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Counting paths between points on a circle

Ivaylo Kortezov

Abstract. The paper deals with counting sets of given magnitude whose elements
are self-avoiding paths with nodes from a fixed set of points on a circle. Some
of the obtained formulae provide new properties of entries in “The On-line En-
cyclopaedia of Integer Sequences”, while others generate new entries therein.

Keywords: enumerative combinatorics; self-avoiding path; convex polygon
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Below we will prove formulae for counting the p-element sets consisting of self-

avoiding paths whose sets of nodes are disjoint subsets of a set of n fixed points on

a circle. The formulae depend on whether all n points need to be used as nodes

and whether one-node paths are allowed. Although each path is self-avoiding,

different paths are allowed to intersect. The formulae proven here generalize

some results from [1] and [2]. Some special cases of these formulae correspond

to new properties of existing sequences in The On-line Encyclopaedia of Integer

Sequences (OEIS), see [3], [4], while other ones generate new sequences therein,

see [5]–[14]. Also, for n ≥ 3, these formulae count the p-element sets consisting of

self-avoiding paths whose sets of nodes are disjoint subsets of a set of vertices of

a given convex n-gon (this last statement follows in a natural way and will not

be mentioned further).

All variables in this paper denote positive integers.

Definition 1. Let A1, A2, . . . , Ak be different points in the plane such that no

three of them are collinear. If the segments A1A2, A2A3, . . . , Ak−1Ak have no

common internal points then the union of these segments is called a self-avoiding

path (SAP); A1, A2, . . . , Ak are called nodes of the SAP.

Note that, according to the definition, the SAP is direction-independent—e.g.

A1A2A4A3 and A3A4A2A1 is the same SAP. Also, the definition allows a SAP to

have just one node (and zero segments); in this case we will call it a singleton. It

is not immediately clear whether it is reasonable to include the singletons among
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the SAPs, so below we will calculate the results both with and without them,

obtaining outcomes of comparable compactness.

Definition 2. Let n, p be positive integers. Denote by:

◦ sap(n, p) the number of p-sets of non-singleton SAPs whose sets of nodes

form a partition of a given set of n points on a circle;

◦ sap′(n, p) the number of p-sets of (possibly singleton) SAPs whose sets

of nodes form a partition of a given set of n points on a circle;

◦ SAP(n, p) the number of p-sets of non-singleton SAPs whose sets of nodes

are disjoint subsets of a given set of n points on a circle;

◦ SAP′(n, p) the number of p-sets of (possibly singleton) SAPs whose sets

of nodes are disjoint subsets of a given set of n points on a circle.

The result of the next statement for p = 1 has been suggested by the author

and accepted by oeis.org in the list of properties of A001792, see [3]. The results

for some other p have been accepted in oeis.org as the sequences A332426 for

p = 2, see [6], A359404 for p = 3, see [7], and A360275 for p = 4, see [10]. The

statement itself has been proved in [1]; here we provide a proof for the sake of

synchronizing the notations.

Theorem 1. Let n, p be positive integers such that n > p. Then

sap(n, p) = 2n−3p

(

n

p

) p
∑

i=1

(

p

i

)

in−p(−1)p−i,

or equivalently, sap(n, p) = 2n−3pV
(p)
n S

(p)
n−p, with V

(p)
n being the number of vari-

ations for n elements of pth class and S
(p)
n−p being the Stirling number of second

kind for n− p elements of pth class.

Proof: Fix one of the end-nodes of each SAP; call it the head of that SAP; call

the set of the rest of the nodes of the SAP the body of that SAP. There are
(

n

p

)

choices for the set of heads among the n given points on the circle. We have to

split the set of the remaining n−p points into the p (nonempty) bodies1. For each

of the n − p points there are p choices for the body (pn−p variants); we have to

exclude the variants where a body remains empty
((

p
1

)

(p− 1)n−p variants
)

, then

to include back the variants where two of the bodies remain empty
((

p

2

)

(p−2)n−p

variants
)

, and continue further by the inclusion-exclusion principle to get

(

n

p

) p
∑

i=1

(

p

i

)

in−p(−1)p−i.

1Modulo the order, there are S
(p)
n−p

ways to this, where S
(p)
n−p

is the Stirling number of

second kind for n−p elements of pth class, but to take into account the order we do the details

explicitly.
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Let us now count the SAPs with a given head and body: starting from the head,

for each subsequent node, except for the last one, there are 2 choices – the leftmost

or the rightmost unused point from the set entitled to the body (in all other cases

part of the points remain separated from the rest and there is no way to conclude

without self-intersection). Thus the number of SAPs with a given head and body

is 2x−1 where x is the magnitude of the body.

Among the n given points there are p used for heads and n − p used for the

p bodies; summing up the above result for all these, we conclude that the number

of ways to form p SAPs from a given decomposition of the set of points into p

heads and bodies is 2(n−p)−p = 2n−2p.

To conclude it remains to note that there are 2 possible choices for the head

of each SAP, so we need to divide by 2p. Thus

sap(n, p) = 2−p2n−2p

(

n

p

) p
∑

i=1

(

p

i

)

in−p(−1)p−i.

The statement regarding the Stirling numbers of the second kind is directly seen

in the proof, since there are V
(p)
n ways to choose the heads (the order is now

important, as we plan to connect each head with a specific body), S
(p)
n−p ways

to split the remaining n − p points among the p (nonempty) bodies and 2n−2p

ways to form SAPs in the entitled bodies; lastly, each of the p SAPs is direction-

independent, which is responsible for a multiplication by 2−p. �

The next statement has been hypothesised in [1]; here we provide a proof.

The result of the next statement for p = 1 has been accepted in the list of

properties of A001792, see [3]. The results for some other p have been accepted

in oeis.org as the sequences A359405 for p = 2, see [8], A360021 for p = 3,

see [9], and A360276 for p = 4, see [11].

Theorem 2. Let n, p be positive integers such that n > p. Then

sap′(n, p) = 2n−3p

(

n

p

) p
∑

i=1

(

p

i

)

in−p3p−i.

Proof: Let among the SAPs exactly m, m = 1, 2, . . . , p, be non-singletons

(m > 0 since n > p). Then there are
(

n
p−m

)

choices for the points used for

the singletons. Then for the SAPs whose nodes are the remaining n + m − p

points the number of variants is

sap(n+m− p,m) = 2n−2m−p

(

n+m− p

m

) m
∑

i=1

(

m

i

)

in−p(−1)m−i.
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Then

sap′(n, p) =

p
∑

m=1

(

n

p−m

)

2n−2m−p

(

n+m− p

m

) m
∑

i=1

(

m

i

)

in−p(−1)m−i

=

p
∑

m=1

m
∑

i=1

2n−2m−p

(

n

p−m

)(

n+m− p

m

)(

m

i

)

in−p(−1)m−i

=

p
∑

i=1

p
∑

m=i

2n−2m−p n!

(p−m)!(n+m− p)!

(n+m− p)!

m!(n− p)!

×
m!

i!(m− i)!
in−p(−1)m−i

=

p
∑

i=1

p
∑

m=i

2n−2m−p n!

(n− p)!(p−m)!(m− i)! i!
in−p(−1)m−i

= 2n−3p

p
∑

i=1

p
∑

m=i

22p−2m n!

(n− p)! p!

p!

(p− i)! i!

×
(p− i)!

(p−m)!(m− i)!
in−p(−1)m−i

= 2n−3p

(

n

p

) p
∑

i=1

(

p

i

)

in−p

p
∑

m=i

(

p− i

m− i

)

4p−m(−1)m−i

= 2n−3p

(

n

p

) p
∑

i=1

(

p

i

)

in−p

p−i
∑

j=0

(

p− i

j

)

4p−i−j(−1)j

= 2n−3p

(

n

p

) p
∑

i=1

(

p

i

)

in−p(4− 1)p−i.

�

The next statement has been hypothesised in [2]; here we provide a proof. The

result for p = 1 has been suggested by the author for publishing in oeis.org and

accepted as A261064, see [4]. The result for p = 2 has been suggested by the

author for publishing in oeis.org and accepted as A360717, see [13].

Theorem 3. We have

SAP(n, p) = 4−p

(

n

p

) p
∑

i=0

(

p

i

)

(2i+ 1)n−p(−1)p−i.

Proof: If n ≤ p then the formula is trivially true: the left-hand side equals 0

for obvious reasons, while on the right-hand side
(

n
p

)

= 0 when n < p and
∑p

i=0

(

p
i

)

(−1)p−i = 0 when n = p. Now let n > p. If the number of used
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points is k, for which there are n!/(k!(n− k)!) choices, then necessarily k > p

and there are sap(k, p) = 2k−3p
(

k
p

)
∑p

i=0

(

p
i

)

ik−p(−1)p−i variants for the p-set of

SAPs, hence

SAP(n, p) =

n
∑

k=p+1

p
∑

i=0

n!

k!(n− k)!

k!

p!(k − p)!

(

p

i

)

2k−3pik−p(−1)p−i

= 2−2p

p
∑

i=0

n
∑

k=p+1

n!

(n− p)!p!

(n− p)!

(n− k)!(k − p)!

(

p

i

)

(2i)k−p(−1)p−i

= 4−p

(

n

p

) p
∑

i=0

(

p

i

) n
∑

k=p+1

(

n− p

k − p

)

(2i)k−p(−1)p−i

= 4−p

(

n

p

) p
∑

i=0

(

p

i

)

(−1)p−i

n−p
∑

j=1

(

n− p

j

)

(2i)j

= 4−p

(

n

p

) p
∑

i=0

(

p

i

)

(−1)p−i((2i+ 1)n−p
− 1)

= 4−p

(

n

p

)( p
∑

i=0

(

p

i

)

(−1)p−i(2i+ 1)n−p
−

p
∑

i=0

(

p

i

)

(−1)p−i

)

.

The result now follows since
∑p

i=0

(

p
i

)

(−1)p−i = 0. �

The next statement has also been proposed in [2]; here we provide a proof.

The result for p = 1 has been suggested by the author for publishing in oeis.org

and accepted as A360715, see [12]. The result for p = 2 has been suggested by

the author for publishing in oeis.org and accepted as A360717, see [14].

Theorem 4. We have

SAP′(n, p) = 4−p

(

n

p

) p
∑

i=0

(

p

i

)

(2i+ 1)n−p3p−i.

Proof: If n < p then the formula is trivially true: the left-hand side is clearly 0,

while on the right-hand side
(

n

p

)

= 0.

If n = p then the left-hand side equals 1 for obvious reasons, while the right-

hand side equals 4−p
(

p
p

)
∑p

i=0

(

p
i

)

3p−i = 4−p(1 + 3)p = 1.

Now let n > p. If the number of used points is k for which there are
(

n

k

)

=

n!/(k!(n− k)!) choices, then:

◦ if k = p then there is 1 possible choice for the p SAPs using these points;
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◦ if k > p then there are sap′(k, p) = 2k−3p
(

k

p

)
∑p

i=0

(

p

i

)

ik−p3p−i variants

for the p-set of SAPs, hence

SAP′(n, p) =

(

n

p

)

+
n
∑

k=p+1

p
∑

i=0

n!

k!(n− k)!

k!

p!(k − p)!

(

p

i

)

2k−3pik−p3p−i

=

(

n

p

)

+ 2−2p

p
∑

i=0

n
∑

k=p+1

n!

(n− p)! p!

(n− p)!

(n− k)!(k − p)!

(

p

i

)

(2i)k−p3p−i

=

(

n

p

)

+ 4−p

(

n

p

) p
∑

i=0

(

p

i

) n
∑

k=p+1

(

n− p

k − p

)

(2i)k−p3p−i

=

(

n

p

)

+ 4−p

(

n

p

) p
∑

i=0

(

p

i

)

3p−i

n−p
∑

j=1

(

n− p

j

)

(2i)j

=

(

n

p

)

+ 4−p

(

n

p

) p
∑

i=0

(

p

i

)

3p−i((2i+ 1)n−p
− 1)

=

(

n

p

)

+ 4−p

(

n

p

)( p
∑

i=0

(

p

i

)

3p−i(2i+ 1)n−p
−

p
∑

i=0

(

p

i

)

3p−i

)

.

The result now follows since
∑p

i=0

(

p

i

)

3p−i = 4p. �

To conclude, let us wrap up the obtained results for the number of p-sets of

self-avoiding paths whose sets of nodes are disjoint subsets of a given set of n

points on a circle, depending on whether singletons are allowed and whether all n

points need to be used as nodes. The common patterns can be easily pointed out.

singletons all n points are nodes, n > p not all points need to be nodes

excluded 2n−3p

(

n

p

) p
∑

i=1

(

p

i

)

in−p(−1)p−i 4−p

(

n

p

) p
∑

i=0

(

p

i

)

(2i+ 1)n−p(−1)p−i

included 2n−3p

(

n

p

) p
∑

i=1

(

p

i

)

in−p3p−i 4−p

(

n

p

) p
∑

i=0

(

p

i

)

(2i+ 1)n−p3p−i
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