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A Kalmár-style completeness proof

for the logics of the hierarchy InPk

Vı́ctor Fernández

Abstract. The logics of the family InPk:={InP k}(n,k)∈ω2 are formally defined

by means of finite matrices, as a simultaneous generalization of the weakly-
intuitionistic logic I1 and of the paraconsistent logic P 1. It is proved that this
family can be naturally ordered, and it is shown a sound and complete axiomatics
for each logic of the form InP k. The involved completeness proof showed here
is obtained by means of a generalization of the well-known Kalmár’s method,
usually applied for many-valued logics.
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Classification: 03B50, 03B53

1. Introduction and preliminaries

In informal terms, paraconsistent logics are the deductive systems allowing the

existence of theories that are not necessarily trivializable in the presence of con-

tradictions. In other words, a given logic L having a negation connective ¬ is

paraconsistent if and only if there are a theory Γ and a formula ϕ such that, from

the set Γ ∪ {ϕ,¬ϕ}, not every formula can be inferred. From this, a paraconsis-

tent logic can deal with contradictory formulas whose consequence relation is not

trivial. With this basic and informal ideas in mind, several works establish prin-

ciples useful for the characterization and classification of different paraconsistent

logics, see, for instance, [3], [2] or [5]. Among such principles, we focus on the

following ones, taking as a starting point a logic L whose consequence relation

is ⊢L, and with a negation connective ¬ :

◦ A theory (that is, a set of formulas) Γ is contradictory if and only if there

is a formula ϕ such that Γ ⊢L ϕ and Γ ⊢L ¬ϕ. On the other hand, we

say that Γ is trivial if and only if Γ ⊢L ϕ for every formula ϕ. Finally,

we say that Γ is explosive if and only if for every formula ϕ, it holds that

Γ, ϕ,¬ϕ ⊢L ψ for every formula ψ (in other words, Γ is explosive if and
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only if Γ ∪ {ϕ,¬ϕ} is a trivial theory for every formula ϕ). With this in

mind, we can consider the following principles which will determine the

paraconsistent character of a given logic L:

◦ The logic L respects the Principle of non-contradiction (PNC) if and only

if it allows the existence of non-contradictory theories.

◦ L respects the Principle of nontriviality (PNT) if it posseses nontrivial

theories.

◦ On the other hand, L respects the Principle of explosion (PE) if every

theory is explosive. That is, if Γ, ϕ,¬ϕ ⊢L ψ for every set of formulas

Γ ∪ {ϕ, ψ}.

With all this background, we say that L is a paraconsistent logic if it does

not validate (PE). This means that L is paraconsistent if and only if there is

(at least) a theory Γ, a formula ϕ and a formula ψ, such that Γ, ϕ,¬ϕ 6⊢L ψ.

So, a paraconsistent logic allows the existence of contradictory theories which are

simultaneously nontrivial ones.

One of the more important families of paraconsistent logics is {Cn}n∈ω, which

was introduced by N. da Costa in [7], see also [6], by means of Hilbert-style

Axiomatics. The paraconsistent character of those logics is achieved as follows:

simply the formula-schema ¬ (ϕ ∧ ¬ϕ) is not established as a theorem in them.

So, the coexistence of contradictory formulas is neither forbidden nor obligatory.

This would allow the existence of formulas ϕ where ϕ ∧ ¬ϕ is a true expression,

meanwhile there are at the same time formulas ψ where ψ∧¬ψ is not valid. Now,

for these ones, the formula ψ◦ defined as ψ◦:=¬ (ψ∧¬ψ) contributes to determine

trivial theories (by the way, in [7] these formulas are called “well-behaved” ones).

For instance, in the case of the logic C1, {ψ◦, ψ,¬ψ} is a trivial theory (trivial

theories can be obtained in the other logics of the hierarchy, too). On the other

hand, usually the sets of the form {ϕ,¬ϕ} are obviously contradictory and not

trivial theories. An interesting point about the Cn-logics is that there are not any

mentions about the characterization of the internal structure of a well-behaved

formula. Simply, two types of formulas are allowed: the well/not-well behaved

ones.

Some years after, the propositional logic P 1 was defined by A. Sette in [20]. It

possesses special characteristics that distinguish it from the family {Cn}{0≤n≤ω}.

One of them is, precisely, that the well-behavior of a certain formula ϕ can be

determined according to its internal structure. Simply, ϕ is well-behaved if and

only if it is not an atomic formula. Moreover, in P 1 this fact can be explained by

its semantics, as we shall see later on.

Among other additional properties, even when P 1 can be defined by means

of a Hilbert-style axiomatics, it can also be obtained by means of a finite matrix
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(meanwhile no one of the Cn-logics, with n ≥ 1, can be characterized in this way).

The matrix semantics for P 1 is built taking as basis a set of three truth-values:

T0 and F0 (intended as the “classical truth-values”) together with T1, which

can be associated to an “intermediate truth”. Besides that, P 1 is maximal with

respect to the propositional classical logic (CL), in the sense that, if any axiom-

schema (independent of the original ones) is added to the axiomatics of P 1, then

this new axiomatics generates CL. Finally, P 1 is algebraizable, as it was shown

in [13].

A notion which is dual (in a certain sense) to paraconsistency is paracomplete-

ness, see [4] for a extensive analysis. Roughly speaking, from a complete theory Γ

of a certain logic L, it would be possible to infer ϕ or ¬ϕ for every formula ϕ.

Now, if L has a disjunction connective (with certain properties), Γ is complete

if, from it, it is possible to obtain ϕ∨¬ϕ for every ϕ. With this underlying idea,

A. Sette and W. Carnielli defined in [21] the logic I1, which, in general terms,

shares with P 1 several properties among the already mentioned (finite axiomati-

zability, maximality relative to CL and algebraizability). Besides that, it is also

defined in I1 the well-behavior of a formula (with respect to completeness, in this

case): the expression ϕ∗ abbreviates ϕ ∨ ¬ϕ. Moreover, in I1 it holds that the

“well behavior with respect to completeness” of ϕ can be characterized by its

internal structure: ϕ is well-behaved (with respect to completeness) if and only if

ϕ is not an atomic formula. This fact is similar to the case of P 1, already men-

tioned. From all this, one of the more remarkable differences between I1 and P 1

is the following: in P 1, not every formula of the form ¬ (ϕ∧¬ϕ) is a P 1-theorem;

on the other hand, every formula of the form ϕ ∨ ¬ϕ is a P 1-theorem. Now,

I1 behaves exactly in the opposite way: ϕ ∨ ¬ϕ is not usually an I1-theorem,

meanwhile ¬ (ϕ ∧ ¬ϕ) is always an I1-theorem.

Continuing with some properties of the logic I1, it can be defined by means

of a 3-valued matrix, too. In this case (and unlike P 1), the “new truth value”

is F1, an “intermediate truth-value of falsehood”. Considering all these facts,

it was suggested in [21] a generalization of these logics by the addition of new

intermediate truth-values, in such a way that the “new logics” already obtained

constitute a family (which could be ordered in a natural way). Following (and

simplifying at some extent) these suggestions, it was defined in [8] the family

InPk = {InP k}(n,k)∈ω2 . Every member of InPk (usually mentioned here just as

an InP k-logic) can be considered as a generalization of I1 and of P 1 at the same

time, by several reasons. First of all, the classical logic CL can be identified simply

with I0P 0. Similarly, P 1 (or I1) is simply I0P 1 (I1P 0, respectively). Moreover,

every InP k-logic has n+ k+2 truth-values (as it will be seen later). In addition,

it can be established an order relation within InPk. The logics of this family fail
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to validate formulas of the form ¬ (ϕ∧¬ϕ) and/or ϕ∨¬ϕ (with the obvious ex-

ception of I0P 0, wherein both formulas are tautologies). It is worth commenting

that, since InP k-logics are finite-valued and mostly paraconsistent/paracomplete,

they can be applied to the study of several interesting properties, see [5], [10]

or [19], for example.

However, an open problem referred to this family consists of providing an

adequate (i.e. sound and complete) axiomatics for all the InP k-logics. This

paper is essentially devoted to offer a suitable axiomatics for them. Moreover,

the soundness and completeness theorems shown here can be considered general

in this sense: their proofs are given in such a way that the adequacy of all the

logics of InPk (with respect to the axiomatics here presented) is demonstrated

in a structured mode, common to any pair (n, k) ∈ ω2 previously fixed. The

technique to prove this result is adapted to the well-known Kalmár’s method to

prove completeness for CL, see [16].

To avoid unnecesary information or formalism, the notions to be used to prove

adequacy will be reduced as much as possible (this entails that this paper will

contain some notational abuses). Besides that, the structure of this article is as

follows: in the next section the InP k-logics will be defined by means of finite

matrices, some simple properties will be shown here, and it will be defined an

order relation � in the family InPk (this justifies the expression “hierarchy” used

for this family). In addition, it will be demonstrated that In1P k1 � In2P k2 if

and only if (n2, k2) ≤Π (n1, k1), where ≤Π is the order of the product on ω2

(that is, (a1, b1) ≤Π (a2, b2) if and only if a1 ≤ a2 and b1 ≤ b2, being ≤ the

standard order in ω). In Section 3, it will be presented a general axiomatics for

all the InP k-logics and it will be proven some properties, which are essential to

the proof of adequacy (result developed in Section 4). By the way, the technique

to prove completeness consists of an adaptation of Kalmár’s method, modifying

the premises appearing in the formal proofs involved. This will be clear all along

that section. For that, it is assumed that the reader is familiar with the notions

of formal proof, schema axioms, inference rules and so on, within the context of

Hilbert-style axiomatics. So, the definitions of these concepts (and other related

ones) will be omitted. This paper concludes with some comments about future

work.

2. Semantic presentation of the hierarchy InPk

To define a matrix semantics for the logics of the family InPk, it is necessary

to start with the definition of the language L(C), common to all the InP k-logics:
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Definition 2.1. The set of connectives of all the InP k-logics is C:={¬,→}, with

obvious arities. The language L(C) (or set of formulas) for the InP k-logics is the

absolutely free algebra over C generated by a countable set V , in the usual way.

Along this paper, the uppercase greek letters Γ,∆,Σ, . . . denote sets of formu-

las of L(C). In addition, the lowercase greek letters ϕ, ψ, θ are metavariables

ranging over the individual formulas of L(C). Finally, the letters α, α1, α2, . . .

will be used as metavariables referred only to the atomic formulas (that is, the

elements of V). All these notations can be used with subscripts, when neccesary.

On the other hand, the expression ϕ[α1, . . . , αm] indicates that the atomic for-

mulas occurring on ϕ are precisely α1, . . . , αm (this expression will be applied in

the development of the completeness proof).

Despite their common language, the difference between each one of the InP k-

logics is given by their respective matrix semantics, defined as follows:

Definition 2.2. Let (n, k) ∈ ω2, with ω = {0, 1, 2, . . .}. The matrix M(n,k) is

defined as a pair M(n,k) = ((A(n,k), C(n,k)), D(n,k)), where

a) (A(n,k), C(n,k)) is an algebra, similar to L(C), with support

A(n,k) := {F0, F1, . . . , Fn, T0, T1, . . . , Tk}
1.

b) D(n,k) = {T0, T1, . . . , Tk}.

In addition, the operations ¬ and → of C(n,k) (also called truth-functions)2

are defined by the truth tables indicated below.

F0 Fr Ti T0
¬ T0 Fr−1 Ti−1 F0

→ F0 Fs Tj T0
F0 T0 T0 T0 T0
Fr T0 T0 T0 T0
Ti F0 F0 T0 T0
T0 F0 F0 T0 T0

With 1 ≤ r, s ≤ n; 1 ≤ i, j ≤ k.

Remark 2.3. Realize that the truth-values F1, . . . , Fn can be considered infor-

mally as intermediate values of falsehood, meanwhile T1, . . . , Tk are intermediate

values of truth. In addition, every application of ¬ to a “non classical value”, ap-

proximates more and more the value to the “classical ones”, F0 and T0. Note that

1Every algebra (A(n,k), C(n,k)) will be identified with its support, if there is no risk of

confusion.
2Strictly speaking, the operations of C(n,k) are not the connectives of C, of course. However,

they will be denoted in the same way for the sake of simplicity.
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there are needed n negations at most to pass from Fr to F0. Similarly, the values

of the form Ti “become” T0 after k negations at most. On the other hand the

implication → cannot distinguish between classical or intermediate truth-values:

it just considers every value of the form Fi as being F0, and every value of the

form Tj as being T0.

Taking into account the previous truth-tables, some secondary (and useful)

truth-functions can be defined. As a motivation, it would be desirable that dis-

junction (∨) and conjunction (∧) behave as → in this aspect: they cannot dis-

tinguish classical from intermediate truth-values. For that, it is taken as starting

point the unary function of “classicalization” c© (the meaning of this neologism

is obvious), defined by c©(A) := (A → A) → A for every A ∈ A(n,k). So, the

truth-table associated to it is

T0 Ti Fr F0

c© T0 T0 F0 F0

From c© it is defined the truth-function ∼, of strong (also called classical) nega-

tion, as ∼ A : = ¬( c©A). So, its associated truth-table is

F0 Fr Ti T0
∼ T0 T0 F0 F0

It is possible to define ∨ and ∧ now, adapting the usual definition for CL: A∨B:=

∼ A → B, meanwhile A ∧ B:= ∼ (A →∼ B). For these connectives, their

associated truth-functions are:

∨ F0 Fs Tj T0
F0 F0 F0 T0 T0
Fr F0 F0 T0 T0
Ti T0 T0 T0 T0
T0 T0 T0 T0 T0

∧ F0 Fs Tj T0
F0 F0 F0 F0 F0

Fr F0 F0 F0 F0

Ti F0 F0 T0 T0
T0 F0 F0 T0 T0

With 1 ≤ i, j ≤ k; 1 ≤ r, s ≤ n.

From the previous definitions, it is clear that all the binary truth-functions

consider all the non-designated values Fj as behaving as F0, and similarly for

all the values Ti. The same fact holds for ∼. In the case of ¬, however, all

the truth-values can be differentiated. This is the main difference of ¬ and ∼,

and justifies the definition and the study of the InP k-logics. For example, when

n ≥ 1, the formula ϕ ∨ ¬ϕ is not an InP k-tautology (it is enough to consider

a valuation v such that v(ϕ) = Ti with i ≥ 1), meanwhile this formula is valid if

¬ is replaced by ∼. That is, |=(n,k) ϕ∨ ∼ ϕ for any InP k-logic. On the other
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hand, when k ≥ 1, ∼ (ϕ∧ ∼ ϕ) is a InP k-tautology (for every (n, k) ∈ ω2), but

¬ (ϕ ∧¬ϕ) is not valid in all the InP k-logics. Indeed, ¬ (ϕ∧¬ϕ) is only valid in

the InP 0-logics.

After a deeper analysis it is possible to see the following fact, using the con-

vention that ¬tϕ indicates ¬ (. . . (¬ϕ)) . . . ) (t times) and ¬0ϕ is ϕ: given a fixed

logic InP k, |=(n,k) ϕ ∨ ¬ϕ if and only if ϕ = ¬t(ψ → θ) (with t ≥ 0), or ϕ =

¬tα, with α ∈ V and t ≥ n: otherwise (when ϕ = ¬tα with t < n) 6|=(n,k) ϕ∨¬ϕ.

In a similar way, |=(n,k) ¬ (ϕ ∧ ¬ϕ) if and only if ϕ = ¬t(ψ → θ) with t ≥ 0, or

ϕ = ¬tα, with t ≥ k, α ∈ V . From these comments we can see that ¬ (ϕ∧¬ϕ) and

ϕ∨¬ϕ are not InP k-tautologies in general terms. So, it is natural to distinguish

between “well-behaved” formulas and “not well-behaved” ones. This distinction

is formalized by means of the unary “well-behavior” truth-functions, defined in

the obvious way: A∗:= A ∨ ¬A; A◦:= ¬ (A ∧ ¬A) for every A ∈ A(n,k). Its

respective truth-tables are

F0 Fr Ti T0
∗ T0 F0 T0 T0

F0 Fr Ti T0
◦ T0 T0 F0 T0

Remark 2.4. The secondary truth-function associated to the connective ◦, which

is motivated by (PNC), was defined in this paper following the ideas developed

in [7]. In that work, that principle characterizes consistency (and, laterally, it

defines certain explosive theories, as it was previously commented). Note how-

ever that in some recent papers the notion of consistency is considered as being

a primitive concept, see [3], [2]. In these logics, known as logics of formal incon-

sistency, it is possible to deal with consistency (and with inconsistency, triviality

and explosiveness) in such a way that two essential notions can be separated: con-

sistency and non contradiction. On the other hand, the distinction between both

concepts cannot be done in the InP k-logics: the truth-table of ◦ is, by definition,

the one applied to non contradiction. With the same spirit, the truth-table of ∗ is

secondary, having in mind the validity/not validity of the formula ϕ∨¬ϕ (which

is related with (PEM), the principle of excluded middle, in this case).

Besides the behavior of the mentioned truth-functions in each matrix M(n,k),

recall that its definition is motivated by the definition of a consequence relation

on L(C) (and therefore of a logic), in the usual way:

Definition 2.5. An M(n,k)-valuation is any homomorphism v : L(C) → A(n,k)

(this notion makes sense because L(C) and A(n,k) are similar algebras). Recall

here that every M(n,k)-valuation can be defined just considering functions v :

V → A(n,k) and extending it to all L(C). The logic InP k is the pair InP k :=
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Figure 1. Ordered structure of the Hierarchy InPk.

(C, |=(n,k)), being |=(n,k)⊆ ℘(L(C)) × L(C) defined as usual, i.e., Γ |=(n,k) ϕ if

and only if for very M(n,k)-valuation v, v(Γ) ⊆ D(n,k) implies v(ϕ) ∈ D(n,k). In

this context, ϕ is an InP k-tautology if and only if ∅ |=(n,k) ϕ (this fact will

be denoted by |=(n,k) ϕ, as usual). The family {InP k}(n,k)∈ω2 will be denoted

by InPk.

Remark 2.6. The family InPk includes some well-known logics. Indeed, I0P 0 is

just the classical logic CL. On the other hand, the logic I1P 0 is I1, meanwhile

I0P 1 is just P 1. In addition, all the InP k-logics can be “naturally ordered”,

taking into account the following definition.

Definition 2.7. The order relation � ⊆ (InPk)2 is defined as follows: In1P k1 �

In2P k2 if and only if for every Γ∪{ϕ} ⊆ L(C), Γ |=(n1,k1) ϕ implies Γ |=(n2,k2) ϕ.

It will be shown in the sequel that the order � in I
n
P
k can be depicted as the

Figure 1 shows. This claim is based on an essential fact that can be checked by

analysis of cases (among the truth-values of any InP k-logic).

Proposition 2.8. In the logic InP k (for n, k fixed), the following formulas are

tautologies:

a) ¬nϕ ∨ ¬n+1ϕ ((n+ 1)-generalization of PEM ),

b) ¬ (¬kϕ ∧ ¬k+1ϕ) ((k + 1)-generalization of PNC ).

Proposition 2.9. We have In1P k1 � In2P k2 if and only if (n2, k2) ≤Π (n1, k1)

(being ≤Π the order of the product on ω2). Therefore, the Hierarchy (InPk,�)

is a lattice.
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Proof: If (n2, k2) ≤Π (n1, k1), then A(n2,k2) ⊆ A(n1,k1), and D(n2,k2) ⊆ D(n1,k1).

Now suppose that Γ0 6|=(n2,k2) ϕ0 for some Γ0 ∪ {ϕ0} ⊆ L(C). So, there exists

a valuation v : V → A(n2,k2) such that v(Γ0) ⊆ D(n2,k2), v(ϕ0) /∈ D(n2,k2). Define

the valuation w : V → A(n1,k1) as w(α) = v(α) for every α ∈ V . It can be proved

that for every ψ ∈ L(C), w(ψ) = v(ψ). Thus, w(Γ0) ⊆ D(n2,k2) ⊆ D(n1,k1) and

w(ϕ0) ∈ {F0, . . . , Fn2
} ⊆ {F0, . . . , Fn1

}. That is, Γ0 6|=(n1,k1) ϕ0. The previous

argument shows that In1P k1 � In2P k2 .

For the converse, suppose (n2, k2) 6≤Π (n1, k1). There are two cases that must

be analyzed in different ways. First, if n2 > n1 consider any formula ϕ1:=

¬n1α∨¬n1+1α, with α ∈ V . So, |=(n1,k1) ϕ1, by Proposition 2.8 a). Now, defining

the valuation v1 : V → A(n2,k2) by v1(α) := Fn2
, it holds v1(ϕ1) = ¬n1Fn2

∨

¬n1+1Fn2
= Fn2−n1

∨ Fn2−(n1+1) = F0 (since n1 + 1 ≤ n2). Thus, 6|=(n2,k2) ϕ1.

On the other hand, if k2 > k1, let ϕ2 := ¬ (¬k1α ∧ ¬k1+1α). As in the first

case, |=(n1,k1) ϕ2, by Proposition 2.8 b). Now, if it is defined the valuation v2 :

V → A(n2,k2) such that v2(α) = Tk2 , then 6|=(n1,k1) ϕ2 (note here that k1+1 ≤ k2).

So, for both possibilities it holds In1P k1 6� In2P k2 . This concludes the proof. �

Some consequences of the previous result, useful to visualize � (actually, its

underlying strict order ≺) are the following:

Corollary 2.10. In InP k it holds that:

a) In+1P k ≺ InP k.

b) InP k+1 ≺ InP k.

c) InP k+1 and In+1P k are not comparable.

This section concludes with the mention of the following result that will be

applied at the end of this paper.

Proposition 2.11. The consequence relation |=(n,k) verifies:

a) Γ |=(n,k) ϕ implies Γ ∪ {ψ} |=(n,k) ϕ [Monotonicity]

b) Γ, ϕ |=(n,k) ψ if and only if Γ |=(n,k) ϕ→ ψ [Semantic deduction theorem]

c) If Γ |=(n,k) ϕ, then Γ′ |=(n,k) ϕ for some finite set Γ′ ⊆ Γ [Finitariness]

Proof: Obviously, a) holds. The claim b) arises from the truth-table of →.

With respect to c), |=(n,k) is finitary because it is naturally defined by means of

a single finite matrix, see [22]. �
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3. A Hilbert-style axiomatics for the InP k-logics

From now on, consider an InP k-logic fixed, with (n, k) ∈ ω2. To obtain the

desired axiomatics, the secondary truth-functions ∼, c©, ∨ and ∧ from the previ-

ous section will be reflected by means of the definition of secondary connectives

in L(C). Formally:

Definition 3.1. The secondary connectives c©, ∼, ∨, ∧, ∗ and ◦ are defined in

L(C) in the following way:

c©ϕ := (ϕ→ ϕ) → ϕ,

∼ ϕ := ¬ ( c©ϕ),

ϕ ∨ ψ := ∼ ϕ→ ψ,

ϕ ∧ ψ := ∼ (ϕ→ ∼ ψ),

ϕ∗ := ϕ ∨ ¬ϕ,

ϕ◦ := ¬ (ϕ ∧ ¬ϕ).

In addition, the connectives ∨CL and ∧CL are defined by:

ϕ ∨CL ψ := ¬ϕ→ ψ,

ϕ ∧CL ψ := ¬ (ϕ→ ¬ψ) 3.

Finally, recall that the expression ¬tϕ indicates ¬ (. . . (¬ϕ)) . . . ), t times, and

that ¬0ϕ is merely ϕ, as we said in the previous section.

Taking into account the previous conventions, the axiomatics for the InP k-

logics will be presented in the sequel. For that consider, from now on, an arbitrary

(fixed) pair (n, k) ∈ ω2.

Definition 3.2. The consequence relation ⊢(n,k) ⊆ ℘(L(C))×L(C) is defined by

means of the following Hilbert-style axiomatics, considering these schema axioms:

Ax1 ϕ→ (ψ → ϕ),

Ax2 (ϕ→ (ψ → θ)) → ((ϕ→ ψ) → (ϕ→ θ)),

Ax3 (ϕ→ ψ)∗,

Ax4 (ϕ→ ψ)◦,

Ax5 (¬nϕ)∗,

Ax6 (¬kϕ)◦,

Ax7 ϕ
∗ → [ψ◦ → ((¬ϕ→ ¬ψ) → ((¬ϕ→ ψ) → ϕ))],

Ax8 ϕ
∗ → [ψ◦ → ((ϕ→ ¬ψ) → ((ϕ→ ψ) → ¬ϕ))],

Ax9 ϕ
∗ → (¬¬ϕ→ ϕ),

Ax10 ϕ
◦ → (ϕ→ ¬¬ϕ),

Ax11 ϕ
∗ → (¬ϕ)∗,

Ax12 ϕ
◦ → (¬ϕ)◦.

3The “classical” connectives ∧CL and ∨CL are not essential in the proof of Completeness.
However, they are indicated here for a better explanation of the comparison between these

connectives with respect to ∧ and ∨, as it will be remarked later.
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The only inference rule for this axiomatics is modus ponens (MP):
ϕ, ϕ→ ψ

ψ
.

From this definition, the well-known notions of formal proof (with or without

hypotheses), formal theorem, etc. are the usual ones. Because of this, ⊢(n,k) is

monotonic, i.e., Γ ⊢(n,k) ϕ implies Γ ∪ {ψ} ⊢(n,k) ϕ. This fact will be widely

used.

Remark 3.3. It is well known that the inclusion of Ax1, Ax2 and MP entail that

it is valid ⊢(n,k) ϕ→ ϕ. Moreover:

Theorem 3.4. We have that ⊢(n,k) satisfies the (syntactic) deduction theorem

(DT). That is, Γ, ϕ ⊢(n,k) ψ if and only if Γ ⊢(n,k) ϕ→ ψ.

Proof: This result holds because the inclusion of axioms Ax1 and Ax2 too, and

considering that the only (primitive) inference rule is modus ponens. See [16] for

a detailed proof. �

Ax1 and Ax2 allow to obtain some useful rules in relation to ⊢(n,k), too:

Proposition 3.5. Given the logic InP k, the following secondary rules are valid:

Permutation (Perm):
ϕ→ (ψ → θ)

ψ → (ϕ→ θ)
.

Transitivity (Trans):
ϕ→ ψ, ψ → θ

ϕ→ θ
.

Reduction (Red):
(ϕ→ ψ) → θ

ψ → θ
.

The following two results involve formulas of the form ϕ∗ or ϕ◦:

Proposition 3.6. For every ϕ ∈ L(C), for every (n, k) ∈ ω2, it holds:

⊢(n,k) (ϕ
∗)∗; ⊢(n,k) (ϕ

∗)◦; ⊢(n,k) ( c©ϕ)∗; ⊢(n,k) ( c©ϕ)◦.

This result is valid since ϕ∗:= ∼ ϕ → ¬ϕ and c©ϕ = (ϕ → ϕ) → ϕ, and

considering axioms Ax3 and Ax4 from Definition 3.2.

Proposition 3.7. If |=(n,k) ϕ, then ⊢(n,k) ϕ
∗ and ⊢(n,k) ϕ

◦.

Proof: Note that no formula of the form ¬tα, with α ∈ V , t ≥ 0, is a tautology.

Then, |=(n,k) ϕ implies that ϕ is necessarily of the form ¬q(ψ → θ), with q ≥ 0.

From this, apply Ax3, Ax4 (and, eventually, Ax11 and Ax12). �

The next result shows some basic InP k-theorems:

Proposition 3.8. The following formulas of L(C) are theorems with respect to

⊢(n,k):

a) ϕ→ c©ϕ; a′) c©ϕ→ ϕ,
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b) ϕ∗ → (∼ ϕ→ ¬ϕ),

c) ϕ∗ → [ψ◦ → ((¬ϕ→ ¬ψ) → (ψ → ϕ))],

d) ϕ∗ → [ψ◦ → ((ϕ→ ψ) → (¬ψ → ¬ϕ))],

e) (∼ ϕ→ ∼ ψ) → ((∼ ϕ→ c©ψ) → c©ϕ),

f) (∼ ϕ→ ∼ ψ) → ((∼ ϕ→ ψ) → ϕ)).

Proof: The following are schematic formal proofs (in the context of ⊢(n,k)) for

every formula above indicated. Sometimes it will be applied Theorem 3.4 or

Proposition 3.5 without explicit mention.

For a): ϕ→ c©ϕ = ϕ→ ((ϕ→ ϕ) → ϕ) is a particular case of Ax1. For the case

of a’):

1) (ϕ→ ϕ) → ϕ [Hyp.; Def. c©ϕ]

2) ϕ→ ϕ [Rem. 3.3]

3) ϕ [1), 2), MP]

So, it is valid c©ϕ ⊢(n,k) ϕ.

For b):

1) ϕ∗ [Hyp.]

2) ( c©ϕ)◦ [Prop. 3.6]

3) ϕ∗ → [ ( c©ϕ)◦ → ((ϕ→ ∼ ϕ) → ((ϕ→ c©ϕ) → ¬ϕ)] [Ax8, Def. 3.1 (of ∼)]

4) (ϕ→ ∼ ϕ) → ((ϕ→ c©ϕ) → ¬ϕ) [1), 2), 3), MP ]

5) (ϕ→ c©ϕ) → ((ϕ→ ∼ ϕ) → ¬ϕ) [4), Perm.]

6) ϕ→ c©ϕ [a)]

7) (ϕ→ ∼ ϕ) → ¬ϕ [5), 6), MP]

8) ∼ ϕ→ (ϕ→ ∼ ϕ) [Ax1]

9) ∼ ϕ→ ¬ϕ [7), 8), Trans.]

That is, ϕ∗ ⊢(n,k) ∼ ϕ→ ¬ϕ.

For c):

1) ϕ∗ [Hyp.]

2) ψ◦ [Hyp.]

3) ¬ϕ→ ¬ψ [Hyp.]

4) ψ [Hyp.]

5) ψ → (¬ϕ→ ψ) [Ax1]

6) ¬ϕ→ ψ [4), 5), MP]

7) ϕ∗ → [ψ◦ → ((¬ϕ→ ¬ψ) → ((¬ϕ→ ψ) → ϕ))] [Ax7]

8) (¬ϕ→ ¬ψ) → ((¬ϕ→ ψ) → ϕ) [7), 1), 2), MP]

9) (¬ϕ→ ψ) → ϕ [8), 3), MP]

10) ϕ [9), 6), MP]

Thus, ϕ∗, ψ◦,¬ϕ→ ¬ψ, ψ ⊢(n,k) ϕ.
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For d): Adapt the proof of c), using Ax8 instead of Ax7. Then, it will be valid

ϕ∗, ψ◦, ϕ→ ψ,¬ψ ⊢(n,k) ¬ϕ.

For e):

1) ( c©ϕ)∗ [Prop. 3.6]

2) ( c©ψ)◦ [Prop. 3.6]

3) ( c©ϕ)∗ → [( c©ψ)◦ → ((∼ ϕ→ ∼ ψ) → ((∼ ϕ→ c©ψ) → c©ϕ))]

[Def. 3.1 (of ∼), Ax7]

4) (∼ ϕ→ ∼ ψ) → ((∼ ϕ→ c©ψ) → c©ϕ) [1), 2), 3), MP]

So, ⊢(n,k) (∼ ϕ→ ∼ ψ) → ((∼ ϕ→ c©ψ) → c©ϕ).

For f):

1) ∼ ϕ→ ∼ ψ [Hyp.]

2) ∼ ϕ→ ψ [Hyp.]

3) ψ → c©ψ [a)]

4) ∼ ϕ→ c©ψ [2), 3), Trans.]

5) (∼ ϕ→ ∼ ψ) → ((∼ ϕ→ c©ψ) → c©ϕ) [e)]

6) c©ϕ [1), 4), 5), MP]

7) c©ϕ→ ϕ [a’)]

8) ϕ [6), 7), MP]

From all this, ∼ ϕ→ ∼ ψ,∼ ϕ→ ψ ⊢(n,k) ψ. Now, apply Theorem 3.4, as in the

previous results. This concludes the proof. �

Remark 3.9. Now it is convenient to relate the axiomatics given in Definition 3.2

with a well-known axiomatics for CL = I0P 0. According to [16], CL can be

axiomatized by MP joined with the following three schema axioms:

Bx1 = Ax1,

Bx2 = Ax2,

Bx3 = (¬ϕ→ ¬ψ) → ((¬ϕ→ ψ) → ϕ).

Note that, cf. Definition 3.2, fixed an arbitrary consequence relation ⊢(n,k), the

axiom Bx3 of the previous axiomatics is replaced by a weaker version (Ax7).

Anyway, since in the particular case of ⊢(0,0), axioms Ax5 and Ax6 establish

that, for every formula ϕ ∈ L(C), ⊢(0,0) ϕ
∗ and ⊢(0,0) ϕ

◦, it is possible to recover

the axiomatics determined by Bx1, Bx2 and Bx3, actually. Moreover:

Proposition 3.10. Let ϕ ∈ L(C), in such a way that ϕ is a formal theorem

of CL (that is, ⊢(0,0) ϕ), and let ϕ′ ∈ L(C), obtained by ϕ replacing all the

occurrences of the symbol ¬ in ϕ by ∼. Then ⊢(n,k) ϕ
′.

Proof: Consider the axiomatics for I0P 0 indicated in Remark 3.9, and compare

it with the general axiomatics given in Definition 3.2. First of all note that

neither Bx1(= Ax1) nor Bx2(= Ax2) have occurrences of ¬. Besides, since

Bx3 = (¬ϕ → ¬ψ) → ((¬ϕ → ψ) → ϕ)), and considering Proposition 3.8 f), it
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holds ⊢(n,k) (∼ ϕ →∼ ψ) → ((∼ ϕ → ψ) → ϕ) (= Bx3
′). From these facts, it

can be easily proved by induction on the length of the formal proof of ϕ (with

respect to ⊢(0,0)) that ⊢(0,0) ϕ implies ⊢(n,k) ϕ
′. �

Corollary 3.11. Suppose ϕ ∈ L(C), and let the formula ϕ′′ ∈ L(C) built by

replacing the eventual occurrences of ¬ in ϕ by ∼, and by replacing every

occurrence of ∨CPL (∧CPL, respectively), understood as an abbreviation (cf. Def-

inition 3.1), by ∨ (∧, respectively). Then, ⊢(0,0) ϕ implies ⊢(n,k) ϕ
′′.

For instance, since ⊢(0,0) ϕ ∨CL ¬ϕ, then ⊢(n,k) ϕ∨ ∼ ϕ. However, it is not

generally valid that ⊢(n,k) ϕ ∨CL ¬ϕ, obviously. The next result collects some

particular cases of the previous corollary:

Corollary 3.12. The relation ⊢(n,k) verifies, given (n, k) ∈ ω2:

a) ⊢(n,k) ϕ→ ϕ ∨ ψ; a′) ⊢(n,k) ψ → ϕ ∨ ψ,

b) ⊢(n,k) ϕ ∧ ψ → ϕ; b′) ⊢(n,k) ϕ ∧ ψ → ψ,

c) ⊢(n,k) (ϕ→ θ) → ((ψ → θ) → (ϕ ∨ ψ → θ)),

d) ⊢(n,k) ϕ→ (ψ → (ϕ ∧ ψ)),

e) ⊢(n,k) ϕ ∧ ψ → ϕ ∨ ψ.

Finally, to prove completeness, it will be necessary to show:

Proposition 3.13. The following are InP k-theorems:

a) ϕ→ ϕ∗,

b) ϕ◦ → (¬ϕ→ (ϕ→ ψ)),

c) (ϕ◦)◦,

d) ¬ (ϕ∗) → ϕ◦,

e) ∼ ϕ→ ϕ◦,

f) ϕ∗ → (¬ (ϕ ∨ ψ) → ¬ϕ),

g) ψ◦ →
(

ϕ→ (¬ψ → ¬ (ϕ→ ψ))
)

,

h) (¬ (ϕ→ ψ))∗; (¬ (ϕ→ ψ))◦,

i) (¬ (ϕ∗))◦,

j) ¬ (ϕ∗) → (ϕ→ ψ).

Proof: These formal theorems are demonstrated as in Proposition 3.8, applying

DT and Proposition 3.5 if it were necessary:

For a): Taking into account Corollary 3.12 a’), it is valid ⊢(n,k) ϕ → ϕ ∨ ¬ϕ.

That is, ⊢(n,k) ϕ→ ϕ∗.

For b):

1) ϕ◦ [Hyp.]

2) ¬ϕ [Hyp.]

3) (¬ϕ→ ψ)∗ [Ax3]
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4) (¬ϕ→ ψ)∗ →
[

ϕ◦ →
(

(¬ (¬ϕ→ ψ) → ¬ϕ) → (ϕ→ (¬ϕ→ ψ))
)]

[Prop. 3.8 c)]

5) (¬ (¬ϕ→ ψ) → ¬ϕ) → (ϕ→ (¬ϕ→ ψ)) [1), 3), 4), MP]

6) ¬ϕ→ (¬ (¬ϕ → ψ) → ¬ϕ) [Ax1]

7) ¬ (¬ϕ→ ψ) → ¬ϕ [2), 6), MP]

8) ϕ→ (¬ϕ→ ψ) [5), 7), MP]

9) ¬ϕ→ (ϕ→ ψ) [8), Perm.]

10) ϕ→ ψ [2), 9), MP]

Thus, it holds ϕ◦ ⊢(n,k) ¬ϕ→ (ϕ→ ψ), as was desired.

For c):

1) ( c© (¬ϕ→ ∼ ϕ))◦ [Prop. 3.6]

2) (∼ (¬ϕ→ ∼ ϕ))◦ [1), Ax12]

3) (ϕ ∧ ¬ϕ)◦ [2), Def. 3.1 (of ∧)]

4) (¬ (ϕ ∧ ¬ϕ))◦ [3), Ax12]

5) (ϕ◦)◦ [4), Def. 3.1 (of ◦)]

For d):

1) (ϕ∗)◦ [Prop. 3.6]

2) ( c© (¬ϕ→ ∼ ϕ))∗ [Prop. 3.6]

3) (ϕ ∧ ¬ϕ)∗ [2), Def. 3.1 (of ∧), Ax11]

4) (ϕ ∧ ¬ϕ)∗ →
[

(ϕ∗)◦ →
(

(ϕ ∧ ¬ϕ→ ϕ∗) → ((¬ (ϕ∗) → ϕ◦))
)]

[Prop. 3.8 d)]

5) (ϕ ∧ ¬ϕ→ ϕ ∨ ¬ϕ) → ((¬ (ϕ∗) → ϕ◦) [1), 3), 4), MP]

6) ϕ ∧ ¬ϕ→ ϕ ∨ ¬ϕ [Cor. 3.12 e)]

7) ¬ (ϕ∗) → ϕ◦ [5), 6), MP]

So, ⊢(n,k) ¬ (ϕ∗) → ϕ◦.

For e):

1) (ϕ ∧ ¬ϕ)∗ → [( c©ϕ)◦ → ((ϕ ∧ ¬ϕ→ c©ϕ) → (∼ ϕ→ ϕ◦))]

[Prop. 3.8 d), Def. 3.1 (of ∼ and ◦)]

2) ϕ ∧ ¬ϕ→ ϕ [Cor. 3.12 b’)]

3) ϕ→ c©ϕ [Prop. 3.8 a)]

4) ϕ ∧ ¬ϕ→ c©ϕ [2), 3), Trans.]

5) ( c©ϕ)◦ [Prop. 3.6]

6) ( c© (¬ϕ→ ∼ ϕ))∗ [Prop. 3.6]

7) (∼ (¬ϕ→ ∼ ϕ))∗ [6), Def. 3.1 (of ∼), Ax11]

8) (ϕ ∧ ¬ϕ)∗ [7), Def. 3.1 (of ∧)]

9) ∼ ϕ→ ϕ◦ [1), 4), 5), 8), MP]

Therefore, ⊢(n,k)∼ ϕ→ ϕ◦.

For f):

1) ϕ∗ [Hyp.]

2) (ϕ ∨ ψ)◦ [Ax4, Def. 3.1 (of ∨)]
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3) ϕ∗ → [(ϕ ∨ ψ)◦ → ((ϕ→ ϕ ∨ ψ) → (¬ (ϕ ∨ ψ) → ¬ϕ)] [Prop. 3.8 d)]

4) (ϕ→ ϕ ∨ ψ) → (¬ (ϕ ∨ ψ) → ¬ϕ) [1), 2), 3), MP]

5) ϕ→ ϕ ∨ ψ [Cor. 3.12 a)]

6) ¬ (ϕ ∨ ψ) → ¬ϕ [4), 5), MP]

Thus, ϕ∗ ⊢(n,k) ¬ (ϕ ∨ ψ) → ¬ϕ.

For g):

1) ψ◦ [Hyp.]

2) (ϕ→ ψ)∗ [Ax3]

3) (ϕ→ ψ)∗ →
[

ψ◦ →
(

((ϕ→ ψ) → ψ) → (¬ψ → ¬ (ϕ→ ψ))
)]

[Prop. 3.8 d)]

4) ((ϕ→ ψ) → ψ) → (¬ψ → ¬ (ϕ→ ψ)) [1), 2), 3), MP]

5) (ϕ→ ψ) → (ϕ→ ψ) [Rem. 3.3]

6) ϕ→ ((ϕ→ ψ) → ψ) [5), Perm.]

7) ϕ→ (¬ψ → (ϕ→ ψ)) [4), 6), Trans.]

So, ψ◦ ⊢(n,k) ϕ→ (¬ψ → ¬ (ϕ→ ψ)) is obtained.

For h): By Ax3 and Ax11 it holds ⊢(n,k) (¬ (ϕ→ ψ))∗. By Ax4 and Ax12 it holds

⊢(n,k) (¬ (ϕ→ ψ))◦.

For i): It is a particular case of h).

For j):

1) ¬ (ϕ∗) [Hyp.]

2) ϕ [Hyp.]

3) ϕ→ ϕ∗ [a)]

4) ϕ∗ [2), 3), MP]

5) (ϕ∗)◦ [Prop. 3.6 ]

6) (ϕ∗)◦ → (¬ (ϕ∗) → (ϕ∗ → ψ)) [ b)]

7) ψ [1), 4), 5), 6), MP]

That is, it holds ¬ (ϕ∗), ϕ ⊢(n,k) ψ. Then, apply Theorem 3.4. This last result

completes the proof. �

4. General soundness and completeness

It is easy to check that the axioms given in Definition 3.2 are InP k-tautologies.

So, taking into account that MP preserves InP k-tautologies, it holds:

Theorem 4.1 (Weak soundness). If ⊢(n,k) ϕ, then |=(n,k) ϕ.

A theorem of (weak) completeness arises as an adaptation of the well-known

Kalmár’s proof for classical logic CL, cf. [16]. The main difference with respect to

Kalmár’s original formulation is the following: meanwhile traditionally every val-

uation v determines a formal proof with a fixed set of premises, in this version we
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will deal with sets of premises of different cardinality, according to the properties

of v. More specifically, we have

Definition 4.2. For every formula ϕ[α1, α2, . . . , αm] ∈ L(C), for every InP k-

valuation v, for every atomic formula αp, 1 ≤ p ≤ m, let Qvp be the set associated

to αp and to v, defined by:

◦ If v(αp) = Fr (with 1 ≤ r ≤ n), then: Qvp = {¬ (αp
∗),

¬ ((¬αp)∗), . . . ,¬ ((¬r−1αp)
∗), (¬rαp)∗}.

◦ If v(αp) = Ti (with 1 ≤ i ≤ k), then: Qvp = {αp ∧ ¬αp,

¬αp ∧ ¬2αp, . . . ,¬i−1αp ∧ ¬iαp, (¬iαp)◦}.

◦ If v(αp) = F0, then Q
v
p = {∼ αp, (αp)

∗}.

◦ If v(αp) = T0, then Q
v
p = { c©αp, (αp)

◦}.

In addition, let the set ∆v
ϕ:= Qv1 ∪Q

v
2 ∪ · · · ∪Qvm.

On the other hand, for every InP k-valuation v indicated above, the for-

mula ϕv (determined by ϕ and v) is defined as follows:

◦ If v(ϕ) = Fr (with 0 ≤ r ≤ n), then ϕv = ¬r+1ϕ.

◦ If v(ϕ) = Ti (with 0 ≤ i ≤ k), then ϕv = ϕ.

For the next technical (and essential) result, the following obvious fact will

be applied without explicit mention. According to the previous definition, if

ϕ ∈ L(C) and ψ is a subformula of ϕ then, for every valuation v, ∆v
ψ ⊆ ∆v

ϕ.

Bearing this in mind it is possible to demonstrate:

Lemma 4.3. For every formula ϕ = ϕ[α1, . . . , αm] ∈ L(C), for every InP k-va-

luation v, it holds that ∆v
ϕ ⊢(n,k) ϕ

v.

Proof: By induction on the complexity of ϕ. The analysis is divided in the

following cases:

Case 1: Let ϕ ∈ V (without losing generality, ϕ = α1, which implies ∆v
ϕ = Qv1).

Then: If v(ϕ) = F0, then ϕv = ¬ϕ and ∆v
ϕ = {∼ ϕ, ϕ∗}. So, ∆v

ϕ ⊢(n,k) ϕ
v by

Proposition 3.8 b).

If v(ϕ) = Fr , 1 ≤ r ≤ n, then

ϕv = ¬r+1ϕ and {(¬rϕ)∗,¬ (¬r−1ϕ ∨ ¬rϕ)} ⊆ ∆v
ϕ.

Now, by Proposition 3.13 f), ⊢(n,k) (¬
rϕ)

∗ → (¬ (¬r−1ϕ∨¬rϕ) → ¬r+1ϕ). From

all this, ∆v
ϕ ⊢(n,k) ¬

r+1ϕ(= ϕv).

If v(ϕ) = Ti, 1 ≤ i ≤ k, then ϕ∧¬ϕ ∈ ∆v
ϕ. By Corollary 3.12 b’), ∆v

ϕ ⊢(n,k) ϕ

(= ϕv).

If v(ϕ) = T0, then ∆v
ϕ = { c©ϕ, (ϕ)◦}. Thus, ∆v

ϕ ⊢(n,k) c©ϕ(= (ϕ→ ϕ) → ϕ)).

So, since ⊢(n,k) ϕ→ ϕ, it holds ∆v
ϕ ⊢(n,k) ϕ(= ϕv).

The proof of Case 1 is completed.
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Case 2: When ϕ is of the form ¬ψ consider the following subcases:

2.1: Let v(ψ) = F0. By (I.H), ∆v
ψ ⊢(n,k) ψ

v(= ¬ψ = ϕv). Hence, ∆v
ϕ ⊢(n,k) ϕ

v.

2.2 : Let v(ψ) = Fr, with 1 ≤ r ≤ n. Note that v(ϕ) = Fr−1, which implies

ϕv = ¬rϕ = ¬r+1ψ = ψv. So, ∆v
ϕ ⊢(n,k) ϕ

v, by (I.H).

2.3 : Let v(ψ) = T1. From Definition 2.2, ψ = ¬q−1α, with 1 ≤ q ≤ k, α ∈ V , and

v(α) = Tq. Thus, ∆
v
ψ = Qvα = {(α∧¬α), . . . , (¬q−1α∧¬qα), (¬qα)◦}. From this,

using Corollary 3.12 b), it holds ∆v
ϕ ⊢(n,k) ¬

qα (= ϕv).

2.4: Let v(ψ) = Ti, with 2 ≤ i ≤ k. So, v(ϕ) = Ti−1, 1 ≤ i − 1 ≤ k − 1.

In addition, ψ = ¬qα, with 0 ≤ q ≤ k − i, v(α) = Ti+q and α ∈ V . From

this, ϕ ∧ ψ = ¬qα ∧ ¬q+1α ∈ Qvα = ∆v
ψ = ∆v

ϕ (since q + 1 ≤ k). So, applying

Corollary 3.12 b), ∆v
ϕ ⊢(n,k) ϕ = ϕv.

2.5: Let v(ψ) = T0. Then, v(ϕ) = F0. To prove that ∆v
ϕ ⊢(n,k) ¬ϕ(= ¬¬ψ) it

suffices to demonstrate

(⋆) ∆v
ψ ⊢(n,k) ψ

◦.

Indeed, if this fact holds, from Ax10, then it would be verified ∆v
ψ ⊢(n,k) ψ →

¬¬ψ. And, since it holds ∆v
ψ ⊢(n,k) ψ (by (I.H)), it will be obtained ∆v

ϕ ⊢(n,k) ϕ
v.

Now, to prove (⋆), consider the following possibilities:

2.5.1: Assume that ψ is of the form ¬q(θ1 → θ2) (with 0 ≤ q). Applying Ax4
and (if necessary) Ax12, it holds ⊢(n,k) ψ

◦, and therefore ∆v
ϕ ⊢(n,k) ψ

◦.

2.5.2: Assume that ψ is of the form ¬qα, α ∈ V , 0 ≤ q. In this case, Qvα = ∆v
ψ.

Consider here the different possibilities for v(α):

2.5.2.1: Let v(α) = F0. Then, ∆v
α = {∼ α, α∗}. By Proposition 3.13 e),

∆v
ψ ⊢(n,k) α

◦. Then, apply Ax12 (q times).

2.5.2.2: Let v(α) = Fr (with 1 ≤ r ≤ n). Since ¬(α∗) ∈ ∆v
α, it holds

∆v
α ⊢(n,k) α

◦, because Proposition 3.13 d). From this, ∆v
ψ ⊢(n,k) ψ

◦, by Ax12
again.

2.5.2.3 : Let v(α) = Ti (with 1 ≤ i ≤ k). So, i ≤ q (in fact: if i > q, then

v(ψ) = Ti−q, i−q ≥ 1, contradicting v(ψ) = T0). Besides, note that (¬iα)◦ ∈ ∆v
α,

which implies ∆v
ψ ⊢(n,k) (¬

iα)◦. So, since i ≤ q, ∆ψ ⊢(n,k) (ψ)
◦, again by Ax12.

2.5.2.4: Let v(α) = T0. Then, ∆v
ψ ⊢(n,k) α

◦, since α◦ ∈ Qvα = ∆v
ψ. Then,

applying Ax12 one more time, (⋆) is valid. The proof of Case 2 is concluded.

Case 3 : Assume that ϕ is of the form ψ → θ. There exist the following possibil-

ities4:

4The first three subcases indicate the possibilities for v(ϕ) = T0. The last two cases corre-

spond to v(ϕ) = F0.
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3.1: Let v(ψ) = F0 (and so, ϕv = ψ → θ). By (I.H), ∆v
ψ ⊢(n,k) ¬ψ (⋆). In

addition, it can be proved that

(⋆⋆) ∆v
ψ ⊢(n,k) ψ

◦

(such a proof runs as follows, according the internal structure of ψ):

3.1.1: Let ψ = α ∈ V . So, ∆v
ψ ⊢(n,k)∼ ψ. Applying Proposition 3.13 e), it

holds (⋆⋆).

3.1.2: Let ψ = ¬qα, 1 ≤ q, α ∈ V . Consider the following possibilities for v(α):

3.1.2.1: Let v(α) = F0. Then, by Proposition 3.13 e), Qvα ⊢(n,k) α
◦.

3.1.2.2 : Let v(α) = Fr, 1 ≤ r ≤ n. Then, q ≥ r (while q < r implies

v(ψ) = v(¬qα) = ¬q(v(α)) = Fr−q 6= F0, which is absurd). Besides that,

¬ ((¬r−1α)∗) ∈ Qvα. Therefore Q
v
α ⊢(n,k) (¬

r−1α)◦, because Proposition 3.13 d).

3.1.2.3 : Let v(α) = Ti, 1 ≤ i ≤ k. So, q ≥ i (by similar reasons to 3.1.2.2). In

addition, (¬iα)◦ ∈ Qvα, and so Qvα ⊢(n,k) (¬
iα)◦.

3.1.2.4: Let v(α) = T0. Obviously, Qvα ⊢(n,k) (α)
◦, from Definition 4.2.

Now note that Ax12 can be applied in all the subcases 3.1.2.1–3.1.2.4, in such

a way to obtain ∆v
ψ ⊢(n,k) ψ

◦, completing the proof (⋆⋆) for Subcase 3.1.2.

3.1.3 : Let ψ = ¬q(θ1 → θ2), with 0 ≤ q. By Ax3, ⊢(n,k) (θ1 → θ2)
◦. Now, apply

Ax12 q times.

So, it was proven (⋆⋆) for all the possibilities of Subcase 3.1. From this, (⋆) and

Proposition 3.13 b), it holds ∆v
ϕ ⊢(n,k) ψ → θ (= ϕv).

3.2 : Let v(ψ) = Fr, 1 ≤ r ≤ n. Again, v(ϕ) = T0 and so ϕv = ψ → θ. Note

that, since v(ψ) = Fr, ψ = ¬qα, with q ≥ 0, α ∈ V . Thus, v(α) = Fr+q, with

r+q ≤ n, which implies Qvα = {¬ (α∗),¬ ((¬α)∗), . . . ,¬ ((¬r+q−1α)∗), (¬r+qα)∗}.

So, ¬ ((¬qα)∗) ∈ Qvα, because r ≥ 1. Thus, ∆v
ϕ ⊢(n,k) ¬ (ψ∗). From this and

Proposition 3.13 j), ∆v
ϕ ⊢(n,k) ϕ

v.

3.3 : Let v(θ) = Ti, 0 ≤ i ≤ k. So, ϕv = ψ → θ one more time. By (I.H),

∆v
θ ⊢(n,k) θ. Now apply Ax1.

3.4: Let v(ψ) = Ti, v(θ) = Fr, 0 ≤ i ≤ k, 1 ≤ r ≤ n. Using (I.H), ∆v
ϕ ⊢(n,k) ψ,

which implies ∆v
ϕ ⊢(n,k) (ψ → θ) → θ, because ⊢(n,k) ψ → ((ψ → θ) → θ).

Hence, ∆v
ϕ ⊢(n,k) (ψ → θ) → θ∗, by Proposition 3.13 a). Now, considering

that ∆v
ϕ ⊢(n,k) (ψ → θ)∗ and ∆v

ϕ ⊢(n,k) (θ
∗)◦ (because Ax3 and Proposition 3.6,

respectively), it is valid that ∆v
ϕ ⊢(n,k) ¬ (θ∗) → ¬ (ψ → θ), by Proposition 3.8 d).

In addition, reasoning as in Subcase 3.2 (with respect to θ), ∆v
ϕ ⊢(n,k) ¬ (θ)∗.

Thus, ∆v
ϕ ⊢(n,k) ¬ (ψ → θ)(= ϕv), as it is desired.

3.5: Let v(ψ) = Ti, 0 ≤ i ≤ k, v(θ) = F0. Adapting (⋆⋆) of Subcase 3.1 to θ it can

be obtained ∆v
ϕ ⊢(n,k) θ

◦. Besides that, by (I.H), ∆v
ϕ ⊢(n,k) ψ and ∆v

ϕ ⊢(n,k) ¬ θ.

Considering Proposition 3.13 g) now, it holds ∆v
ϕ ⊢(n,k) ¬ (ψ → θ) = ϕv.

The analysis of this last subcase finishes the proof. �
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Lemma 4.4. Let ∆ ∪ {ψ, θ} be a subset of L(C). If the following n + k + 4

syntactic consequences are valid:
1) ∆,¬ (ψ∗), (¬ψ)∗ ⊢(n,k) θ,

2) ∆,¬ (ψ∗),¬ ((¬ψ)∗), (¬2ψ)∗ ⊢(n,k) θ,
...

...

n− 1) ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗), (¬n−1ψ)∗ ⊢(n,k) θ,

n) ∆,¬ (ψ∗), . . . ,¬ ((¬n−1ψ)∗), (¬nψ)∗ ⊢(n,k)) θ,

n+ 1) ∆, ψ ∧ ¬ψ, (¬ψ)◦ ⊢(n,k) θ,

n+ 2) ∆, ψ ∧ ¬ψ, ¬ψ ∧ ¬2ψ, (¬2ψ)◦ ⊢(n,k) θ,
...

...

n+ k − 1) ∆, ψ ∧ ¬ψ, . . . , ¬k−2ψ ∧ ¬k−1ψ, (¬k−1ψ)◦ ⊢(n,k) θ,

n+ k) ∆, ψ ∧ ¬ψ, . . . ,¬k−1ψ ∧ ¬kψ, (¬kψ)◦ ⊢(n,k) θ,

n+ k + 1) ∆, ∼ ψ, ψ∗ ⊢(n,k) θ,

n+ k + 2) ∆, c©ψ, ψ◦ ⊢(n,k) θ,

n+ k + 3) ⊢(n,k) θ
∗,

n+ k + 4) ⊢(n,k) θ
◦.

Then it is valid that ∆ ⊢(n,k) θ.

Proof: First, by Hypothesis 1) to n) can be obtained

(⋆) ∆,¬(ψ∗) ⊢(n,k) θ.

Indeed, by n − 1), ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k) (¬
n−1ψ)∗ → θ. Besides

that, it holds that ⊢(n,k) ((¬n−1ψ)∗)∗ (by Proposition 3.6), and ⊢(n,k) θ
◦ (by

Hypothesis n+ k + 4)). Applying all this to Proposition 3.8 d) it is verified:

(†) ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k) ¬ θ → ¬ ((¬n−1ψ)∗).

It is also valid ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k)) ¬ ((¬n−1ψ)∗) → θ, because

of Ax5, n) and DT. In addition, ⊢(n,k) (¬ ((¬n−1ψ)∗))∗, because of Proposi-

tion 3.6 and Ax11. Thus, considering Proposition 3.8 d) and Hypothesis n+k+4)

again, it holds:

(††) ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k) ¬ θ → ¬2((¬n−1ψ)∗).

Hence, from (†) and (††) and Corollary 3.12 d):

(✸) ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢ ¬ θ → [¬ ((¬n−1ψ)∗) ∧ ¬2((¬n−1ψ)∗)].

On the other hand, it holds ⊢(n,k) (¬ θ)∗, because of Hypothesis n + k + 3)

and Ax11. And, of course, ⊢(n,k) [¬ ((¬n−1ψ)∗)∧¬2((¬n−1ψ)∗)]◦. So, by Proposi-

tion 3.8 d), ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k) ¬ [¬((¬n−1ψ)∗)∧¬2((¬n−1ψ)∗)] →

¬¬ θ. That is, ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k) (¬ ((¬n−1ψ)∗))◦ → ¬¬ θ. Thus,
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from Proposition 3.13 i), ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k) ¬¬ θ. Thus (by Hy-

pothesis n+ k + 3) and Ax9),

(✸✸) ∆,¬ (ψ∗), . . . ,¬ ((¬n−2ψ)∗) ⊢(n,k) θ.

The procedure used above to prove (✸✸) can be applied using (in decreasing

order) the Hypotheses 1), . . . , n− 1), proving (♦) (note that the formula ¬ (ψ∗)

cannot be “suppressed” yet).

From (⋆) (and monotonicity), ∆, ∼ ψ ⊢ ¬ (ψ∗) → θ. Moreover, from Hy-

pothese n + k + 1), it holds ∆, ∼ ψ ⊢ ψ∗ → θ. From these facts and Corol-

lary 3.12 c), it is valid ∆, ∼ ψ ⊢(n,k) ψ
∗ ∨ ¬ (ψ∗) → θ. Now realizing that

⊢(n,k) ψ
∗ ∨ ¬ (ψ∗) (because of Proposition 3.6), it is obtained

(I) ∆, ∼ ψ ⊢(n,k) θ.

On the other hand, from n+ 1) to n+ k) it is valid

(⋆⋆) ∆, ψ ∧ ¬ψ ⊢(n,k) θ.

The reasoning is as follows: using n+ k) and Ax6, it holds: ∆, ψ ∧ ¬ψ, . . . ,

¬k−2ψ∧¬k−1ψ ⊢(n,k) ¬
k−1ψ∧¬kψ → θ. It is also valid ∆, ψ∧¬ψ, . . . ,¬k−2ψ∧

¬k−1ψ ⊢(n,k) (¬
k−1ψ)◦ → θ, because of Hypothese n+ k − 1). Hence, by Corol-

lary 3.12 c) and recalling Definition 3.1, ∆, . . . , ¬k−2ψ ∧ ¬k−1ψ ⊢(n,k) (¬k−1ψ ∧

¬kψ) ∨ ¬ (¬k−1ψ ∧ ¬kψ) → θ. That is, ∆, . . . , ¬k−2ψ ∧ ¬k−1ψ ⊢(n,k) (¬
k−1ψ ∧

¬kψ)∗ → θ. In addition, it holds ⊢(n,k) (¬
k−1ψ ∧ ¬kψ)∗, by Definition 3.1, Ax3

and Ax11. From these two facts, it holds

(✸✸✸) ∆, . . . , ¬k−2ψ ∧ ¬k−1ψ ⊢(n,k) θ.

Adapting the reasoning applied in (✸✸✸) to the Hypotheses n+k−2), . . . , n+1)

(in a decreasing order, as before), it is obtained (⋆⋆), as desired.

From (⋆⋆) and monotonicity it is valid ∆, c©ψ ⊢(n,k) ψ ∧ ¬ψ → θ. So (by Hy-

pothese n+ k + 4), Proposition 3.6, Ax11 and Proposition 3.8 d)), ∆, c©ψ ⊢(n,k)

¬ θ → ψ◦. On the other hand, by Hypothese n + k + 2), it holds ∆, c©ψ ⊢(n,k)

ψ◦ → θ. So, ∆, c©ψ ⊢(n,k) ¬ θ → ¬ (ψ◦) (again, by Hypothese n+ k+4), Propo-

sition 3.6, Ax11 and Proposition 3.8 d)). Thus, ∆, c©ψ ⊢(n,k) ¬ θ → (ψ◦∧¬ (ψ◦)),

by Corollary 3.12 d). Therefore, ∆, c©ψ ⊢(n,k) ¬ (ψ◦ ∧ ¬ (ψ◦)) → ¬¬ θ (because

of Hypothese n + k + 3), Ax11 and Proposition 3.8 d)). That is, ∆, c©ψ ⊢(n,k)

(ψ◦)◦ → ¬¬ θ. Hence, ∆, c©ψ ⊢(n,k) ¬¬ θ, because of Proposition 3.13 c). Now,

taking into account Hypothese n+ k + 3) and Ax9, it is valid

(II) ∆, c©ψ ⊢(n,k) θ.
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From (I), (II) and Corollary 3.12 c), it is verified ∆ ⊢(n,k) ( c©ψ)∗ → θ. Hence,

it is valid ∆ ⊢(n,k) θ, by Proposition 3.6. �

Using Lemmas 4.3 and 4.4 it is possible to demonstrate:

Theorem 4.5 (Weak completeness). |=(n,k) ϕ implies ⊢(n,k) ϕ.

Proof: Suppose |=(n,k) ϕ, with ϕ = ϕ[α1, . . . , αm], and consider the set V ALϕ :=

{vt}1≤t≤(n+k+2)m (the set of all the InP k-valuations effectively used to eval-

uate ϕ). Define in V ALϕ the equivalence relation ≡1, as follows: for every

vt1 , vt2 ∈ V ALϕ, vt1 ≡1 vt2 if and only if for every αp, with 2 ≤ p ≤ m,

vt1(αp) = vt2(αp). This relation has (n+k+2)m−1 equivalence classes (indicated,

in a general way, by ‖v‖). Besides that, taking into account Definition 4.2, it holds

that (given a fixed equivalence class ‖v‖) Q
vt1
p = Q

vt2
p , for every 2 ≤ p ≤ m, for

every pair vt1 , vt2 ∈ ‖v‖. This allows to define the set ∆
‖v‖
1 := Qvt2 ∪ · · · ∪ Qvtm,

being vt any element of ‖v‖. In addition, note that every class ‖v‖ has exactly

(n + k + 2) valuations and verifies that, for every vt1 , vt2 ∈ ‖v‖, vt1 6= vt2 im-

plies vt1(α1) 6= vt2(α1). Finally, note that, since |=(n,k) ϕ, for every v ∈ V ALϕ,

ϕv = ϕ. All these facts (together with Lemma 4.3) imply that (for every ‖v‖) the

following formal proofs can be built:

1) ∆
‖v‖
1 ,¬ (α∗

1), (¬α1)
∗ ⊢(n,k) ϕ,

1.2) ∆
‖v‖
1 ,¬ (α∗

1),¬ ((¬α1)
∗), (¬2α1)

∗ ⊢(n,k) ϕ,
...

...

1.n) ∆
‖v‖
1 ,¬ (α∗

1), . . . ,¬ ((¬n−1α1)
∗), (¬nα1)

∗ ⊢(n,k)) ϕ,

1.(n+ 1)) ∆
‖v‖
1 , α1 ∧ ¬α1, (¬α1)

◦ ⊢(n,k) ϕ,

1.(n+ 2)) ∆
‖v‖
1 , α1 ∧ ¬α1, ¬α1 ∧ ¬2α1, (¬2α1)

◦ ⊢(n,k) ϕ,
...

...

1.(n+ k)) ∆
‖v‖
1 , α1 ∧ ¬α1, . . . , ¬k−1α1 ∧ ¬kα1, (¬kα1)

◦ ⊢(n,k) ϕ,

1.(n+ k + 1)) ∆
‖v‖
1 , ∼ α1, α

∗
1 ⊢(n,k) ϕ,

1.(n+ k + 2)) ∆
‖v‖
1 , c©α1, α

◦
1 ⊢(n,k) ϕ.

Moreover, by Proposition 3.7, it is valid:

1.(n+ k + 3)) ∆
‖v‖
1 ⊢(n,k) ϕ

∗,

1.(n+ k + 4)) ∆
‖v‖
1 ⊢(n,k) ϕ

◦.

All the previous facts allow to apply Lemma 4.4 in such a way that for ev-

ery ‖v‖ it holds ∆
‖v‖
1 ⊢(n,k) ϕ (there are (n + k + 2)m−1 formal proofs of this

type). That is, it is possible “to eliminate” any reference to formulas of the form

αv1 in every formal proof obtained, by means of an adequate subdivision of the

set V ALϕ, and by the application of Lemma 4.4. Note here that this process

can be applied one more time, reagrouping the formal proofs already obtained.
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So, by a new application of Lemma 4.4 and of Proposition 3.7, any reference

to formulas of the form αv2 can be suppressed. The same procedure can be ap-

plied by a finite number of times, until obtaining the following formal proofs:
m.1) ¬ (α∗

m), (¬αm)∗ ⊢(n,k) ϕ,

m.2) ¬(α∗
m),¬ ((¬αm)∗), (¬2αm)∗ ⊢(n,k) ϕ,

...
...

m.n) ¬ (α∗
m), . . . ,¬ ((¬n−1αm)∗), (¬nαm)∗ ⊢(n,k)) ϕ,

m.(n+ 1)) αm ∧ ¬αm, (¬αm)◦ ⊢(n,k) ϕ,

m.(n+ 2)) αm ∧ ¬αm, ¬αm ∧ ¬2αm, (¬2αm)◦ ⊢(n,k) ϕ,
...

...

m.(n+ k)) αm ∧ ¬αm, . . . ,¬k−1αm ∧ ¬kαm, (¬kαm)◦ ⊢(n,k) ϕ,

m.(n+ k + 1)) ∼ αm, α
∗
m ⊢(n,k) ϕ,

m.(n+ k + 2)) c©αm, α
◦
m ⊢(n,k) ϕ,

m.(n+ k + 3)) ⊢(n,k) ϕ
∗,

m.(n+ k + 4)) ⊢(n,k) ϕ
◦.

Applying Lemma 4.4 and Proposition 3.7 for a last time, ⊢(n,k) ϕ. �

Note that, in the proof developed above, all the (n+ k + 2)
m

valuations of

V ALϕ are needed to obtain the formal proofs that allow to demonstrate ⊢(n,k) ϕ.

Theorems 4.1 and 4.5 prove weak adequacy: |=(n,k) ϕ if and only if ⊢(n,k) ϕ.

This result can be improved:

Theorem 4.6 (Strong adequacy). For every Γ ∪ {ϕ} ⊆ L(C), Γ |=(n,k) ϕ if and

only if Γ ⊢(n,k) ϕ.

Proof: By Proposition 2.11, |=(n,k) verifies semantics deduction theorem and is

finitary. Moreover, by the definition of formal proof used in this paper, ⊢(n,k) is

finitary, and (by Theorem 3.4) it verifies syntactic deduction theorem, as it was

already mentioned. From all these facts, and taking into account that both |=(n,k)

and ⊢(n,k) are monotonic, strong adequacy is demonstrated. �

5. Concluding remarks

Despite its interest as a general result (for a countable, nonlinearly ordered

family of logics), the adequate axiomatics shown here can be applied in different

ways. First of all, a natural problem to be solved is the independence of the

axiomatics presented here and it is part of a future work.

On the other hand, another of the possible uses of this axiomatics is the study

of algebraizability of the InP k-logics. It is worth commenting here that I1P 0 is

algebraizable, see [21], as in the case of I0P 1 (this fact was already indicated).
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Moreover, in [9] it was demonstrated that all the logics of InPk are algebraizable.

So, the properties of the class of algebras associated to each InP k-logic deserve

to be investigated. By the way, the class of algebras associated to I0P 1 was

already studied in [14] and in [18]. In both works, the axiomatics obtained for

this logic are very useful for the study of the so-called class of P 1-algebras. This

is because there is a connection between the axiomatics of an algebraizable logic

and its equivalent algebraic semantics, cf. [1]. As a generalization of this fact,

the axiomatics shown here would allow to study the different classes of (say)

InP k-algebras in a more efficient way.

In addition, note this fact about the complexity of the formulas: given a fixed

logic InP k, every formula ϕ ∈ L(C) with complexity Comp(ϕ) ≥ max{n, k} be-

haves “in a classical way” (this fact is related to the inclusion of Ax5 and Ax6
in the axiomatics presented in this paper). This would suggest to define a spe-

cial kind of logics: the family SC of “stationary classically logics”. Obviously,

InPk would be a particular subclass of SC. The study of the latter class deserves

special attention.

Finally, it should be noted that Kalmár’s technique for the proof of complete-

ness is studied by its own right, independently from the logic to be treated, see

[11], [12], [15], [17] for instance, specially by its constructive character. So, the

results and modifications here presented can contribute to this abstract theoretic

study in a future research.
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