

Luong Quoc Tuyen; Ong V. Tuyen; Phan D. Tuan; Nguzen X. Truc
About wcs -covers and wcs^* -networks on the Vietoris hyperspace $\mathcal{F}(X)$

Commentationes Mathematicae Universitatis Carolinae, Vol. 64 (2023), No. 4, 519–527

Persistent URL: <http://dml.cz/dmlcz/152619>

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2023

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* <http://dml.cz>

About wcs -covers and wcs^* -networks on the Vietoris hyperspace $\mathcal{F}(X)$

LUONG Q. TUYEN, ONG V. TUYEN, PHAN D. TUAN, NGUZEN X. TRUC

Abstract. We study some generalized metric properties on the hyperspace $\mathcal{F}(X)$ of finite subsets of a space X endowed with the Vietoris topology. We prove that X has a point-star network consisting of (countable) wcs -covers if and only if so does $\mathcal{F}(X)$. Moreover, X has a sequence of wcs -covers with property (P) which is a point-star network if and only if so does $\mathcal{F}(X)$, where (P) is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. On the other hand, X has a wcs^* -network with property σ -(P) if and only if so does $\mathcal{F}(X)$. By these results, we obtain some results related to the images of metric spaces and separable metric spaces under some kinds of continuous mappings on the Vietoris hyperspace $\mathcal{F}(X)$.

Keywords: hyperspace; generalized metric property; wcs -cover; wcs^* -network

Classification: 54B20, 54C10, 54D20, 54E40

1. Introduction and preliminaries

Recently, the generalized metric properties on hyperspaces with the Vietoris topology have been studied by many authors, see [5], [9], [12], [13], [14], [15], [16], [18], [19], [20].

In [21], L. Q. Tuyen, O. V. Tuyen and L. D. R. Kočinac proved that X has a σ -(P)-strong network consisting of cs -covers (cs^* -covers) if and only if so does $\mathcal{F}(X)$, where (P) is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. Moreover, they also proved that X is a Cauchy sn -symmetric space with a σ -(P)-property cs^* -network (cs -network, sn -network, respectively) if and only if so is $\mathcal{F}(X)$. In this paper, we study the concepts of wcs -covers and wcs^* -networks on the Vietoris hyperspace $\mathcal{F}(X)$. Throughout this paper, (P) is assumed to be one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. Moreover, all spaces are assumed to be T_1 and regular, \mathbb{N} denotes the set of all positive integers. For a space X , we prove that

- (1) X has a point-star network consisting of (countable) wcs -covers if and only if so does $\mathcal{F}(X)$;
- (2) X has a sequence of wcs -covers with property (P) which is a point-star network if and only if so does $\mathcal{F}(X)$;
- (3) X has a wcs^* -network with property $\sigma\text{-}(P)$ if and only if so does $\mathcal{F}(X)$.

By these results, we obtain that

- (1) X is a pseudo-sequence-covering and π -image of a metric space if and only if so is $\mathcal{F}(X)$;
- (2) X is a pseudo-sequence-covering (sequentially-quotient), s - and π -image of a metric space if and only if so is $\mathcal{F}(X)$;
- (3) X is a pseudo-sequence-covering (sequentially-quotient) and π -image of a separable metric space if and only if so is $\mathcal{F}(X)$;
- (4) X is a pseudo-sequence-covering and compact image of a separable metric space if and only if so is $\mathcal{F}(X)$;
- (5) X is a (weak) Cauchy sn -symmetric space with a wcs^* -network having property $\sigma\text{-}(P)$ if and only if so is $\mathcal{F}(X)$.

For a sequence $\{x_n\}_{n \in \mathbb{N}}$ converging to x , we say that $\{x_n\}_{n \in \mathbb{N}}$ is *eventually* in P , see [2], [17], if $\{x\} \cup \{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$, and $\{x_n\}_{n \in \mathbb{N}}$ is *frequently* in P , see [2], [17], if some subsequence of $\{x_n\}_{n \in \mathbb{N}}$ is eventually in P . Furthermore, if \mathcal{P} is a family of subsets of a space X and $A \subset X$, then

$$\begin{aligned} \text{St}(A, \mathcal{P}) &= \bigcup \{P \in \mathcal{P} : P \cap A \neq \emptyset\}; \\ (\mathcal{P})_A &= \{P \in \mathcal{P} : P \cap A \neq \emptyset\}. \end{aligned}$$

For $x \in X$, we use the notation $\text{St}(x, \mathcal{P})$ instead of $\text{St}(\{x\}, \mathcal{P})$ and $(\mathcal{P})_x$ instead of $(\mathcal{P})_{\{x\}}$.

Given a space X , we define its *hyperspaces* as the following sets:

- (1) $CL(X) = \{A \subset X : A \text{ is closed and nonempty}\};$
- (2) $\mathbb{K}(X) = \{A \in CL(X) : A \text{ is compact}\};$
- (3) $\mathcal{F}_n(X) = \{A \in CL(X) : |A| \leq n\}$, where $n \in \mathbb{N}$;
- (4) $\mathcal{F}(X) = \{A \in CL(X) : A \text{ is finite}\}.$

The set $CL(X)$ is topologized by the *Vietoris topology* defined as the topology generated by

$$\mathcal{B} = \{\langle U_1, \dots, U_k \rangle : U_1, \dots, U_k \text{ are open subsets of } X, k \in \mathbb{N}\}$$

where

$$\langle U_1, \dots, U_k \rangle = \left\{ A \in CL(X) : A \subset \bigcup_{i \leq k} U_i, A \cap U_i \neq \emptyset \text{ for each } i \leq k \right\}.$$

Note that, by definition, $\mathbb{K}(X)$, $\mathcal{F}_n(X)$ and $\mathcal{F}(X)$ are subspaces of $CL(X)$. Hence, they are topologized with the appropriate restriction of the Vietoris topology. Moreover,

- (1) $CL(X)$ is called the *hyperspace of nonempty closed subsets of X* ;
- (2) $\mathbb{K}(X)$ is called the *hyperspace of nonempty compact subsets of X* ;
- (3) $\mathcal{F}_n(X)$ is called the *n -fold symmetric product of X* ;
- (4) $\mathcal{F}(X)$ is called the *hyperspace of finite subsets of X* .

On the other hand, it is obvious that $\mathcal{F}(X) = \bigcup_{n=1}^{\infty} \mathcal{F}_n(X)$ and $\mathcal{F}_n(X) \subset \mathcal{F}_{n+1}(X)$ for each $n \in \mathbb{N}$.

Remark 1.1 ([18]). Let X be a space and let $n \in \mathbb{N}$.

- (1) $\mathcal{F}_n(X)$ is closed in $\mathcal{F}(X)$.
- (2) $f_1: X \rightarrow \mathcal{F}_1(X)$ given by $f_1(x) = \{x\}$ is a homeomorphism.
- (3) Every $\mathcal{F}_m(X)$ is a closed subset of $\mathcal{F}_n(X)$ for each $m, n \in \mathbb{N}$, $m < n$.

Notation 1.2 ([16]). If U_1, \dots, U_s are open subsets of a space X , then $\langle U_1, \dots, U_s \rangle_{\mathcal{F}(X)}$ denotes the intersection of the open set $\langle U_1, \dots, U_s \rangle$ of the Vietoris topology with $\mathcal{F}(X)$.

Notation 1.3 ([20]). Let X be a space. If $\{x_1, \dots, x_r\}$ is a point of $\mathcal{F}(X)$ and $\{x_1, \dots, x_r\} \in \langle U_1, \dots, U_s \rangle_{\mathcal{F}(X)}$, then for each $j \leq r$, we let

$$U_{x_j} = \bigcap \{U \in \{U_1, \dots, U_s\}: x_j \in U\}.$$

Observe that $\langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \langle U_1, \dots, U_s \rangle_{\mathcal{F}(X)}$.

Definition 1.4. Let \mathcal{P} be a family of subsets of a space X .

- (1) \mathcal{P} is called a *wcs-cover*, see [3], (or an *fcs-cover*, see [4]), if for every convergent sequence S converging to x in X , there exists a finite subfamily \mathcal{P}' of $(\mathcal{P})_x$ such that S is eventually in $\bigcup \mathcal{P}'$.
- (2) \mathcal{P} is called a *cs*^{*}-*cover*, see [7], if for every convergent sequence S in X , there exist $P \in \mathcal{P}$ and a subsequence S' of S such that S' is eventually in P .
- (3) \mathcal{P} is called a *cs-cover*, see [22], if for every convergent sequence S in X , there exists $P \in \mathcal{P}$ such that S is eventually in P .
- (4) \mathcal{P} is called a *wcs*^{*}-*network*, see [11], for X , if for each sequence $\{x_n\}_{n \in \mathbb{N}}$ converging to $x \in U$ with U open in X , there exists a subsequence $\{x_{n_k}\}_{k \in \mathbb{N}}$ of $\{x_n\}_{n \in \mathbb{N}}$ such that $\{x_{n_k}: k \in \mathbb{N}\} \subset P \subset U$ for some $P \in \mathcal{P}$.
- (5) \mathcal{P} is called a *cs*-*network*, see [6], (*cs*^{*}-*network*, respectively, see [2]) for X , if for each $x \in X$, any sequence L converging to $x \in U$ with U open in X , then L is eventually (frequently, respectively) in $P \subset U$ for some $P \in \mathcal{P}$.

Remark 1.5.

- (1) Definition *wcs*-cover or *fcs*-cover is also *sfp*-cover in [8].
- (2) *cs*-covers \Rightarrow *wcs*-covers \Rightarrow *cs**-covers.
- (3) *cs*-networks \Rightarrow *cs**-networks \Rightarrow *wcs**-networks.

Definition 1.6. Let \mathcal{P} be a family of subsets of a space X .

- (1) \mathcal{P} is said to be *point-finite* (or *point-countable*), if the family $(\mathcal{P})_x$ is finite (countable, respectively) for each $x \in X$.
- (2) \mathcal{P} is said to be *compact-finite* (*compact-countable*, respectively), if for each compact subset K of X , the family $(\mathcal{P})_K$ is finite (countable, respectively).
- (3) \mathcal{P} is said to be *locally finite* (*locally countable*, respectively), if for each $x \in X$, there exists an open neighborhood V of x such that the family $(\mathcal{P})_V$ is finite (countable, respectively).

Definition 1.7. For a cover \mathcal{P} of a space X , we say that \mathcal{P} has *property σ* - (P) , if \mathcal{P} can be expressed as $\bigcup_{n \in \mathbb{N}} \mathcal{P}_n$, where each \mathcal{P}_n has property (P) .

Definition 1.8 ([10]). Let X be a space. A sequence $\{\mathcal{P}_n\}_{n \in \mathbb{N}}$ of families of subsets in X is called a *point-star network* for X , if $\{\text{St}(x, \mathcal{P}_n)\}_{n \in \mathbb{N}}$ is a network at x in X for each $x \in X$.

For some undefined or related concepts, we refer the reader to [3], [10], [21].

2. Main results

Let X be a space. We say that a sequence $\{A_n\}_{n \in \mathbb{N}}$ consisting of subsets of X converges to a subset $A \subset X$, if for each open set U in X with $A \subset U$, there exists $k \in \mathbb{N}$ such that $A_n \subset U$ for each $n > k$.

Lemma 2.1 ([21, Lemma 2.1]). *Let X be a space and $\{F_m\}_{m \in \mathbb{N}}$ be a sequence of points of $\mathcal{F}(X)$. If $\{F_m\}_{m \in \mathbb{N}}$ converges to $F = \{x_1, \dots, x_r\}$ in $\mathcal{F}(X)$ and $\{U_1, \dots, U_r\}$ is a family of pairwise disjoint open subsets of X such that $x_j \in U_j$ for each $j \leq r$, then $\{F_m \cap U_j\}_{m \in \mathbb{N}}$ converges to $\{x_j\}$ in X for each $j \leq r$.*

Lemma 2.2 ([19, Lemma 2.1]). *Let $\langle U_1, \dots, U_s \rangle, \langle V_1, \dots, V_r \rangle \subset CL(X)$. If there exists $i_0 \leq s$ such that $U_{i_0} \cap (\bigcup_{j \leq r} V_j) = \emptyset$, then $\langle U_1, \dots, U_s \rangle \cap \langle V_1, \dots, V_r \rangle = \emptyset$.*

Let \mathcal{P} be a family of subsets of a space X . If we put

$$\mathfrak{P} = \{\langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : P_1, \dots, P_s \in \mathcal{P}, s \in \mathbb{N}\},$$

then observe that \mathfrak{P} is a family of subsets of $\mathcal{F}(X)$.

Lemma 2.3. *Let X be a space. Then, \mathcal{P} is a *wcs*-cover (or *wcs*^{*}-network) for X , then \mathfrak{P} is a *wcs*-cover (*wcs*^{*}-network, respectively) for $\mathcal{F}(X)$.*

PROOF: Suppose that $F = \{x_1, \dots, x_r\} \in \mathcal{F}(X)$ and \mathcal{U} is an open neighborhood of F in $\mathcal{F}(X)$. Then, there exist open subsets U_1, \dots, U_s of X such that

$$F \in \langle U_1, \dots, U_s \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

Because X is Hausdorff, by Notation 1.3, we can find pairwise disjoint open subsets U_{x_1}, \dots, U_{x_r} of X such that $x_j \in U_{x_j}$ for each $j \leq r$, and

$$F \in \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset U_1, \dots, U_s \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

Let $\{F_m\}_{m \in \mathbb{N}}$ be a sequence converging to F in $\mathcal{F}(X)$. For each $j \leq r$, it follows from Lemma 2.1 that the sequence $\{F_m \cap U_{x_j}\}_{m \in \mathbb{N}}$ converges to $\{x_j\}$ in X .

Case 1. Let \mathcal{P} be a *wcs*-cover for X . Then, there exist a finite subfamily \mathcal{P}_j of $(\mathcal{P})_{x_j}$ and $k_j \in \mathbb{N}$ such that

$$\{x_j\} \cup \left(\bigcup \{F_m \cap U_{x_j} : m \geq k_j\} \right) \subset \bigcup \mathcal{P}_j.$$

Put $k = \max\{k_j : j \leq r\}$ and

$$\mathfrak{P}' = \{\langle P_1, \dots, P_r \rangle_{\mathcal{F}(X)} : P_j \in \mathcal{P}_j, j \leq r\}.$$

Then, \mathfrak{P}' is a finite subfamily of $(\mathfrak{P})_F$. Furthermore, we have

$$\{F\} \cup \{F_m : m > k\} \subset \bigcup \mathfrak{P}'.$$

Therefore, \mathfrak{P} is a *wcs*-cover for $\mathcal{F}(X)$.

Case 2. Let \mathcal{P} be a *wcs*^{*}-network for X . Then, by induction on r , there exist $P_1, \dots, P_r \in \mathcal{P}$ and a subsequence $\{m_k\}_{k \in \mathbb{N}}$ of \mathbb{N} such that

$$\bigcup \{F_{m_k} \cap U_{x_j} : k \in \mathbb{N}\} \subset P_j \subset U_{x_j}.$$

This implies that $\langle P_1, \dots, P_r \rangle_{\mathcal{F}(X)} \in \mathfrak{P}$ and

$$\{F_{m_k} : k \in \mathbb{N}\} \subset \langle P_1, \dots, P_r \rangle_{\mathcal{F}(X)} \subset \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

Hence, \mathfrak{P} is a *wcs*^{*}-network for $\mathcal{F}(X)$. □

Lemma 2.4 ([21, Lemma 2.3]). *If \mathcal{P} has property (P), then so does \mathfrak{P} .*

Theorem 2.5. *Let X be a space.*

- (1) *X has a point-star network consisting of (countable) *wcs*-covers if and only if so does $\mathcal{F}(X)$.*

(2) X has a sequence of *wcs*-covers with property (P) which is a point-star network if and only if so does $\mathcal{F}(X)$.

PROOF: *Necessity.* Let $\{\mathcal{P}_n\}_{n \in \mathbb{N}}$ be a sequence of *wcs*-covers which is a point-star network for X . We can assume that \mathcal{P}_{n+1} refines \mathcal{P}_n for each $n \in \mathbb{N}$. Now, for each $n \in \mathbb{N}$, put

$$\mathfrak{P}_n = \{\langle P_1^{(n)}, \dots, P_s^{(n)} \rangle_{\mathcal{F}(X)} : P_1^{(n)}, \dots, P_s^{(n)} \in \mathcal{P}_n, s \in \mathbb{N}\}.$$

Take any $F = \{x_1, \dots, x_r\} \in \mathcal{F}(X)$ and an open neighborhood \mathcal{U} of F in $\mathcal{F}(X)$. Similar to the proof of Lemma 2.3, we can find pairwise disjoint open subsets U_{x_1}, \dots, U_{x_r} of X such that $x_j \in U_{x_j}$ for each $j \leq r$ and

$$F \in \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

For each $j \leq r$, since $\{\mathcal{P}_n\}_{n \in \mathbb{N}}$ is a point-star network for X , $\{\text{St}(x_j, \mathcal{P}_n)\}_{n \in \mathbb{N}}$ is a network at x_j in X . Thus, there exists $m_j \in \mathbb{N}$ such that $x_j \in \text{St}(x_j, \mathcal{P}_n) \subset U_{x_j}$ whenever $n \geq m_j$. If we put $m = \max\{m_j : j \leq r\}$, the

$$F \in \langle \text{St}(x_1, \mathcal{P}_n), \dots, \text{St}(x_r, \mathcal{P}_n) \rangle_{\mathcal{F}(X)} \subset \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)}$$

for every $n \geq m$. Furthermore, it is clear that

$$\text{St}(F, \mathfrak{P}_n) \subset \langle \text{St}(x_1, \mathcal{P}_n), \dots, \text{St}(x_r, \mathcal{P}_n) \rangle_{\mathcal{F}(X)}.$$

Hence, $F \in \text{St}(F, \mathfrak{P}_n) \subset \mathcal{U}$ for every $n \geq m$. Therefore, $\{\text{St}(F, \mathfrak{P}_n)\}_{n \in \mathbb{N}}$ is a network at F in $\mathcal{F}(X)$. This shows that $\{\mathfrak{P}_n\}_{n \in \mathbb{N}}$ is a point-star network for $\mathcal{F}(X)$. It follows from Lemma 2.3 that $\{\mathfrak{P}_n\}_{n \in \mathbb{N}}$ is a sequence of *wcs*-covers for $\mathcal{F}(X)$. Moreover, if \mathcal{P}_n is countable, then observe that \mathfrak{P}_n is countable. On the other hand, by Lemma 2.4, if \mathcal{P}_n has property (P), then \mathfrak{P}_n has property (P).

Sufficiency. Assume that $\{\mathfrak{P}_n\}_{n \in \mathbb{N}}$ is a sequence of *wcs*-covers, and a point-star network for $\mathcal{F}(X)$. For each $n \in \mathbb{N}$, we put

$$\mathfrak{Q}_n = \{\mathcal{W} \cap \mathcal{F}_1(X) : \mathcal{W} \in \mathfrak{P}_n\}.$$

Then, $\{\mathfrak{Q}_n\}_{n \in \mathbb{N}}$ is a sequence of *wcs*-covers, and a point-star network for $\mathcal{F}_1(X)$. Furthermore, if \mathfrak{P}_n is countable, then \mathfrak{Q}_n is countable. On the other hand, for each $n \in \mathbb{N}$, if \mathfrak{P}_n has property (P), then \mathfrak{Q}_n has property (P). By Remark 1.1, the proof of sufficiency is completed. \square

By Theorem 2.5, [3, Theorem 2.7, Corollaries 2.9, 3.8, Proposition 3.7] and [1, Theorem 2.4], we obtain the following corollary.

Corollary 2.6. Let X be a space.

- (1) X is a pseudo-sequence-covering and π -image of a metric space if and only if so is $\mathcal{F}(X)$.
- (2) X is a pseudo-sequence-covering (sequentially-quotient), s - and π -image of a metric space if and only if so is $\mathcal{F}(X)$.
- (3) X is a pseudo-sequence-covering (sequentially-quotient) and π -image of a separable metric space if and only if so is $\mathcal{F}(X)$.
- (4) X is a pseudo-sequence-covering and compact image of a separable metric space if and only if so is $\mathcal{F}(X)$.

Theorem 2.7. Let X be a space. Then, X has a wcs^* -network with property σ -(P) if and only if so does $\mathcal{F}(X)$.

PROOF: *Necessity.* Assume that $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ is a wcs^* -network for X , where each \mathcal{P}_n has property (P) and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for each $n \in \mathbb{N}$. It follows from Lemma 2.4 that

$$\mathfrak{P}_n = \{\langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : P_1, \dots, P_s \in \mathcal{P}_n, s \in \mathbb{N}\}$$

has property (P), and $\mathfrak{P}_n \subset \mathfrak{P}_{n+1}$ for each $n \in \mathbb{N}$. If we put $\mathfrak{P} = \bigcup_{n \in \mathbb{N}} \mathfrak{P}_n$, then \mathfrak{P} has property σ -(P).

Now, we will prove that

$$\mathfrak{P} = \{\langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : P_1, \dots, P_s \in \mathcal{P}, s \in \mathbb{N}\}.$$

In fact, it is easy to see that

$$\mathfrak{P} \subset \{\langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : P_1, \dots, P_s \in \mathcal{P}, s \in \mathbb{N}\}.$$

Next, let $\mathcal{W} \in \{\langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : P_1, \dots, P_s \in \mathcal{P}, s \in \mathbb{N}\}$. Then, there exist $P_1, \dots, P_s \in \mathcal{P}$ such that $\mathcal{W} = \langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)}$. Since $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$, there exists $n_i \in \mathbb{N}$ such that $P_i \in \mathcal{P}_{n_i}$ for each $i \leq s$. If we put $m = \max\{n_i : i \leq s\}$, then $P_1, \dots, P_s \in \mathcal{P}_m$ and $m \in \mathbb{N}$. This implies that $\mathcal{W} \in \mathfrak{P}_m \subset \mathfrak{P}$.

Therefore, \mathfrak{P} is a wcs^* -network for $\mathcal{F}(X)$ by Lemma 2.3.

Sufficiency. Let $\mathfrak{P} = \bigcup_{n \in \mathbb{N}} \mathfrak{P}_n$ be a wcs^* -network with property σ -(P) for $\mathcal{F}(X)$. For each $n \in \mathbb{N}$, we put

$$\mathfrak{Q}_n = \{\mathcal{W} \cap \mathcal{F}_1(X) : \mathcal{W} \in \mathfrak{P}_n\}.$$

Then, $\mathfrak{Q} = \bigcup_{n \in \mathbb{N}} \mathfrak{Q}_n$ is a wcs^* -network with property σ -(P) for $\mathcal{F}_1(X)$. Thus, X has a wcs^* -network with property σ -(P) for X by Remark 1.1. \square

By Theorem 2.7 and [21, Corollary 2.7 (2)], we obtain the following corollary.

Corollary 2.8. *Let X be a space. Then, X is a (weak) Cauchy sn -symmetric space with a wcs^* -network having property σ -(P) if and only if so is $\mathcal{F}(X)$.*

REFERENCES

- [1] An T. V., Tuyen L. Q., *On π -images of separable metric spaces and a problem of Shou Lin*, Matematički Vesnik **64** (250) (2012), 297–302.
- [2] Gao Z. M., \aleph -space is invariant under perfect mappings, Questions Answer Gen. Topology **5** (1987), no. 2, 271–279.
- [3] Ge Y., *On pseudo-sequence coverings, π -images of metric spaces*, Mat. Vesnik **57** (2005), no. 3–4, 113–120.
- [4] Ge Y., Gu J. S., *On π -images of separable metric spaces*, Sci. Ser. A Math. Sci. (N.S.) **10** (2004), 65–71.
- [5] Good C., Macías S., *Symmetric products of generalized metric spaces*, Topology Appl. **206** (2016), 93–114.
- [6] Guthrie J. A., *A characterization of \aleph_0 -spaces*, General Topology and Appl. **1** (1971), no. 2, 105–110.
- [7] Li J. J., *Images of a Locally Separable Metric Space and Their Associated Results*, Doctoral Thesis, Shandong University, Jinan, 2000 (in Chinese).
- [8] Li Z., *On π - s -images of metric spaces*, Int. J. Math. Math. Sci. **7** (2005), no. 7, 1101–1107.
- [9] Lin F., Shen R., Liu C., *Generalized metric properties on hyperspaces with the Vietoris topology*, Rocky Mountain J. Math. **51** (2021), no. 5, 1761–1779.
- [10] Lin S., *Point-countable Covers and Sequence-Covering Mappings*, China Science Press, Beijing, 2015 (in Chinese).
- [11] Lin S., Tanaka Y., *Point-countable k -networks, closed maps, and related results*, Topology Appl. **59** (1994), no. 1, 79–86.
- [12] Liu C., Lin F., *A note on hyperspaces by closed sets with Vietoris topology*, Bull. Malays. Math. Sci. Soc. **45** (2022), no. 5, 1955–1974.
- [13] Liu C., Lin F., *Hyperspaces with a countable character of closed subset*, Topology Appl. **328** (2023), Paper No. 108461, 14 pages.
- [14] Liu C., Lin F., *The quasi-metrizability of hyperspaces*, Topology Appl. **338** (2023), Paper No. 108665, 11 pages.
- [15] Mou L., Li P., Lin S., *Regular G_δ -diagonals and hyperspaces*, Topology Appl. **301** (2021), Paper No. 107530, 9 pages.
- [16] Peng L.-X., Sun Y., *A study on symmetric products of generalized metric spaces*, Topology Appl. **231** (2017), 411–429.
- [17] Tanaka Y., Ge Y., *Around quotient compact images of metric spaces, and symmetric spaces*, Houston J. Math. **32** (2006), no. 1, 99–117.
- [18] Tang Z., Lin S., Lin F., *Symmetric products and closed finite-to-one mappings*, Topology Appl. **234** (2018), 26–45.
- [19] Tuyen L. Q., Tuyen O. V., *On the n -fold symmetric product of a space with a σ -(P)-property cn -network (ck-network)*, Comment. Math. Univ. Carolinæ **61** (2020), no. 2, 257–263.
- [20] Tuyen L. Q., Tuyen O. V., *A note on the hyperspace of finite subsets*, Fasc. Math. **65** (2021), 67–73.

- [21] Tuyen L. Q., Tuyen O. V., Kočinac L. D. R., *The Vietoris hyperspace $\mathcal{F}(X)$ and certain generalized metric properties*, Hacet. J. Math. Stat. **53** (2024), no. 2, 356–366.
- [22] Yan P., *On strong sequence-covering compact mappings*, Northeast. Math. J. **14** (1998), no. 3, 341–344.

L. Q. Tuyen:

DEPARTMENT OF MATHEMATICS, DA NANG UNIVERSITY OF EDUCATION,
459 TON DUC THANG STREET, 50000 DA NANG CITY, VIETNAM

E-mail: tuyendhdn@gmail.com

O. V. Tuyen:

HOA VANG HIGH SCHOOL, 101 ONG ICH DUONG STREET, 50000 DA NANG CITY,
VIETNAM

E-mail: tuyenvan612dn@gmail.com

P. D. Tuan, N. X. Truc:

DEPARTMENT OF MATHEMATICS, DA NANG UNIVERSITY OF EDUCATION,
459 TON DUC THANG STREET, 50000 DA NANG CITY, VIETNAM

E-mail: tuanspdn@gmail.com

E-mail: nxtruc2003@gmail.com

(Received December 1, 2023, revised January 4, 2024)