f(u).

The restriction π|SO(8) : SO(8) → S7 is the usual fibration with fibre SO(7) ⊂
SF (8). This fibration has a section s : S7 → SO(8) given by s(x) = Jx where
Jx(y) = x · y is octonion multiplication. The long exact homotopy sequences of the
above two fibrations give the following diagram
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0 Z Z⊕ Z Z 0

0 π7(SO(7)) π7(SO(8)) π7(S7) 0

0 π7(SF (8)) π7(SH(8)) π7(S7) 0

0 Z120 Z120 ⊕ Z Z 0

∼= ∼= ∼=

i∗

(i7)∗

π|SO(8)

(i8)∗ Id

∼=

π∗

∼= ∼=

The proof follows by observing first that if ω7 and ρ denote suitable generators of
π7(S7) and π7(SO(7)) respectively, then for any m,n ∈ Z

s∗(nω7) = γ0,n and i∗(mρ) = γm,0.
Secondly, if i7 : SO(7) � SF (8) is the inclusion of one fibre into the other, then

the composition I7,7 ◦ (i7)∗ : π7(SO(7))→ π14(S7) is the usual J-homomorphism
(see [19, Section 5], [20, Section 9], [9, Page 47]). Similar to as done in [8], we
can also prove that the unstable J-homomorphism J7,7 : π7(SO(7))→ π14(S7) is
surjective using the stabilized commutative diagram below:

π7(SO(7)) π7(SF (8))

π7(SO) πS7

J∗

×2 ×2

Js∗

It is well known that π7(SO) ∼= Z, π7(SO(7)) ∼= Z, π7(SF (8)) ∼= π14(S7) ∼= Z120
and πS7 ∼= Z240, and that the vertical maps are given by multiplication by 2, see [15,
page 252 and (2.2)]. The stable Js∗ in the above diagram is surjective (see [1],
Theorem 1.6) hence J∗ is too. �

Note that the proposition above re-establishes the result [15, Theorem 2.3(i)]
Recall the Kervaire-Milnor braid, for example from [13, Remark 13.25], which

links the homotopy groups of various classifying spaces, in particular those of
G /TOP, BO and BTOP which are of interest to us. We use known results about
it to show the following proposition.

Proposition 3.2. The composition

π7(SO(8)) ∼= π8(BSO(8)) i∗−→ π8(BSO) µ∗−→ π8(BTOP ) π−→ Z⊕ Z4 ,

where i is the inclusion, µ the canonical map, and π : π8(BTOP ) ∼= Z ⊕ Z4,
sends the difference of equivalence classes of vector bundles [γm+120j,n]− [γm,n] to
((7× 240) · j, 0).

Proof. We have the following commutative square
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π8(BSO(8)) π8(BSO)

Z⊕ Z Z ,

i∗

∼= ∼=

where the bottom horizontal map sends (1, 0) to 2 and (0, 1) to 1 hence it is given
by (m,n) 7→ 2m+ n [15, Equations 2.1 and 2.2].

From the portion of the Kervaire–Milnor braid depicted in the diagram on page
311 in Remark 13.25 of [13], we observe that the map µ∗ : π8(BSO)→ π8(BTOP )
is µ∗ : Z→ Z⊕ Z4 which is given by x 7→ (7x, 2x).

Composition of the two maps yields the desired formula. �

In the following proposition we shall abuse the notation a little bit and denote
the corresponding image of γm,n in π8(BTOP ) under the above composition by
same notation.

Proposition 3.3. The fibre homotopy equivalences fj : Mm+120j,n →Mm,n have
normal invariant η(fj) = 28j ∈ N (Mm,n) ∼= Zn.

Proof. Given a map f : S(γ) → S(χ) of sphere bundles, the cone of f can be
defined as the map of disk bundles F : D(γ) → D(χ) which for 0 ≤ r ≤ 1
and r · v ∈ D(γ) takes the value F (r · v) = r · f(v). It is easy to check that
(Fj , fj) : (Wm+120j,n,Mm+120j,n)→ (Wm,n,Mm,n) is a fibre homotopy equivalence
of pairs. Fact 2.2 (2) implies that η(fj) = i∗η(Fj). Moreover, Diagram (3) shows
that it is enough to prove that η(Fj) ∈ N (Wm,n) takes on the value 28j ∈ Z.

Note that the inclusion im,n of the zero section S8 into Wm,n is homotopy
equivalence. Consider the canonical map j : G/TOP → BTOP from Fact 2.2. We
obtain the following commutative diagram

N (Wm,n) [Wm,n, G/TOP ] [Wm,n, BTOP ]

N (S8)
[
S8, G/TOP

] [
S8, BTOP

]
∼=

i∗m,n

j∗

i∗m,n
∼= j∗

Since im,n is homotopy equivalence, vertical arrows induce bijection. From the
Kervaire–Milnor braid, see page 311 in Remark 13.25 of [13], we observe that
j∗ : π8(G/TOP ) → π8(BTOP ) is the map j∗ : Z → Z ⊕ Z4, which is given by
x 7→ (60x, 3x). For any compact space Y , the group [Y,BTOP ] may be regarded as
formal differences of stable topological microbundles over Y . Hence for Y = Wm,n,
which is a smooth manifold, we have that its stable normal vector bundle is also
its stable normal microbundle, and we get

j∗(η(Fj)) = ν(Wm,n)− F−1∗
j (ν(Wm+120j,n)) .

Fact 2.1 for disk bundles implies that

ν(Wm,n) = p∗m,n(νS8 ⊕−γm,n) = p∗m,n(−γm,n) .
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Since Fj commutes with pm,n and pm+12j,n, we may choose F−1
j to commute up

to homotopy. We have now
i∗m,n(j∗(η(Fj))) = i∗m,n(ν(Wm,n)− F−1∗

j (ν(Wm+120j,n)))
= i∗m,n(p∗m,n(−γm,n)− F−1∗

j (p∗m+12j,n(−γm+120j,n)))
= i∗m,n(p∗m,n(−γm,n + γm+120j,n)))
= γm+120j,n − γm,n .

By Proposition 3.2 this difference is sent to the pair (7× 240j, 0) ∈ Z⊕ Z4. This
gives us η(Fj) = 7×240j

60 = 28j ∈ N (Wm,n), hence η(fj) = 28j ∈ N (Mm,n). �

Proof of Theorem 1.1. Since (n, 28) = 1, multiplication by 28 is an isomorphism
of Zn. Hence for any l ∈ Zn we have l = 28j for some j ∈ Z. �

Remark 3.4. (1) In the case where (n, 28) 6= 1 and n 6= 0 we obtain that
the elements in the subgroup 28 · Zn ⊂ Zn ∼= S(Mm,n) can be realized as
fj : Mm+120j,n →Mm,n for suitable j.

(2) If n = 0 we have N (Mm,0) ∼= Z. A manifold N will be homotopy equivalent
to Mm,0 if and only if N is homeomorphic to Mm+120k,0 where k = 28j for
some j ∈ Z. We cannot say anything about the other elements.

(3) Mm,0 is homeomorphic to Mm′,0 if and only if m = ±m′. It follows by the
topological invariance of rational Pontryagin classes [12, Theorem 4.1] that
are mentioned below Fact 2.1.

Remark 3.5. Given a smooth manifold X there exists also the smooth version
of the structure set SDIFF(X), where all manifolds considered are smooth and
we divide out the relation of diffeomorphism in the source. There is the obvious
forgetful map SDIFF(X) → S(X) and it is an interesting question what are the
properties of this map for a given X. Our results show that if (n, 28) = 1, then
SDIFF(Mm,n) → S(Mm,n) is surjective, since then all elements in S(Mm,n) are
represented by homotopy equivalences, whose source manifold is smooth.
Remark 3.6. The results in [4] were proved working with PL block bundles rather
than topological microbundles and with PL surgery rather than topological surgery.
However, it is well known that the difference between the classifying spaces BPL
and BTOP is very small, namely the homotopy fibre TOP /PL of the canonical
map BPL → BTOP has the homotopy type of the Eilenberg-Mac Lane space
K(Z2, 3) and hence, due to the dimensions that we work with, the proofs would be
the same in the PL-category.
Remark 3.7. In [4] the authors provided various classification results of the total
spaces of S3-bundle over S4. They did not explicitly asked the question whether
elements in the structure set of such a bundle are represented with sources such
bundles. However, it follows immediately from their Lemma 5.3 and display (7)
that the answer is yes.
Remark 3.8. It would be interesting to further investigate the homeomorphism
classification of Mm,n and the question of the action of the group of self homotopy
equivalences of Mm,n on the structure set. We plan to study this in future.
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