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A Kalmar-style completeness proof
for the logics of the hierarchy I"P*

VicTOR FERNANDEZ

Abstract. The logics of the family H”Pk::{I’LPk}(mk)eWz are formally defined
by means of finite matrices, as a simultaneous generalization of the weakly-
intuitionistic logic I and of the paraconsistent logic Pl. It is proved that this
family can be naturally ordered, and it is shown a sound and complete axiomatics
for each logic of the form I"P*. The involved completeness proof showed here
is obtained by means of a generalization of the well-known Kalmar’s method,
usually applied for many-valued logics.
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Classification: 03B50, 03B53

1. Introduction and preliminaries

In informal terms, paraconsistent logics are the deductive systems allowing the
existence of theories that are not necessarily trivializable in the presence of con-
tradictions. In other words, a given logic £ having a negation connective — is
paraconsistent if and only if there are a theory I' and a formula ¢ such that, from
the set T' U {p, 7 ¢}, not every formula can be inferred. From this, a paraconsis-
tent logic can deal with contradictory formulas whose consequence relation is not
trivial. With this basic and informal ideas in mind, several works establish prin-
ciples useful for the characterization and classification of different paraconsistent
logics, see, for instance, [3], [2] or [5]. Among such principles, we focus on the
following ones, taking as a starting point a logic £ whose consequence relation
is -, and with a negation connective —:

o A theory (that is, a set of formulas) I is contradictory if and only if there
is a formula ¢ such that I' 2 ¢ and I' Fz = ¢. On the other hand, we
say that I' is ¢rivial if and only if T' -, ¢ for every formula ¢. Finally,
we say that ' is explosive if and only if for every formula ¢, it holds that
T, ¢, mp bz 1 for every formula ¢ (in other words, T' is explosive if and
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only if T'U {p, ¢} is a trivial theory for every formula ). With this in
mind, we can consider the following principles which will determine the
paraconsistent character of a given logic L:

o The logic £ respects the Principle of non-contradiction (PNC) if and only
if it allows the existence of non-contradictory theories.

o L respects the Principle of nontriviality (PNT) if it posseses nontrivial
theories.

o On the other hand, £ respects the Principle of explosion (PE) if every
theory is explosive. That is, if I',,—~¢ ko 9 for every set of formulas

Fu{e, v}

With all this background, we say that L is a paraconsistent logic if it does
not validate (PE). This means that £ is paraconsistent if and only if there is
(at least) a theory T', a formula ¢ and a formula v, such that T',p, ¢ tz 1.
So, a paraconsistent logic allows the existence of contradictory theories which are
simultaneously nontrivial ones.

One of the more important families of paraconsistent logics is {Cy, } new, which
was introduced by N. da Costa in [7], see also [6], by means of Hilbert-style
Axiomatics. The paraconsistent character of those logics is achieved as follows:
simply the formula-schema — (¢ A =) is not established as a theorem in them.
So, the coexistence of contradictory formulas is neither forbidden nor obligatory.
This would allow the existence of formulas ¢ where p A = ¢ is a true expression,
meanwhile there are at the same time formulas 1) where ¥A—1) is not valid. Now,
for these ones, the formula 1)° defined as °:=— (¢ A— 1) contributes to determine
trivial theories (by the way, in [7] these formulas are called “well-behaved” ones).
For instance, in the case of the logic C1, {¢°,¢, -} is a trivial theory (trivial
theories can be obtained in the other logics of the hierarchy, too). On the other
hand, usually the sets of the form {p, @} are obviously contradictory and not
trivial theories. An interesting point about the C),-logics is that there are not any
mentions about the characterization of the internal structure of a well-behaved
formula. Simply, two types of formulas are allowed: the well/not-well behaved
ones.

Some years after, the propositional logic P! was defined by A. Sette in [20]. It
possesses special characteristics that distinguish it from the family {Cy,} jo<n<w}-
One of them is, precisely, that the well-behavior of a certain formula ¢ can be
determined according to its internal structure. Simply, ¢ is well-behaved if and
only if it is not an atomic formula. Moreover, in P! this fact can be explained by
its semantics, as we shall see later on.

Among other additional properties, even when P! can be defined by means
of a Hilbert-style axiomatics, it can also be obtained by means of a finite matrix
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(meanwhile no one of the C),-logics, with n > 1, can be characterized in this way).
The matrix semantics for P! is built taking as basis a set of three truth-values:
To and Fp (intended as the “classical truth-values”) together with T3, which
can be associated to an “intermediate truth”. Besides that, P! is mazimal with
respect to the propositional classical logic (CL), in the sense that, if any axiom-
schema (independent of the original ones) is added to the axiomatics of P!, then
this new axiomatics generates CL. Finally, P! is algebraizable, as it was shown
in [13].

A notion which is dual (in a certain sense) to paraconsistency is paracomplete-
ness, see [4] for a extensive analysis. Roughly speaking, from a complete theory I’
of a certain logic £, it would be possible to infer ¢ or = for every formula .
Now, if £ has a disjunction connective (with certain properties), I' is complete
if, from it, it is possible to obtain ¢ V = ¢ for every . With this underlying idea,
A. Sette and W. Carnielli defined in [21] the logic I*, which, in general terms,
shares with P! several properties among the already mentioned (finite axiomati-
zability, maximality relative to CL and algebraizability). Besides that, it is also
defined in I' the well-behavior of a formula (with respect to completeness, in this
case): the expression ¢* abbreviates ¢V — . Moreover, in I' it holds that the
“well behavior with respect to completeness” of ¢ can be characterized by its
internal structure: ¢ is well-behaved (with respect to completeness) if and only if
¢ is not an atomic formula. This fact is similar to the case of P!, already men-
tioned. From all this, one of the more remarkable differences between I' and P!
is the following: in P!, not every formula of the form = (p A =) is a Pl-theorem;
on the other hand, every formula of the form ¢ V - is a P!-theorem. Now,
I' behaves exactly in the opposite way: ¢ V = ¢ is not usually an I'-theorem,
meanwhile — (¢ A =) is always an I'-theorem.

Continuing with some properties of the logic I', it can be defined by means

“new truth value”

of a 3-valued matrix, too. In this case (and unlike P'), the
is F1, an “intermediate truth-value of falsehood”. Considering all these facts,
it was suggested in [21] a generalization of these logics by the addition of new
intermediate truth-values, in such a way that the “new logics” already obtained
constitute a family (which could be ordered in a natural way). Following (and
simplifying at some extent) these suggestions, it was defined in [8] the family
I"P* = {I"P*}(,, 1)ew2. Every member of I"P* (usually mentioned here just as
an I"P¥-logic) can be considered as a generalization of I' and of P! at the same
time, by several reasons. First of all, the classical logic CL can be identified simply
with I°P°. Similarly, P! (or I') is simply I°P! (I' P, respectively). Moreover,
every I" P*-logic has n + k + 2 truth-values (as it will be seen later). In addition,
it can be established an order relation within I"P*. The logics of this family fail
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to validate formulas of the form = (p A= ¢) and/or ¢V —¢ (with the obvious ex-
ception of I°P° wherein both formulas are tautologies). It is worth commenting
that, since I"™ P*-logics are finite-valued and mostly paraconsistent /paracomplete,
they can be applied to the study of several interesting properties, see [5], [10]
or [19], for example.

However, an open problem referred to this family consists of providing an
adequate (i.e. sound and complete) axiomatics for all the I™P*-logics. This
paper is essentially devoted to offer a suitable axiomatics for them. Moreover,
the soundness and completeness theorems shown here can be considered general
in this sense: their proofs are given in such a way that the adequacy of all the
logics of I"P* (with respect to the axiomatics here presented) is demonstrated
in a structured mode, common to any pair (n,k) € w? previously fixed. The
technique to prove this result is adapted to the well-known Kalmaér’s method to
prove completeness for CL, see [16].

To avoid unnecesary information or formalism, the notions to be used to prove
adequacy will be reduced as much as possible (this entails that this paper will
contain some notational abuses). Besides that, the structure of this article is as
follows: in the next section the I™P*-logics will be defined by means of finite
matrices, some simple properties will be shown here, and it will be defined an
order relation < in the family I"P* (this justifies the expression “hierarchy” used
for this family). In addition, it will be demonstrated that I™ Pk < "2 Pk if
and only if (na,k2) <m (n1,k1), where <y is the order of the product on w?
(that is, (a1,b1) <m (a2,b2) if and only if a; < ag and by < by, being < the
standard order in w). In Section 3, it will be presented a general axiomatics for
all the I™ P*-logics and it will be proven some properties, which are essential to
the proof of adequacy (result developed in Section 4). By the way, the technique
to prove completeness consists of an adaptation of Kalmar’s method, modifying
the premises appearing in the formal proofs involved. This will be clear all along
that section. For that, it is assumed that the reader is familiar with the notions
of formal proof, schema axioms, inference rules and so on, within the context of
Hilbert-style axiomatics. So, the definitions of these concepts (and other related
ones) will be omitted. This paper concludes with some comments about future
work.

2. Semantic presentation of the hierarchy I"P*

To define a matrix semantics for the logics of the family I"P*, it is necessary
to start with the definition of the language L(C), common to all the ™ P*-logics:
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Definition 2.1. The set of connectives of all the I" P*-logics is C:={—-, —}, with
obvious arities. The language L(C) (or set of formulas) for the I"™ P*-logics is the
absolutely free algebra over C' generated by a countable set V), in the usual way.

Along this paper, the uppercase greek letters I', A, X, ... denote sets of formu-
las of L(C). In addition, the lowercase greek letters ¢, ¥, 8 are metavariables
ranging over the indwidual formulas of L(C). Finally, the letters a, aq, aa,...
will be used as metavariables referred only to the atomic formulas (that is, the
elements of V). All these notations can be used with subscripts, when neccesary.
On the other hand, the expression ¢[aq, ..., a;] indicates that the atomic for-
mulas occurring on ¢ are precisely aq,. ..,y (this expression will be applied in
the development of the completeness proof).

Despite their common language, the difference between each one of the I P*-
logics is given by their respective matrix semantics, defined as follows:

Definition 2.2. Let (n,k) € w?, with w = {0,1,2,...}. The matriz M,y is
defined as a pair M, 1) = ((A(n.k), Ctnk))s D(n,k)), Where
a) (A(n,k)> C(n,ky) is an algebra, similar to L(C), with support

A(n,k) = {F07F15"'5Fn7T0;T17"'5Tk}1'

b) Dy = {To, T, - -, Tk}
In addition, the operations — and — of C(, ) (also called truth-functions)?
are defined by the truth tables indicated below.

F E. T, T,
- |To Fr1 Tin Fo

With 1 <r,s<n; 1<4,j5<k.

Remark 2.3. Realize that the truth-values Fi,..., F,, can be considered infor-
mally as intermediate values of falsehood, meanwhile T7y,..., Ty are intermediate
values of truth. In addition, every application of — to a “non classical value”, ap-
proximates more and more the value to the “classical ones”, Fy and Tj. Note that

1Every algebra (A, k), C(n,k)) Will be identified with its support, if there is no risk of
confusion.
2Strict1y speaking, the operations of C(y, x) are not the connectives of C, of course. However,

they will be denoted in the same way for the sake of simplicity.
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there are needed n negations at most to pass from F, to Fy. Similarly, the values
of the form T; “become” Ty after k£ negations at most. On the other hand the
implication — cannot distinguish between classical or intermediate truth-values:
it just considers every value of the form F; as being Fj, and every value of the
form T} as being Tp.

Taking into account the previous truth-tables, some secondary (and useful)
truth-functions can be defined. As a motivation, it would be desirable that dis-
junction (V) and conjunction (A) behave as — in this aspect: they cannot dis-
tinguish classical from intermediate truth-values. For that, it is taken as starting
point the unary function of “classicalization” (© (the meaning of this neologism
is obvious), defined by ©(A) := (A — A) — A for every A € A(,, ). So, the
truth-table associated to it is

Ty, T; F. Iy
©|Th To v Ko

From (© it is defined the truth-function ~, of strong (also called classical) nega-
tion, as ~ A : = =(©A). So, its associated truth-table is

Fo F. T, T,
~ | Ty To Fy Fp

It is possible to define V and A now, adapting the usual definition for CL: AV B:=
~ A — B, meanwhile A A B:= ~ (A —~ B). For these connectives, their
associated truth-functions are:

VIR E T, T N F E T, To
Fo|Fo Fo To T Fy|Fv Fo Fo Fo
FlE F T, Ty F|F F F F
T; | To To To To T; | Fo Fo To To
To | To To To To To | Fo Fo To To

With1<¢,5<k; 1<r,s<n.

From the previous definitions, it is clear that all the binary truth-functions
consider all the non-designated values F; as behaving as Fp, and similarly for
all the values T;. The same fact holds for ~. In the case of —, however, all
the truth-values can be differentiated. This is the main difference of = and ~,
and justifies the definition and the study of the I™ P*-logics. For example, when
n > 1, the formula ¢ V = ¢ is not an I" P*-tautology (it is enough to consider
a valuation v such that v(yp) = T; with ¢ > 1), meanwhile this formula is valid if
- is replaced by ~. That is, =) @V ~ ¢ for any I"P*-logic. On the other
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hand, when k > 1, ~ (p A ~ ) is a I" P*-tautology (for every (n,k) € w?), but
= (¢ A=) is not valid in all the I"™ P*-logics. Indeed, = (p A = ¢) is only valid in
the I"™ P%-logics.

After a deeper analysis it is possible to see the following fact, using the con-
vention that —fp indicates = (... (= ¢))...) (¢t times) and —Yp is ¢: given a fixed
logic I"P*, =(, k) ¢ V —¢ if and only if ¢ = =f(¢p — ) (with t > 0), or ¢ =
—'o, with v € V and ¢ > n: otherwise (when ¢ = = with ¢t < n) . @V e,
In a similar way, |=(, k) — (@ A =) if and only if ¢ = (¢ — 0) with £ > 0, or
o = —'a, with t > k, « € V. From these comments we can see that = (pA—¢) and
@V @ are not I P-tautologies in general terms. So, it is natural to distinguish
between “well-behaved” formulas and “not well-behaved” ones. This distinction
is formalized by means of the unary “well-behavior” truth-functions, defined in
the obvious way: A*:= AV = A; A%= - (AAN-A) for every A € Ag, ). Its
respective truth-tables are

Fy F. T; Ty Fy F. T, Ty
1Ty Fo To To °lTy To Fy To

Remark 2.4. The secondary truth-function associated to the connective °, which
is motivated by (PNC), was defined in this paper following the ideas developed
in [7]. In that work, that principle characterizes consistency (and, laterally, it
defines certain explosive theories, as it was previously commented). Note how-
ever that in some recent papers the notion of consistency is considered as being
a primitive concept, see [3], [2]. In these logics, known as logics of formal incon-
sistency, it is possible to deal with consistency (and with inconsistency, triviality
and explosiveness) in such a way that two essential notions can be separated: con-
sistency and non contradiction. On the other hand, the distinction between both
concepts cannot be done in the I"™ P*-logics: the truth-table of © is, by definition,
the one applied to non contradiction. With the same spirit, the truth-table of * is
secondary, having in mind the validity /not validity of the formula ¢V = ¢ (which
is related with (PEM), the principle of excluded middle, in this case).

Besides the behavior of the mentioned truth-functions in each matrix M, ),
recall that its definition is motivated by the definition of a consequence relation
on L(C) (and therefore of a logic), in the usual way:

Definition 2.5. An M, i)-valuation is any homomorphism v: L(C) — A,
(this notion makes sense because L(C) and A, i) are similar algebras). Recall
here that every M, y)-valuation can be defined just considering functions v:
V — A(nry and extending it to all L(C). The logic I"P* is the pair I"PF :=

491
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FIGURE 1. Ordered structure of the Hierarchy I"P*.

(C, En,k)), being Fe 1€ o(L(C)) x L(C) defined as usual, ie., T' =g, 5 ¢ if
and only if for very M, i)-valuation v, v(T') € Dy, ) implies v(p) € D, ). In
this context, ¢ is an I"P"-tautology if and only if 0 =, k) ¢ (this fact will
be denoted by =(nk) ©, as usual). The family {I”Pk}(mk)@ﬂ will be denoted
by I"P*.

Remark 2.6. The family I"P* includes some well-known logics. Indeed, I°PY is
just the classical logic CL. On the other hand, the logic I'PY is I', meanwhile
I9P' is just P'. In addition, all the I™P*-logics can be “naturally ordered”,
taking into account the following definition.

Definition 2.7. The order relation < C (I"P¥)? is defined as follows: 1™ P*1 <
I"2 P*2 if and only if for every TU{¢} C L(C), T F(ny k) @ implies T' =, 1,) @

It will be shown in the sequel that the order < in I"P* can be depicted as the
Figure 1 shows. This claim is based on an essential fact that can be checked by
analysis of cases (among the truth-values of any I™P*-logic).

Proposition 2.8. In the logic I"P* (for n, k fixed), the following formulas are
tautologies:

a) ="V -"tlp ((n + 1)-generalization of PEM),
b) = (=Fo A =FT1p)  ((k + 1)-generalization of PNC').

Proposition 2.9. We have I™ P* < ["2P*2 if and only if (ng, k2) <m (n1,k1)
(being <p the order of the product on w?). Therefore, the Hierarchy (I"P*, <)
is a lattice.
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Proor: If (ng, kg) <n (nl, kl), then A(ng,kg) - A(nl,kl)ﬂ and D(n27k2) - D(’m,/ﬁ)'
Now suppose that T'o =, k) o for some I'o U {@o} € L(C). So, there exists
a valuation v: V — Ay, i, such that v(I'o) € Dy, 1,y v(90) & D(n k). Define
the valuation w: V — A, ,) as w(a) = v(a) for every a € V. It can be proved
that for every ¢ € L(C), w(y) = v(¥). Thus, w(To) € D(nyky) € D(ny ky) and
w(po) € {Fo,..., Fny} C{Fo,...,Fn, }. That is, T'o [~ k) wo. The previous
argument shows that 1™ Pk < [n2 Pk

For the converse, suppose (ne, k2) <11 (n1,k1). There are two cases that must
be analyzed in different ways. First, if no > ny consider any formula ¢;:=
MoV -"1Fq with o € V. So, F(n1,k1) 1, by Proposition 2.8 a). Now, defining
the valuation v1: V — A, k) by vi(a) := Fp,, it holds vi(p1) = 2" F,, V
-t = Fayn, V Fry—(ni41) = Fo (since ny + 1 < ng). Thus, FEp, k) ©1-
On the other hand, if ko > ky, let g = ﬁ(ﬁkla A ﬁkﬁ‘la). As in the first
case, F=(n, k) P2, by Proposition 2.8 b). Now, if it is defined the valuation vs:
V = A(ny.ky) Such that va(a) = Ty,, then =, 1,y w2 (note here that ki +1 < k2).
So, for both possibilities it holds I™ P¥1 £ I"™2 P*2_ This concludes the proof. [

Some consequences of the previous result, useful to visualize < (actually, its
underlying strict order <) are the following:

Corollary 2.10. In I"P* it holds that:

a) ["HLpk < [n Pk,
b) ["PkH < [npk,
c) I"P**1 and 1"+ P* are not comparable.

This section concludes with the mention of the following result that will be
applied at the end of this paper.

Proposition 2.11. The consequence relation =, j) verifies:
a) I' En, k) @ implies T U{Y} FEur) @ [Monotonicity]
b) I, k) ¢ if and only if T' =, 1) @ — ¢ [Semantic deduction theorem]
c) If T =(nk) @, then T |=(,, 1y @ for some finite set T" C T’ [Finitariness|

PROOF: Obviously, a) holds. The claim b) arises from the truth-table of —.
With respect to c), =(,,x) is finitary because it is naturally defined by means of
a single finite matrix, see [22]. O
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3. A Hilbert-style axiomatics for the I” P*-logics

From now on, consider an I™P*-logic fixed, with (n,k) € w?. To obtain the
desired axiomatics, the secondary truth-functions ~, (©), V and A from the previ-
ous section will be reflected by means of the definition of secondary connectives
in L(C). Formally:

Definition 3.1. The secondary connectives (©), ~, V, A, * and ° are defined in
L(C) in the following way:
©¢:=(p—=¢) = o,
~p:==(©¢),
YV 1/) =~ = 1/)7
PAY =~ (p— ~ 1),
Pt i=p Vo,
@°i==(pAmp).
In addition, the connectives V¢r, and A ¢r, are defined by:
pVeL Y =9 =,
pAcL = (p—= ) %
Finally, recall that the expression —'¢ indicates = (...(=¢))...), t times, and
that =% is merely ¢, as we said in the previous section.

Taking into account the previous conventions, the axiomatics for the I™P*-
logics will be presented in the sequel. For that consider, from now on, an arbitrary
(fixed) pair (n, k) € w?.

Definition 3.2. The consequence relation &=, 1) € p(L(C))x L(C) is defined by
means of the following Hilbert-style axiomatics, considering these schema axioms:
Az o = (Y — ),

Azy (¢ = (¥ = 0)) = ((p = ¥) = (¢ = 0)),

Azz (p = V)%,

Azg (p = )",

AZL‘5 (_‘nsﬁ)*a

Axg (ﬁkcp)ov

Avz " = [° = (e = ~) = (me = ¥) = 9)];

Azg " = [° = ((p = ) = (¢ = ¥) = =),

Azg ©* = (mmp = @),

Az10 ¢° = (o = =),

Az ¢* = (),

o

AZL‘12 QOO — (" (p) .

3The “classical” connectives Acr and Vo are not essential in the proof of Completeness.
However, they are indicated here for a better explanation of the comparison between these
connectives with respect to A and V, as it will be remarked later.
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©, =Y
—

From this definition, the well-known notions of formal proof (with or without

The only inference rule for this axiomatics is modus ponens (MP):

hypotheses), formal theorem, etc. are the usual ones. Because of this, -,z is
monotonic, i.e., I' e, 1y ¢ implies T'U {1} F¢, 1) ¢. This fact will be widely
used.

Remark 3.3. It is well known that the inclusion of Az, Azs and MP entail that
it is valid -, 1) ¥ — ¢. Moreover:

Theorem 3.4. We have that -, ;) satisfies the (syntactic) deduction theorem
(DT). That is, T’ b 1y ¥ if and only if T, 1) ¢ — 1.

PROOF: This result holds because the inclusion of axioms Ax; and Az too, and
considering that the only (primitive) inference rule is modus ponens. See [16] for
a detailed proof. (I

Az and Azy allow to obtain some useful rules in relation to t, 1), too:

Proposition 3.5. Given the logic I"™ P*, the following secondary rules are valid:

Permutation (Perm): w
= (p—=90) ;

Transitivity (Trans): r= 15;’_) ;/) -7

Reduction (Red): W

The following two results involve formulas of the form ¢* or ¢°:

Proposition 3.6. For every ¢ € L(C), for every (n,k) € w?, it holds:
F(n,k) (50*)*; F(n,k) (90*)07' F(n,k) (@ 90)*7 F(n,k) (@ 90)0'

This result is valid since p*:= ~ ¢ — —p and ©¢ = (p — ¢) = ¢, and
considering axioms Axz and Az4 from Definition 3.2.

Proposition 3.7. If |=(, 1) @, then F(, 1y ©* and b, 1y ©°.

PRroOF: Note that no formula of the form —ta, with o € V, t > 0, is a tautology.
Then, [=(,,x) @ implies that ¢ is necessarily of the form —9(y» — ), with ¢ > 0.
From this, apply Axs, Azs (and, eventually, Azq; and Azqa). O

The next result shows some basic 1™ P*-theorems:

Proposition 3.8. The following formulas of L(C') are theorems with respect to
F(n,k)"
a) ¢ = ©Q; a’) @ — o,

495
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b) ¢* = (~p =~ ),

¢) pf = [° = ((me = —9) = (¥ = ¢))],
d) " = [° = (¢ = ¥) = (=Y = —p))],
e) (o= ~Y) = (= ©O©Y) = ©p),
f) (v = ~P) = (v~ = 1Y) = ).

PRrOOF: The following are schematic formal proofs (in the context of I, x)) for
every formula above indicated. Sometimes it will be applied Theorem 3.4 or
Proposition 3.5 without explicit mention.

For a): ¢ > ©p =9 — ((¢ = ¢) = ¢) is a particular case of Axy. For the case

of a’):

Di(p—=9) =g [Hyp.; Def. © o]
2) = [Rem. 3.3]
3) ¢ [1), 2), MP]
So, it is valid (© ¢ k) -

For b)

1) ¢* [Hyp.]
2) (©¢)° [Prop. 3.6]
3) " — [( ©)° = ((p = ~¢) = (= ©p) > p)] [Azs, Def. 3.1 (of ~)]
) (p—=~p)= (g =>©¢p) = ) (1), 2), 3), MP |
5) (¢ — © @) = ((p = ~p) = 2p) [4), Perm.]
6) p > ©¢p [a)]
7) (@wa)*}ﬁw [5),6),MP]
8) ~p = (p— ~¢) [Az1]
9) ~p— [7), 8), Trans.]
That is, ¢* F(n,k) ~ = TP

For ¢)

1) ¢* [Hyp.]
2) ° [Hyp.]
3) = [Hyp.]
4) [Hyp.]
5) Y = (mp =) [Az1]
6) =Y [4),5),MP]
)" = [ = (e = =2Y) = (me =) = 9))] [Ax7]
8) (mp = Y) = ((me =) = ) (7), 1), 2), MP]
9) (mp—=Y) =g [8), 3), MP]
10) "2 [9), 6)’ MP]

ThU.S, @*7¢07 Q= "w/lp l_(n,k) ®-
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For d): Adapt the proof of ¢), using Axg instead of Ax7. Then, it will be valid
", Y, $— Y, F(n,k) -$.

For e):
1) (©p)* [Prop. 3.6]
2) (©y)° [Prop. 3.6]

3)(©¢) = [(OY)° = (o= ~Y) = (v = ©¥) = ©yp))]
[Def. 3.1 (of ~), Axr]

) (~p=~Y) =2 (M= ©Y) = ©p) [1), 2), 3), MP]
S0, Fnk) (Mo = ~9P) = ((~ o = ©Y) = ©¢).

For f):

1)~ =~ [Hyp.]
2) ~p 29 [Hyp.]
3) Y= © [a)]
4) ~p = ©Y [2), 3), Trans.]
5) (v = ~Y) = (= ©Y) > ©) [e)]
6) ©¢ [1)7 4), 5), MP]
NN ©e—¢ [a")]
8) 2 [6), 7)’ MP]
From all this, ~ p = ~ ¥, ~p = Y F(mk) 1. Now, apply Theorem 3.4, as in the
previous results. This concludes the proof. O

Remark 3.9. Now it is convenient to relate the axiomatics given in Definition 3.2
with a well-known axiomatics for CL = I°P°. According to [16], CL can be
axiomatized by MP joined with the following three schema axioms:

B’JJl = AIl,

B’JJQ = AIQ,

Bzs = (me = ) = (he = ) = ¢).

Note that, cf. Definition 3.2, fixed an arbitrary consequence relation , 1), the
axiom Bzxs of the previous axiomatics is replaced by a weaker version (Axr).
Anyway, since in the particular case of k(g ), axioms Ars and Az establish
that, for every formula ¢ € L(C), 9,0y ©* and gy ©°, it is possible to recover
the axiomatics determined by Bxy, Bxo and Bxs, actually. Moreover:

Proposition 3.10. Let ¢ € L(C), in such a way that ¢ is a formal theorem
of CL (that is, F0) @), and let ¢’ € L(C), obtained by ¢ replacing all the
occurrences of the symbol — in ¢ by ~. Then ¢, 1) ¢'.

ProOF: Consider the axiomatics for 7°P? indicated in Remark 3.9, and compare
it with the general axiomatics given in Definition 3.2. First of all note that
neither Bxzq(= Az1) nor Bxzay(= Azs) have occurrences of —. Besides, since
Bxz = (¢ = =9) = ((m¢ = ) = ¢)), and considering Proposition 3.8 f), it
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holds F(p.x) (~ @ =~ ) = ((~ ¢ = ) = ¢) (= Bay’). From these facts, it
can be easily proved by induction on the length of the formal proof of ¢ (with
respect to b (g,0)) that gy ¢ implies -, x) ¢’ O

Corollary 3.11. Suppose ¢ € L(C), and let the formula ¢"” € L(C) built by
replacing the eventual occurrences of — in ¢ by ~, and by replacing every
occurrence of Vepr (A cpr, respectively), understood as an abbreviation (cf. Def-
inition 3.1), by V (A, respectively). Then, -0y ¢ implies =, 1) "

For instance, since 9,0y ¢ VoL — ¢, then i, 1) @V ~ . However, it is not
generally valid that ¢, 1) ¥ VoL — ¢, obviously. The next result collects some
particular cases of the previous corollary:

Corollary 3.12. The relation -, ) verifies, given (n, k) € w?
a) Fary ¢ = @ VY; a') gy ¥ = @ VA,

b) Fnry @ AN — ; b') Fky ¢ AP — 1),

¢) Fegy (o= 0) = (v = 0) = (o VY = 0)),

d) Fry o = (0 = (9 AY)),

e) F(nk) 50/\1/)%@\/1/1

Finally, to prove completeness, it will be necessary to show:

Proposition 3.13. The following are I" P*-theorems:

)soﬂw,

b) ° = (mp = (p = V),
) (¢°)°,

d) = (¢*) = ¢°,
®~¢%w,

f) ¢ ( (<PV1/)) )

PROOF: These formal theorems are demonstrated as in Proposition 3.8, applying
DT and Proposition 3.5 if it were necessary:

For a): Taking into account Corollary 3.12 a’), it is valid Fe, 1) ¢ — ¢ V 2.
That is, Fp,k) © — @™

For b):
1) ¢° [Hyp.]
2) ~p [Hyp.]

3) (he =) [Axs]
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4) (me =) = [9° = (e =) = —p) = (¢

(e =) =)=

=)= e
= (e —=1)
9) mp—=(p—1)
10) p — 9

5) (=
6) -
7) -
8) ¢

(= (e =)
o= (e —=19) = p)
(

= (ne = v)))]

Thus, it holds ©° F, 1) @ — (@ — ), as was desired.

For c):
D (©(¢ = ~9)°
2) (~ (= ~9))°

9) ~ = ¢°

Therefore, =, 1y~ @ — ©°.

For f):
1) ¢*
2) (pVv)°

]
|
]
= (= (¥*) = ¢°))]  [Prop. 3.8 d)]
P
]
MP]

= ((pA2p—=©p) =

[Prop. 3.6]
[1), Az1]
[2), Def. 3.1 (of A)]
3), Az1]
[4), Def. 3.1 (of o)]

[Prop. 3.6
[Prop. 3.6
[2), Def. 3.1 (Of /\ , Az

[1),3), 4), M
[Cor. 3 12 e)

[5),

~ = ¢%))
[Prop. 3.8 d), Def. 3.1 (of ~ and o)

]

[Cor. 3.12 b))

[Prop. 3.8 a)]

[2), 3), Trans.]

[Prop. 3.6]

[Prop. 3.6]

[6), Def. 3.1 (of ~), Az11]
[7), Def. 3.1 (of N)]

1), 4), 5), 8), MP]

[Hyp.]
[Az4, Def. 3.1 (of V)]
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3) " = [(pVY)° = ((p = o VY) = (2 (e VY) = —p)] [Prop. 3.8 d)]
4) (soﬁwvzb) ((eVY) = —9) (1), 2), 3), MP]
5) = oV [Cor. 3.12 a)]
6) ~(pVY) = —gp [4), 5), MP]
Thus, ¢* Fiy 2 (@ V1Y) = 2.
For g):
1) 4° (Hyp.]
2) (p =2 9)" [Azs)
3 (p—=v) = [° = ((p =) =) = (-9 =~ (p—=))] [Prop. 3.8 d)]
4) ((90_>7/} =) = ( "l}_>ﬁ(§0_>w)) [1)7 2), 3), MP]
5) (g =) = (¢ =) [Rem. 3.3]
6) o= ((p > ¥) = ¥) [5), Perm.]
o= (Y= (g—=v) [4), 6), Trans.]

S0, ¥° Finky ¢ — (41 — = (p — 1)) is obtained.
For h): By Az and Aw1y it holds ¢, 1) (- (¢ — ¢))*. By Axy and Az it holds
(= (p = ))e.

" (k)

For i): It is a particular case of h).

For j):

1) = (") (Hyp.]
2) ¢ [Hyp.]
3) o — " [a)]
4) ¢* 2), 3), MP]
5) (¢*)° [Prop 3.6 ]
6) (¢7)° = (= (") = (¢" = 1)) [ )]
7)Y (1), 4), 5), 6), MP]
That is, it holds = (¢*), ¢ (k) . Then, apply Theorem 3.4. This 1ast result
completes the proof. (I

4. General soundness and completeness

It is easy to check that the axioms given in Definition 3.2 are I P*-tautologies.
So, taking into account that MP preserves I" P*-tautologies, it holds:

Theorem 4.1 (Weak soundness). If b, 1) @, then =, 1) @

A theorem of (weak) completeness arises as an adaptation of the well-known
Kalmadr’s proof for classical logic CL, cf. [16]. The main difference with respect to
Kalmar’s original formulation is the following: meanwhile traditionally every val-
uation v determines a formal proof with a fixed set of premises, in this version we
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will deal with sets of premises of different cardinality, according to the properties
of v. More specifically, we have

Definition 4.2. For every formula @[y, as, ..., a,] € L(C), for every I™P*-
valuation v, for every atomic formula o, 1 < p < m, let Q} be the set associated
to ap and to v, defined by:

oIf vlap) = F, (with 1 < r < n), then: Q, = {= (™),
~((map) )7- (=" ap)"), (")}
oIf v(ey) = T; (with 1 < i < k), then: Q) = {ap A —ay,
Sy A —Pag, ., T oy A =tag, (Rag)° )

o If w(ay) = Fy, then Q) = {~ ay, (a;)*}.
o If v(ap) = Tp, then Qp = {© ap, (ap)°}.
In addition, let the set Al:= Q7 UQ3U---UQy,.
On the other hand, for every I"Pk—valuatlon v indicated above, the for-
mula ¢V (determined by ¢ and v) is defined as follows:
o If v(p) = F, (with 0 <r < n), then ¢¥ = —"T1p.
o If v(p) =T; (with 0 < i < k), then ¥ = ¢.

For the next technical (and essential) result, the following obvious fact will
be applied without explicit mention. According to the previous definition, if
¢ € L(C) and 1 is a subformula of ¢ then, for every valuation v, Ay, C AL
Bearing this in mind it is possible to demonstrate:

Lemma 4.3. For every formula ¢ = @[y, ..., a,] € L(C), for every I" P*-va-
luation v, it holds that Ag Fnk) @

PROOF: By induction on the complexity of ¢. The analysis is divided in the
following cases:
Case 1: Let ¢ € V (without losing generality, ¢ = a1, which implies AZ = Q7).
Then: If v(p) = Fp, then ¢* = =¢ and AY = {~ ¢, ¢*}. So, AU Fu) ¥ by
Proposition 3.8 b).

If v(p)=F., 1 <r<n,then

' ="t and  {(=¢) (=" Tle v Tp)} C AL

Now, by Proposition 3.13 f), b, 1) (="¢)" = (= (=" 1oV ") = ="T1y). From
all this, AY -, ) =T Hlp(= pv).

If v(p) =T;, 1 <i <k, then p A= € A. By Corollary 3.12b"), AZ Fp) ¢
(= ¢")-

If v(p) = To, then A = {© ¢, (9)°}. Thus, AL Fim © (= (9 = ) = ¢)).
So, since =, k) ¢ — ¢, it holds AL e, 1y 0(= ¢¥).

The proof of Case 1 is completed.
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Case 2: When ¢ is of the form - consider the following subcases:

2.1: Let v(v) = Fy. By (LH), Afb Fnk) Y (= -1 = ¢v). Hence, AZ’D Fn,k) 0
2.2: Let v(¢) = Fy, with 1 < r < n. Note that v(¢) = F,_1, which implies
@’ = "o ="t =¥ So, AY F(n k) ¥, by (LH).

2.8: Let v(¢) = Ty. From Definition 2.2, ¢ = =971, with 1 < ¢ <k, a € V, and
v(a) =T, Thus, A} = Q4 = {(aA-a),..., (=" ' A=), (~%@)°}. From this,
using Corollary 3.12 b), it holds AY F(,, ) =% (= ¢").

©
2.4: Let v(v) = Ty, with 2 < i < k. So, v(p) = Ti-1, 1 <i—-1< k—-1.
In addition, ¢y = —%, with 0 < ¢ < k — 4, v(a) = Tj14 and o € V. From
this, o A1) = ~9a A —9la € QY = Al = AL (since ¢ + 1 < k). So, applying

Corollary 3.12 b), AL Fe, ) ¢ = ¢".
2.5: Let v(¢) = Ty. Then, v(p) = Fy. To prove that Af F, ) ~p(= =) it
suffices to demonstrate

(%) Al ik ¥°.

Indeed, if this fact holds, from Ay, then it would be verified A}, (¢, x) ¢ —
= =1p. And, since it holds A} =, 1) ¥ (by (I.H)), it will be obtained AY, F(,, 1) ¢
Now, to prove (x), consider the following possibilities:

2.5.1: Assume that ¢ is of the form —9(f; — 62) (with 0 < ¢). Applying Axy
and (if necessary) Axiz, it holds I, 1) ¥°, and therefore A7, -, x) 1°.

2.5.2: Assume that v is of the form —%a, a € V, 0 < ¢. In this case, Q, = Aj.
Consider here the different possibilities for v(a):

2.5.2.1: Let v(a) = Fy. Then, AY = {~ a,a*}. By Proposition 3.13 e),
AV Fn.k) a°. Then, apply Azi» (g times).

2.5.2.2. Let v(a) = F, (with 1 < r < n). Since —(a*) € AY, it holds
A% Fnk) a°, because Proposition 3.13 d). From this, Az Fenky ¥°, by A1
again.

2.5.2.3: Let v(a) = T; (with 1 <4 < k). So, i < ¢ (in fact: if ¢ > ¢, then
v(y) = Ty—q, i—q > 1, contradicting v(¢)) = Tp). Besides, note that (—'a)® € AY,
which implies Ay, =, 1) (=fa)°. So, since i < g, Ay Fky (¥)°, again by Az,
2.5.2.4: Let v(a) = Tp. Then, AY b, a°, since a® € Qp = Aj. Then,
applying Ax1o one more time, (x) is valid. The proof of Case 2 is concluded.

Case 3: Assume that ¢ is of the form ¢ — 6. There exist the following possibil-
ities*:

4The first three subcases indicate the possibilities for v(p) = Tp. The last two cases corre-
spond to v(p) = Fp.
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3.1: Let v(¢y) = Fp (and so, ¢* = ¢ — 0). By (LH), A} Fep = (x). In
addition, it can be proved that

(**) Ai l_(n,k) ’(/}O

(such a proof runs as follows, according the internal structure of ):
3.1.1: Let ¢ = a € V. So, A}, Fur)~ . Applying Proposition 3.13 e), it
holds ().
3.1.2: Let ¢ = %, 1 < ¢q, a € V. Consider the following possibilities for v(«):
8.1.2.1: Let v(a) = Fy. Then, by Proposition 3.13 e), Q% Fnx) @°.
3.1.2.2: Let v(a) = F,., 1 < r < n. Then, ¢ > r (while ¢ < r implies
v(Y) = v(~%a) = ~9(v(e)) = Fr—q # Fou, which is absurd). Besides that,
= ((=""ta)*) € QY. Therefore QY by k) (=" ')°, because Proposition 3.13 d).
3.1.2.3: Let v(a) =T;, 1 < i < k. So, ¢ > i (by similar reasons to 3.1.2.2). In
addition, (='@)° € QY, and so QY F(n.r (—'a)°.
8.1.2.4: Let v(a) = Tp. Obviously, Qy, F(n k) (@)°, from Definition 4.2.

Now note that Az can be applied in all the subcases 3.1.2.1-3.1.2.4, in such
a way to obtain A} F(, x) 1°, completing the proof (x) for Subcase 3.1.2.
8.1.3: Let ¢ = =9(0; — 02), with 0 < q. By Axz, F(n.x) (01 — 02)°. Now, apply
Az ¢ times.

So, it was proven (%) for all the possibilities of Subcase 3.1. From this, (x) and
Proposition 3.13 b), it holds AY ¢, ) ¥ — 6 (= ¢").
3.2: Let v(¢) = Fr, 1 <r < n. Again, v(¢) = Ty and so ¥ = ¢ — 0. Note
that, since v(¥)) = F,., ¥ = =%, with ¢ > 0, « € V. Thus, v(a) = F,44, with
r+q < n, which implies QY = {= (a*), = ((ma)*),..., = ((="T71a)*), (=" T9a)*}.
So, = ((=7a)*) € Qg, because r > 1. Thus, AY ¢, 5 —(¥*). From this and
Proposition 3.13 j), AY Far) @7
3.8: Let v(0) = T;, 0 < i < k. So, p* = ¢ — 6 one more time. By (L.H),
AY Fnky 0. Now apply Axy.
3.4 Let v(y) =T, v(0) = F, 0 <i <k, 1 <r <mn. Using (LH), AL, F, ) ¥,
which implies AY e, py (¥ — 0) — 0, because e, 1) ¥ — (¢ — 0) — 0).
Hence, AY, Fp) (¥ — 0) — 6%, by Proposition 3.13 a). Now, considering
that AY Fury (¥ — 0)" and AP e,k (07)° (because Axs and Proposition 3.6,
respectively), it is valid that AY, =, x) = (%) — = (¥ — 6), by Proposition 3.8 d).
In addition, reasoning as in Subcase 3.2 (with respect to ¢), AZ ¢, 1) = (0)".
Thus, AY Fury) — (¥ — 0)(= ¢"), as it is desired.
3.5 Let v(¢) =T;,0 < i < k, v(0) = Fy. Adapting (%) of Subcase 3.1 to 6 it can
be obtained Ay, -, 1) 6°. Besides that, by (LH), AY Fmry ¢ and AL e, ) 0.
Considering Proposition 3.13 g) now, it holds AY, k¢, k) = (¢ — 0) = ¢".
The analysis of this last subcase finishes the proof. O
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Lemma 4.4. Let AU {4,0} be a subset of L(C). If the following n + k + 4
syntactic consequences are valid:

1) A= ("/)*)a (_' "/))* F(n,k) 0,
2) Aaﬁ(w*)aﬁ((ﬁ w)*)a (ﬁ2¢)* l_(n,k) 0,
n—1) A,_‘(1/’*) (T 21/)) ), (RO F iy 0,
n) A= (), (BMR)%), (57 )* ) 6,
n+1) A, A= 1/1,( ¢)°"(nk)9

A, Y A=Y, 2P A=Y, (229)° Fagy 6,

n+2)

n+k71) Aar@/}/\_‘wa-'-a_'kizl/)/\_'kilw ( kilw) F(’ﬂk) 97
n+k) Aa"l}/\ﬁw7"'aﬁk_lw/\ﬁkw ( w) I_("k

n—l—k:-i—l) A,N’(/},’(/)* l—(n’k)e
n+k+2)  AQ@vU, Yk b,
n+k+3) '_(n,k) 0%,
n4k+4) b 00

Then it is valid that A+, ) 0.
PRroOF: First, by Hypothesis 1) to n) can be obtained
(*) A,ﬁ(’(/)*) l_(n,k) 9

Indeed, by n — 1), A, = (¢*),..., = ((="720)*) Fur (7" 1h)* — 0. Besides
that, it holds that F(, x) ((=""4p)*)* (by Proposition 3.6), and gy 0° (by
Hypothesis n + k + 4)). Applying all this to Proposition 3.8 d) it is verified:

() A @), 2 ((F"72)7) By 20 = = (5" H)7).

It is also valid A, = (¢*),..., = ((=""2)*) l—(n k = ((=""14)*) — 6, because
of Azs, n) and DT. In addmon Fngy (2 ((="7149)*))*, because of Proposi-
tion 3.6 and Axq1. Thus, considering Proposition 3.8 d) and Hypothesis n+k+4)
again, it holds:

(1) A= (W), = (B 72)) By =0 = =2((E" 1)),
Hence, from (1) and (1) and Corollary 3.12 d):
(©) A =@ ), (TR 20 = [ (TR AR () ).

On the other hand, it holds F, ) (—6)*, because of Hypothesis n + &k + 3)
and Az11. And, of course, b, k) [= (=" 19)*) A=*((="")*)]°. So, by Proposi-
tion 3.8 d), A, = (%), ..., 2 (2" 29)") gy = [T )AL (1) )] =
—=6. Thatis, A, = (¢*), ..., = ((="720)*) Fnry (2 (5" 14)*))° — == 6. Thus,
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from Proposition 3.13 1), A, = (¢*),..., = ((=""2%)*) F(uk) ~—0. Thus (by Hy-
pothesis n + k + 3) and Axy),

(©0) A= (@), = (BM720)) Fagpy 6.

The procedure used above to prove (&<) can be applied using (in decreasing
order) the Hypotheses 1),...,n — 1), proving () (note that the formula — (¢*)
cannot be “suppressed” yet).

From (%) (and monotonicity), A, ~ ¢ F = (¢*) — 6. Moreover, from Hy-
pothese n + k + 1), it holds A, ~ ¢ F ¢¥* — 0. From these facts and Corol-
lary 3.12 c), it is valid A, ~ ¥ ) ¥* V 2 (¥*) — 0. Now realizing that
Fnky ¥V = (¥*) (because of Proposition 3.6), it is obtained

(I) A7 ~ w l_(n,k) 0.

On the other hand, from n + 1) to n + k) it is valid

(**) Aa ’l/) A _"l/) F(n,k) 0.

The reasoning is as follows: using n+ k) and Azg, it holds: A A =4, ...,
“FT2P AR iy ) TP TIOA SR — 6. Tt s also valid A, A, L, 2R A
—k=14) F(n,k) (=F=14))° — 6, because of Hypothese n + k — 1). Hence, by Corol-
lary 3.12 ¢) and recalling Definition 3.1, A,..., =" 2 A =F"1p b, 1y (=K1 A
k) v = (=R A =Rp) — 6. That is, A, ..., P2 AT B (FFTR A
—F1p)* — 6. In addition, it holds k¢, 4 (="~ A =*1))*, by Definition 3.1, Azs
and Axzq;. From these two facts, it holds

(CO0) A, =P AT B g 6.

Adapting the reasoning applied in (O<O<) to the Hypotheses n+k—2),...,n+1)
(in a decreasing order, as before), it is obtained (xx), as desired.

From (%x) and monotonicity it is valid A, © % Fe k) ¥ A=) — 6. So (by Hy-
pothese n + k + 4), Proposition 3.6, Az1; and Proposition 3.8 d)), A, © 9 ()
=60 — ¢°. On the other hand, by Hypothese n 4 k 4 2), it holds A, (© v ()
Y° = 0. So, A, © Y F(nk) 0 — —(¢¥°) (again, by Hypothese n 4 k+-4), Propo-
sition 3.6, Ar11 and Proposition 3.8 d)). Thus, A, © % Fey k) =0 — (¥° A= (¥°)),
by Corollary 3.12 d). Therefore, A, © 9 Fnxy = (¥° A= (¥°)) — = =6 (because
of Hypothese n + k + 3), Az1; and Proposition 3.8 d)). That is, A, © v ()
(¥°)° = ==0. Hence, A, © 1 (5,x) 70, because of Proposition 3.13 ¢). Now,
taking into account Hypothese n + k + 3) and Axg, it is valid

(IT) A, ©Y 0.
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From (I), (IT) and Corollary 3.12 c), it is verified A F(, ) (©¢)* — 6. Hence,
it is valid A F, 1) 0, by Proposition 3.6. (|

Using Lemmas 4.3 and 4.4 it is possible to demonstrate:
Theorem 4.5 (Weak completeness). =, ) @ implies b, iy @

PROOF: Suppose = k) @, With ¢ = plai, ..., an], and consider the set VAL, :=
{vthi<t<(nsk+2ym (the set of all the I P*_valuations effectively used to eval-
uate ¢). Define in VAL, the equivalence relation =i, as follows: for every
Ve,V € VALy,, vy, =1 vy, if and only if for every ap, with 2 < p < m,
vt (@) = vy, (). This relation has (n+k+2)™~! equivalence classes (indicated,
in a general way, by ||v||). Besides that, taking into account Definition 4.2, it holds
that (given a fixed equivalence class ||v]|) Q)" = @, for every 2 < p < m, for
every pair v, v, € ||v]|. This allows to define the set A!”” = Q5 U UQu,
being v; any element of ||v|. In addition, note that every class ||v| has exactly
(n 4+ k + 2) valuations and verifies that, for every vy, , v, € |[v]], vy, # vy, im-
plies vg, (a1) # vt,(a1). Finally, note that, since =, x) ¢, for every v € VAL,
¥ = . All these facts (together with Lemma 4.3) imply that (for every ||v]|) the
following formal proofs can be built:

1) Al = (@), () g ¢

1.2) Al = (@), = (R 1)), (2an) F g ¢,

1.n) AP (07), = (7)), () ) @)
L(n+1)) A!v”, ar A-ar, (ma1)® Far @,

L(n+2)) Al oy A=, ~an A=2aq, (—201)° Foug @,

1.(n+k)) A!v”, ar Anag, ..., Fhag A=Fay, (=Fay)° Fn,k) @5
1.(n + k + 1)) A!v”, ~ 1, Of{ l_(n,k) @D,
1.in+k +2)) A!v”, © a1, a5 Far) @
Moreover, by Proposition 3.7, it is valid:
l(n + k + 3)) A!v” F(n,k) (p*,
l(n + k + 4)) A!v” F(n,k) (po.

All the previous facts allow to apply Lemma 4.4 in such a way that for ev-
ery |Jv| it holds Al"! Fink) @ (there are (n + k + 2)™~ ! formal proofs of this
type). That is, it is possible “to eliminate” any reference to formulas of the form
of in every formal proof obtained, by means of an adequate subdivision of the
set VAL, and by the application of Lemma 4.4. Note here that this process
can be applied one more time, reagrouping the formal proofs already obtained.
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So, by a new application of Lemma 4.4 and of Proposition 3.7, any reference
to formulas of the form af can be suppressed. The same procedure can be ap-
plied by a finite number of times, until obtaining the following formal proofs:

m'l) - (a;kn)a (ﬁ am)* I_(n k) ¥

m.2) =(ag), = ((mam) ), (ZPam)* Fr) @

m.n) (@) ((E ) ), (B ) k) @

m.(n+1)) QAN 2 Oy (7am)° Fniy @,

m.(n + 2)) O A =1 Qs 0 A =20, (22 00m)° k) @
m.(n+k)) U A= Oy, = g A =R, (Fonn)° k) @
m.(n+k+1)) ~ am, oy, Far) ¢
m.(n+k+2)) ©am,ap, Fmr @
m.(n+k+3) Fumr ¢
m.(n+k+4)) o e

Applying Lemma 4.4 and Proposition 3.7 for a last time, -, 1) ¥ O

Note that, in the proof developed above, all the (n+k+2)" valuations of
V AL, are needed to obtain the formal proofs that allow to demonstrate t, ) ¢.

Theorems 4.1 and 4.5 prove weak adequacy: ):(n’k) @ if and only if F, xy .
This result can be improved:

Theorem 4.6 (Strong adequacy). For every T'U {p} C L(C), T' (5 ¢ if and
only if 't 1) ¢

PROOF: By Proposition 2.11, |, ) verifies semantics deduction theorem and is
finitary. Moreover, by the definition of formal proof used in this paper, F(, 1) is
finitary, and (by Theorem 3.4) it verifies syntactic deduction theorem, as it was
already mentioned. From all these facts, and taking into account that both =, 1)
and -, ) are monotonic, strong adequacy is demonstrated. (I

5. Concluding remarks

Despite its interest as a general result (for a countable, nonlinearly ordered
family of logics), the adequate axiomatics shown here can be applied in different
ways. First of all, a natural problem to be solved is the independence of the
axiomatics presented here and it is part of a future work.

On the other hand, another of the possible uses of this axiomatics is the study
of algebraizability of the I™P*-logics. It is worth commenting here that I' PP is
algebraizable, see [21], as in the case of I9P! (this fact was already indicated).
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Moreover, in [9] it was demonstrated that all the logics of 1"P* are algebraizable.
So, the properties of the class of algebras associated to each I™ P*-logic deserve
to be investigated. By the way, the class of algebras associated to I°P! was
already studied in [14] and in [18]. In both works, the axiomatics obtained for
this logic are very useful for the study of the so-called class of P!-algebras. This
is because there is a connection between the axiomatics of an algebraizable logic
and its equivalent algebraic semantics, cf. [1]. As a generalization of this fact,
the axiomatics shown here would allow to study the different classes of (say)
I" P*-algebras in a more efficient way.

In addition, note this fact about the complexity of the formulas: given a fixed
logic 1" P*, every formula ¢ € L(C) with complexity Comp(y) > max{n, k} be-
haves “in a classical way” (this fact is related to the inclusion of Axs and Azg
in the axiomatics presented in this paper). This would suggest to define a spe-
cial kind of logics: the family SC of “stationary classically logics”. Obviously,
I"P*¥ would be a particular subclass of SC. The study of the latter class deserves
special attention.

Finally, it should be noted that Kalmar’s technique for the proof of complete-
ness is studied by its own right, independently from the logic to be treated, see
[11], [12], [15], [17] for instance, specially by its constructive character. So, the
results and modifications here presented can contribute to this abstract theoretic
study in a future research.
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