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The positive cone of a Banach lattice.

Coincidence of topologies and metrizability

Zbigniew Lipecki

Abstract. Let X be a Banach lattice, and denote by X+ its positive cone. The
weak topology on X+ is metrizable if and only if it coincides with the strong
topology if and only if X is Banach-lattice isomorphic to l1(Γ) for a set Γ. The
weak∗ topology on X∗

+ is metrizable if and only if X is Banach-lattice isomorphic

to a C(K)-space, where K is a metrizable compact space.
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1. Introduction

Let X be a Banach space, with its strong and weak topologies denoted by s

and w, respectively. It is well known that w is metrizable if and only if X is

finite-dimensional. Moreover, an analogous result holds for the weak∗ topology w∗

of X∗.

The situation is different when we consider the positive cone X+ of a (real)

Banach lattice X . Indeed, it was shown in [9] that if X = l1(Γ), where Γ is an

arbitrary (nonempty) set, then (X+, w) is not only metrizable, but we have s = w

on X+ (see also Lemma 3 in Section 3). In this paper we show the converse: if

(X+, w) is metrizable, then X is Banach-lattice isomorphic to l1(Γ) for some Γ

(see Theorem 2 in Section 4). One ingredient of the proof is the theorem that

the positive part of the unit sphere in L1(µ), where µ is a nonatomic probability

measure, equipped with w, is not metrizable (see Theorem 1 in Section 4, a result

due to J. Spurný).

We also show that (X∗

+, w
∗), where X is a Banach lattice, is metrizable (if and)

only if X is Banach-lattice isomorphic to a C(K)-space, where K is a metriz-

able compact space (see Theorem 3 in Section 5). Moreover, we establish simple
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necessary and sufficient conditions that s = w∗, respectively, w = w∗ on X∗

+ (see

Proposition 5 in Section 5).

In the proofs we apply, not always explicitly, many standard results from both

general functional analysis and the theory of Banach lattices. Among those results

are classical representation theorems for AL- and AM-spaces and the well-known

duality property between those spaces (see, e.g., [1, Section 12]).

The notation and terminology we use are mostly standard. Nevertheless, some

relevant explanations are given in Section 2. Auxiliary results are gathered to-

gether in Section 3. The main results are presented in Sections 4 and 5, which

are independent as far as the proofs are concerned.

Finally, we note that related topological properties of order intervals in C(K)-

and Cb(K)-spaces, where K is a completely regular space, are investigated in [10].

The author is much indebted to Jǐŕı Spurný for his kind permission to incorpo-

rate his unpublished result (see Theorem 1 in Section 4; our proof is a modification

of the original one). The result was obtained in answer to a question of the author

and will be also applied in another paper of his (in preparation).

2. Preliminaries

All linear spaces under consideration are supposed to be over the field R of real

numbers.

Let X be a normed space and let X∗ stand for its dual space. The closed unit

balls of X and X∗ are denoted by B and B∗, respectively. The strong and weak

topologies of X are denoted by s and w, respectively, while the weak∗ topology

of X∗ is denoted by w∗. Given Z ⊂ X∗, we denote by σ(X,Z) the weakest

topology on X making the elements of Z continuous.

Let now X be a linear lattice (= Riesz space, in the terminology of [1]). The

order of X is denoted by the symbol 6 and its positive cone by X+. The symbol

|x| stands for the absolute value of x ∈ X . An element e of X+ is called an

order unit of X if, for every x ∈ X , there exists t ∈ R with |x| 6 te.

Let next X be a normed lattice. Then X+ and X∗

+ are w-closed and w∗-

closed, respectively. We set

B+ = B ∩X+ and B∗

+ = B∗ ∩X∗

+.

It follows that B+ is w-closed. Moreover, the Banach–Alaoglu theorem (see, e.g.,

[11, Theorem 3.15]), implies that B∗

+ is w∗-compact. We shall use the latter result

in establishing Propositions 4 and 5 in Section 5.

Let (T, τ) be a topological space. For S ⊂ T we write (S, τ) meaning that S

is equipped with the corresponding relative topology. If σ is another topology
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on T , we write

τ = σ on S

meaning that τ and σ restricted to S coincide.

3. Auxiliary results

The following lemma will be used in establishing Propositions 1 and 2 in this

section and Proposition 4 in Section 5.

Lemma 1. Let X be a normed lattice and let τ be a linear topology on X such

that X+ and B are τ -closed. The following two conditions are equivalent:

(i) (B+, τ) is compact [and metrizable];

(ii) (B, τ) is compact [and metrizable].

Clearly, (ii) implies (i). Since B ⊂ B+−B+, the converse implication holds, by

standard results (see [12, Propositions 7.1.5 and 7.6.3]; see also [7, Theorem 4.4.15]

for a generalization of the latter proposition).

The next two propositions will be used in establishing Proposition 5 in Sec-

tion 5.

Proposition 1. For a normed lattice X the following three conditions are equiv-

alent:

(i) (B+, s) is compact;

(ii) (B, s) is compact;

(iii) X is finite-dimensional.

The equivalence of (i) and (ii) is a special case of Lemma 1. The equivalence

of (ii) and (iii) holds for an arbitrary normed space X (cf. [11, Theorem 1.22]).

Proposition 2. For a normed lattice X the following three conditions are equiv-

alent:

(i) (B+, w) is compact [and metrizable];

(ii) (B,w) is compact [and metrizable];

(iii) X is reflexive [and separable].

The equivalence of (i) and (ii) is a special case of Lemma 1. The equivalence

of (ii) and (iii) holds for an arbitrary normed space X (cf. [5, Theorems V.4.7

and V.5.1]).

Proposition 2 suggests the following problem, which seems to be open.

Characterize Banach lattices X such that (B+, w) is noncompact but metrizable.
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For an in-depth study of (separable) Banach spaces X such that (B,w) is

completely metrizable, see the influential paper [6] by G.A. Edgar and R. F.

Wheeler.

The next lemma will be used in the proof of the proposition which follows it.

Lemma 2. Let X be a Banach lattice and let x1, x2, . . . ∈ X be such that for

every x ∈ X we have x 6 xn for some n. Then there is an m such that xm is

an order unit of X .

Proof: Given x ∈ X and r > 0, denote by B(x, r) the closed ball in X with

centre x and radius r.

Set

En = {x ∈ X : |x| 6 xn}, n = 1, 2, . . .

The En are closed and, by assumption, we have

X =

∞⋃

n=1

En.

The Baire category theorem implies that, for some x0 ∈ X , r0 > 0, and m, we

have B(x0, r0) ⊂ Em. It follows that

B(0, 2r0) = B(x0, r0)−B(x0, r0) ⊂ 2Em,

and so B(0, r0) ⊂ Em. Thus, xm is an order unit of X . �

The following proposition is the main tool in the proofs of Theorem 2 in Sec-

tion 4 and of Theorem 3 in Section 5.

Proposition 3. Let X be a normed lattice and let Z be a closed linear sublattice

of X∗. If (X+, σ(X,Z)) is metrizable, then Z is Banach-lattice isomorphic to an

AM-space with unit.

Proof: Let (Vn) be a base of neighbourhoods of 0 in (X+, σ(X,Z)). We may

assume that

Vn = {x ∈ X+ : zn(x) < 1}, where zn ∈ Z+, n = 1, 2, . . .

Given z ∈ Z+, we then have

Vn ⊂ {x ∈ X+ : z(x) < 1}

for some n. Thus, zn(x) < 1 implies z(x) < 1 whenever x ∈ X+. By homogene-

ity, we get z 6 zn. Lemma 2 now implies that Z has an order unit. This yields the

assertion, by a classical result (see [1, Theorem 12.20] and the discussion following

it). �
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Remark 1. It follows from Proposition 3 that (l1+, w
∗), where l1 is identified

with c∗0, is not metrizable, see Theorem 3 in Section 5 for a more general result.

This can be also established by a simple direct argument.

Indeed, let (Vn) be a sequence of neighbourhoods of 0 in (l1+, w
∗). We claim

that there is a neighbourhood V of 0 in (l1+, w
∗) with Vn \ V 6= ∅ for all n. We

may assume that

Vn = {z ∈ l1+ : z(xn) < 1}, n = 1, 2, . . . ,

where xn ∈ (c0)+ and x1 6 x2 6 . . . Let i1 < i2 < . . . be such that xn(in) → 0.

Take x ∈ R
N with

xn(in) < x(in) < xn(in) +
1

n
, n = 1, 2, . . . , and x(i) = 0 otherwise.

Clearly, x ∈ (c0)+. Set

V = {z ∈ l1+ : z(x) < 1}, tn =
2

xn(in) + x(in)
, n = 1, 2, . . .

We then have tnxn(in) < 1 < tnx(in), and so

tnein ∈ Vn \ V, n = 1, 2, . . . ,

where (en) is the standard basis of l1. This proves our claim. Thus, (l1+, w
∗) is

not metrizable.

The next lemma will be used in the proof of Theorem 2 in Section 4.

Lemma 3 (= [9, Lemma 1]). For every set Γ we have s = w on l1+(Γ).

In the proof of Theorem 1 in Section 4 we shall need the following simple result.

Lemma 4. Let (Ω,M, µ) be a probability measure space with µ nonatomic.

Given M-simple functions g1, . . . , gn on Ω and δ ∈ [ 0, 1 ], there exists M ∈ M

such that

µ(M) = δ and

∫

M

gi dµ = δ

∫

Ω

gi dµ, i = 1, . . . , n.

Proof: By linearity, it is enough to establish the assertion in the case where

gi = 1Mi
, i = 1, . . . , n, where {M1, . . . ,Mn} is an M-partition of Ω. For every i

choose M̃i ∈ M such that

M̃i ⊂ Mi and µ(M̃i) = δµ(Mi), i = 1, . . . , n.

Then M := M̃1 ∪ . . . ∪ M̃n is as desired. �
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Remark 2. In fact, Lemma 4 holds for arbitrary g1, . . . , gn ∈ L1(µ). This is a di-

rect consequence of the Lyapunov convexity theorem (see, e.g., [11, Theorem 5.5])

applied to the vector measure ϕ : M → R
n+1 defined by the formula

ϕ(M) =

(
µ(M),

∫

M

g1 dµ, . . . ,

∫

M

gn dµ

)
, M ∈ M.

4. The weak topology of X+

We start by a nonmetrizability result. It will be applied in the proof of Theo-

rem 2 below, but it is also of interest in itself.

Theorem 1 (J. Spurný, personal communication of March 15, 2011). Let (Ω,

M, µ) be a probability measure space with µ nonatomic, and set

S+ =

{
f ∈ L1

+(µ) :

∫

Ω

f dµ = 1

}
.

Then (S+, w) is not metrizable.

Proof: We shall show that there is no countable base of neighbourhoods of 1Ω
in (S+, w). Suppose, to get a contradiction, that (Vn) is such a base. We may

assume that for all n

Vn =

{
f ∈ S+ :

∣∣∣∣
∫

Ω

fgi dµ−

∫

Ω

gi dµ

∣∣∣∣ < εn, i = 1, . . . , n

}
,

where g1, g2, . . . are M-simple functions on Ω and ε1 > ε2 > . . . > 0. For

every n, choose Mn ∈ M according to Lemma 4 with δ = 1/n. We then have

n1Mn
∈ Vn. Since V1 ⊃ V2 ⊃ . . ., it follows that n1Mn

→ 1Ω weakly. Set

µn(M) = nµ(M ∩ Mn) for all M ∈ M and n = 1, 2, . . . Then µn are measures

on M which are absolutely continuous with respect to µ and µn(M) → µ(M)

for all M ∈ M. Moreover, µn(Mn) = 1 for all n. Taking into account that

µ(Mn) → 0, we get a contradiction with the Vitali–Hahn–Saks theorem (see, e.g.,

[5, Theorem III.7.2]). �

It follows from Theorem 1 that, under its assumptions, the strong and weak

topologies do not coincide on S+, which is in contrast with Lemma 3. In the case

where Ω = [ 0, 1 ] and µ is Lebesgue measure on the Lebesgue σ-algebra over Ω,

this can also be seen, by a simple modification of the sequence of Rademacher

functions.

Theorem 2. For a Banach lattice X the following three conditions are equivalent:

(i) s = w on X+;

(ii) (X+, w) is metrizable;

(iii) X is Banach-lattice isomorphic to l1(Γ) for a set Γ.
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Proof: Clearly, (i) implies (ii). By Lemma 3, (iii) implies (i).

Suppose (ii) holds. By Proposition 3, X∗ is Banach-lattice isomorphic to an

AM-space. Therefore, X∗∗ is Banach-lattice isomorphic to an AL-space (see [1,

Theorem 12.22]) and so is X (see [12, Theorem 3.9.8]). It follows that X is Ba-

nach-lattice isomorphic to L1(µ) for some positive measure µ on a σ-algebra M

of sets (see [1, Theorem 12.26]). In view of Theorem 1, for every M ∈ M with

0 < µ(M) < ∞, there is a µ-atom N with N ⊂ M . This yields (iii). �

Remark 3. It follows from Theorem 2, (ii) ⇒ (iii), that ((c0)+, w) is not metriz-

able. This can be also established by a much simpler and more direct argument,

which is a modification of the solution to Problem 21 in [8]. Indeed, suppose,

to get a contradiction, that there exists a base (Vn) of neighbourhoods of 0 in

((c0)+, w). We may assume that

Vn = {x ∈ (c0)+ : x∗

n
(x) < 1},

where x∗

n ∈ l1+, n = 1, 2, . . ., and x∗

1 6 x∗

2 6 . . . Denote by (en) the standard

basis of c0. Choose k1 < k2 < . . . so that x∗

n
(ekn

) < 1/n for all n. The sequence

(nekn
) is, clearly, unbounded, but it converges weakly to 0, a contradiction.

5. The weak∗ topology of X∗

+

The next result will be used in the proof of Theorem 3 below.

Proposition 4. For a normed lattice X the following three conditions are equiv-

alent:

(i) (B∗

+, w
∗) is metrizable;

(ii) (B∗, w∗) is metrizable;

(iii) X is separable.

The equivalence of (i) and (ii) is a special case of Lemma 1, since (B∗, w∗)

is compact, by a standard result. The equivalence of (ii) and (iii) holds for an

arbitrary normed space X (see [1, Theorem 10.7]).

Theorem 3. For a Banach lattice X the following two conditions are equivalent:

(i) (X∗

+, w
∗) is metrizable;

(ii) X is Banach-lattice isomorphic to a C(K)-space, where K is a metrizable

compact space.

The implication (ii) ⇒ (i) is known; see [13, Theorem 3.1] or [3, Theorem 31.5,

(d) ⇒ (b)] for a more general result. Nevertheless, a simple proof is given below

for completeness.
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Proof of Theorem 3: Recall that the Banach lattice C(K), where K is a com-

pact space, is separable if and only if K is metrizable (see [12, Proposition 7.6.2]).

(i) ⇒ (ii): In view of Proposition 3, (i) implies that X is Banach-lattice isomor-

phic to an AM-space with unit. A classical result (see [1, Theorem 12.28]) now

shows that X is Banach-lattice isomorphic to a C(K)-space, where K is com-

pact. By Proposition 4, (i) implies (iii), X is, moreover, separable. Therefore,

K is metrizable, and so (ii) holds.

(ii) ⇒ (i): Let K be a metrizable compact space. Let {fn : n ∈ N} be a dense

subset of C(K) with f1 = 1K . Set

d(µ, ν) =

∞∑

n=1

1

2n
|
∫
K
fn d(µ− ν)|

1 + |
∫
K
fn d(µ− ν)|

for µ, ν ∈ C(K)∗+.

The metric d defines a topology τ on C(K)∗+ that is, clearly, weaker than w∗.

Since (B∗

+, w
∗) is compact, w∗ = τ on bounded subsets of C(K)∗+. Since τ -

convergent nets are eventually bounded, w∗ = τ on C(K)∗+ , and so (i) holds. �

For completeness we note the following simple result.

Proposition 5. Let X be a normed lattice.

(a) s = w∗ on X∗

+ if and only if X is finite-dimensional.

(b) w = w∗ on X∗

+ if and only if X is reflexive.

The “if” part of (a) follows from standard results, while the “if” part of (b) is

obvious. As noted before, (B∗

+, w
∗) is compact. Therefore, the “only if” parts of

(a) and (b) follow from Propositions 1 and 2, respectively, and standard results.

Added in proof

1. Theorems 1 and 2 are already contained in [4], see Proposition 2 and

Theorem 3* thereof. Our proofs are, however, different from those of

S. J. Dilworth.

2. Lemma 3 also appears in [2, Lemma 4.1].
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