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The positive cone of a Banach lattice.

Coincidence of topologies and metrizability

ZBIGNIEW LIPECKI

Abstract. Let X be a Banach lattice, and denote by X its positive cone. The
weak topology on X is metrizable if and only if it coincides with the strong
topology if and only if X is Banach-lattice isomorphic to I*(T") for a set I". The
weak™ topology on X7 is metrizable if and only if X is Banach-lattice isomorphic
to a C(K)-space, where K is a metrizable compact space.
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1. Introduction

Let X be a Banach space, with its strong and weak topologies denoted by s
and w, respectively. It is well known that w is metrizable if and only if X is
finite-dimensional. Moreover, an analogous result holds for the weak* topology w*
of X*.

The situation is different when we consider the positive cone X1 of a (real)
Banach lattice X. Indeed, it was shown in [9] that if X = [!(T"), where T is an
arbitrary (nonempty) set, then (X, w) is not only metrizable, but we have s = w
on Xy (see also Lemma 3 in Section 3). In this paper we show the converse: if
(X4, w) is metrizable, then X is Banach-lattice isomorphic to I*(I") for some I'
(see Theorem 2 in Section 4). One ingredient of the proof is the theorem that
the positive part of the unit sphere in L'(u), where p is a nonatomic probability
measure, equipped with w, is not metrizable (see Theorem 1 in Section 4, a result
due to J. Spurny).

We also show that (X7, w*), where X is a Banach lattice, is metrizable (if and)
only if X is Banach-lattice isomorphic to a C'(K)-space, where K is a metriz-
able compact space (see Theorem 3 in Section 5). Moreover, we establish simple
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necessary and sufficient conditions that s = w*, respectively, w = w* on X7 (see
Proposition 5 in Section 5).

In the proofs we apply, not always explicitly, many standard results from both
general functional analysis and the theory of Banach lattices. Among those results
are classical representation theorems for AL- and AM-spaces and the well-known
duality property between those spaces (see, e.g., [1, Section 12]).

The notation and terminology we use are mostly standard. Nevertheless, some
relevant explanations are given in Section 2. Auxiliary results are gathered to-
gether in Section 3. The main results are presented in Sections 4 and 5, which
are independent as far as the proofs are concerned.

Finally, we note that related topological properties of order intervals in C(K)-
and Cp(K)-spaces, where K is a completely regular space, are investigated in [10].

The author is much indebted to Jifi Spurny for his kind permission to incorpo-
rate his unpublished result (see Theorem 1 in Section 4; our proof is a modification
of the original one). The result was obtained in answer to a question of the author
and will be also applied in another paper of his (in preparation).

2. Preliminaries

All linear spaces under consideration are supposed to be over the field R of real
numbers.

Let X be a normed space and let X* stand for its dual space. The closed unit
balls of X and X™* are denoted by B and B*, respectively. The strong and weak
topologies of X are denoted by s and w, respectively, while the weak™ topology
of X* is denoted by w*. Given Z C X*, we denote by o(X,Z) the weakest
topology on X making the elements of Z continuous.

Let now X be a linear lattice (= Riesz space, in the terminology of [1]). The
order of X is denoted by the symbol < and its positive cone by X ;. The symbol
|z| stands for the absolute value of x € X. An element e of Xy is called an
order unit of X if, for every x € X, there exists ¢t € R with |x| < te.

Let next X be a normed lattice. Then X, and X7 are w-closed and w*-
closed, respectively. We set

By =BnX,; and BI=B'NX.

It follows that By is w-closed. Moreover, the Banach—Alaoglu theorem (see, e.g.,
[11, Theorem 3.15]), implies that B* is w*-compact. We shall use the latter result
in establishing Propositions 4 and 5 in Section 5.

Let (T, 7) be a topological space. For S C T we write (S,7) meaning that S
is equipped with the corresponding relative topology. If ¢ is another topology
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on T, we write
T=0 on S

meaning that 7 and o restricted to S coincide.

3. Auxiliary results

The following lemma will be used in establishing Propositions 1 and 2 in this
section and Proposition 4 in Section 5.

Lemma 1. Let X be a normed lattice and let T be a linear topology on X such
that X and B are T-closed. The following two conditions are equivalent:

(i) (B4, T) is compact [and metrizable];
(ii) (B, T) is compact [and metrizable].

Clearly, (ii) implies (i). Since B C B4 — B, the converse implication holds, by
standard results (see [12, Propositions 7.1.5 and 7.6.3]; see also [7, Theorem 4.4.15]
for a generalization of the latter proposition).

The next two propositions will be used in establishing Proposition 5 in Sec-
tion 5.

Proposition 1. For a normed lattice X the following three conditions are equiv-
alent:

(i) (B4, s) is compact;
(ii) (B,s) Is compact;
(ili) X is finite-dimensional.

The equivalence of (i) and (ii) is a special case of Lemma 1. The equivalence
of (ii) and (iii) holds for an arbitrary normed space X (cf. [11, Theorem 1.22]).

Proposition 2. For a normed lattice X the following three conditions are equiv-
alent:

(i) (B4, w) is compact [and metrizable];
(ii) (B,w) is compact [and metrizable|;
(iii) X is reflexive [and separable].

The equivalence of (i) and (ii) is a special case of Lemma 1. The equivalence
of (ii) and (iii) holds for an arbitrary normed space X (cf. [5, Theorems V.4.7
and V.5.1]).

Proposition 2 suggests the following problem, which seems to be open.

Characterize Banach lattices X such that (B, w) is noncompact but metrizable.
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For an in-depth study of (separable) Banach spaces X such that (B,w) is
completely metrizable, see the influential paper [6] by G.A. Edgar and R.F.
Wheeler.

The next lemma will be used in the proof of the proposition which follows it.

Lemma 2. Let X be a Banach lattice and let x1,x2,... € X be such that for
every © € X we have x < x,, for some n. Then there is an m such that x,, is
an order unit of X.

PrOOF: Given z € X and r > 0, denote by B(xz,r) the closed ball in X with
centre x and radius r.
Set
E,={zeX: |z| <.}, n=12,...

The F,, are closed and, by assumption, we have

X = G E,.
n=1

The Baire category theorem implies that, for some zg € X, rg > 0, and m, we
have B(xg,70) C Ep. It follows that

B(Oa QTO) - B(l‘o, TO) - B(LL‘(),T()) - 2E’ma
and so B(0,79) C Ey,. Thus, z,, is an order unit of X. O

The following proposition is the main tool in the proofs of Theorem 2 in Sec-
tion 4 and of Theorem 3 in Section 5.

Proposition 3. Let X be a normed lattice and let Z be a closed linear sublattice
of X*. If (X4,0(X,Z)) is metrizable, then Z is Banach-lattice isomorphic to an
AM-space with unit.

PRrOOF: Let (V,,) be a base of neighbourhoods of 0 in (X;,0(X,Z)). We may
assume that

Vi ={z e Xy: z,(x) < 1}, where z, € Z,, n=1,2,...
Given z € Z, we then have
Vi C{z e Xyt z(x) < 1}

for some n. Thus, z,(x) < 1 implies z(z) < 1 whenever z € X ;. By homogene-
ity, we get z < 2z,,. Lemma 2 now implies that Z has an order unit. This yields the
assertion, by a classical result (see [1, Theorem 12.20] and the discussion following
it). O
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Remark 1. It follows from Proposition 3 that (I1,w*), where I' is identified
with ¢f, is not metrizable, see Theorem 3 in Section 5 for a more general result.
This can be also established by a simple direct argument.

Indeed, let (V) be a sequence of neighbourhoods of 0 in (I1,w*). We claim
that there is a neighbourhood V of 0 in (I%,w*) with V,, \ V # 0 for all n. We
may assume that

Vo ={z€ll: z(z,) < 1}, n=12...,

where z,, € (co)+ and 21 < 2o < ... Let i3 <iz < ... besuch that x,(i,) — 0.
Take z € RN with

1
T (in) < x(in) < Tn(in) + —, n=1,2,..., and z(i) =0 otherwise.
n

Clearly, x € (co)+. Set

2
V= A 1 th = ——— =1,2,...
{zely: z(x) <1}, )+ 20 n

We then have t,2,(in) < 1 < t,x(iy), and so
t7Lein€‘/7L\‘/7 n=12,...,

where (ey,) is the standard basis of I*. This proves our claim. Thus, (I}, w*) is
not metrizable.

The next lemma will be used in the proof of Theorem 2 in Section 4.
Lemma 3 (= [9, Lemma 1]). For every set I' we have s = w on [} (T).
In the proof of Theorem 1 in Section 4 we shall need the following simple result.

Lemma 4. Let (2,90, 1) be a probability measure space with p nonatomic.
Given M-simple functions ¢1,...,g, on Q and 6 € [0,1], there exists M € M
such that

p(M) =46 and /giduzé/gidu, i=1,...,n.
M Q

PROOF: By linearity, it is enough to establish the assertion in the case where
gi =1y, i=1,...,n, where {My,..., M,} is an M-partition of Q. For every i
choose M; € 9 such that

M; C M; and p(M;) = 6u(M;), i=1,...,n.

Then M = J/\‘jl U...uU Mn is as desired. O
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Remark 2. In fact, Lemma 4 holds for arbitrary g1,...,g, € L'(u). This is a di-
rect consequence of the Lyapunov convexity theorem (see, e.g., [11, Theorem 5.5])
applied to the vector measure ¢: 9 — R™*! defined by the formula

(P(M):(M(M)a/]wgld:uv-'-v/MgndM)a M e m.

4. The weak topology of X,

We start by a nonmetrizability result. It will be applied in the proof of Theo-
rem 2 below, but it is also of interest in itself.

Theorem 1 (J. Spurny, personal communication of March 15, 2011). Let (£2,
9, u) be a probability measure space with p nonatomic, and set

8. = {f e LY (p): /Qfdu: 1}.

Then (S4,w) is not metrizable.

PRrOOF: We shall show that there is no countable base of neighbourhoods of 1q
in (S;,w). Suppose, to get a contradiction, that (V},) is such a base. We may
assume that for all n

Vn:{fes-'r: ‘/fgid:u_/gid,u‘<€n7 i:17"'an}7
Q Q

where ¢1,¢2,... are M-simple functions on Q2 and &; > €2 > ... > 0. For
every n, choose M,, € M according to Lemma 4 with 6 = 1/n. We then have
nly, € Vp. Since Vi D Vo D ..., it follows that nly, — lo weakly. Set

pn(M) = nu(M N M,) for all M € M and n = 1,2,... Then u, are measures
on 9 which are absolutely continuous with respect to p and pn (M) — u(M)
for all M € 9m. Moreover, p,(M,) = 1 for all n. Taking into account that
w(M,) — 0, we get a contradiction with the Vitali-Hahn—Saks theorem (see, e.g.,
[5, Theorem II1.7.2]). O

It follows from Theorem 1 that, under its assumptions, the strong and weak
topologies do not coincide on S, which is in contrast with Lemma 3. In the case
where Q = [0,1] and p is Lebesgue measure on the Lebesgue o-algebra over {2,
this can also be seen, by a simple modification of the sequence of Rademacher
functions.

Theorem 2. For a Banach lattice X the following three conditions are equivalent:
(i) s=w on X ;
(ii) (X4, w) is metrizable;
(iii) X is Banach-lattice isomorphic to *(T') for a set T.
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PRrROOF: Clearly, (i) implies (ii). By Lemma 3, (iii) implies (i).

Suppose (ii) holds. By Proposition 3, X* is Banach-lattice isomorphic to an
AM-space. Therefore, X** is Banach-lattice isomorphic to an AL-space (see [1,
Theorem 12.22]) and so is X (see [12, Theorem 3.9.8]). It follows that X is Ba-
nach-lattice isomorphic to L!(u) for some positive measure p on a o-algebra O
of sets (see [1, Theorem 12.26]). In view of Theorem 1, for every M € 9 with
0 < u(M) < o0, there is a p-atom N with N C M. This yields (iii). O

Remark 3. It follows from Theorem 2, (ii) = (iii), that ((co)+,w) is not metriz-
able. This can be also established by a much simpler and more direct argument,
which is a modification of the solution to Problem 21 in [8]. Indeed, suppose,
to get a contradiction, that there exists a base (V;,) of neighbourhoods of 0 in
((co)+,w). We may assume that

Vo ={z € (co)y: ap(z) <1},

where 2}, € I, n =1,2,..., and 2} < z5 < ... Denote by (e,) the standard
basis of ¢g. Choose k1 < ko < ... so that a7 (e, ) < 1/n for all n. The sequence
(neg,, ) is, clearly, unbounded, but it converges weakly to 0, a contradiction.

5. The weak™ topology of X7
The next result will be used in the proof of Theorem 3 below.

Proposition 4. For a normed lattice X the following three conditions are equiv-
alent:

(i) (B},w*) is metrizable;

(ii) (B*,w*) is metrizable;

(iii) X is separable.

The equivalence of (i) and (ii) is a special case of Lemma 1, since (B*, w*)
is compact, by a standard result. The equivalence of (ii) and (iii) holds for an
arbitrary normed space X (see [1, Theorem 10.7]).

Theorem 3. For a Banach lattice X the following two conditions are equivalent:
(i) (X7, w*) is metrizable;
(ii) X is Banach-lattice isomorphic to a C'(K)-space, where K is a metrizable
compact space.

The implication (ii) = (i) is known; see [13, Theorem 3.1] or [3, Theorem 31.5,
(d) = (b)] for a more general result. Nevertheless, a simple proof is given below
for completeness.
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PROOF OF THEOREM 3: Recall that the Banach lattice C'(K), where K is a com-
pact space, is separable if and only if K is metrizable (see [12, Proposition 7.6.2]).

(i) = (ii): In view of Proposition 3, (i) implies that X is Banach-lattice isomor-
phic to an AM-space with unit. A classical result (see [1, Theorem 12.28]) now
shows that X is Banach-lattice isomorphic to a C(K)-space, where K is com-
pact. By Proposition 4, (i) implies (iii), X is, moreover, separable. Therefore,
K is metrizable, and so (ii) holds.

(ii) = (i): Let K be a metrizable compact space. Let {f,,: n € N} be a dense
subset of C(K) with f; = 1x. Set

_ - 1 |fond(M_V)| .
d(u’y)_22”1+|fond(u—V)| for p,v e C(K)%.

The metric d defines a topology 7 on C(K)* that is, clearly, weaker than w*.
Since (B}, w*) is compact, w* = 7 on bounded subsets of C(K)*. Since 7-

convergent nets are eventually bounded, w* = 7 on C(K)? , and so (i) holds. [

n=1

For completeness we note the following simple result.

Proposition 5. Let X be a normed lattice.
(a) s =w" on X% if and only if X is finite-dimensional.
(b) w =w* on X7 if and only if X is reflexive.

The “if” part of (a) follows from standard results, while the “if” part of (b) is
obvious. As noted before, (B%,w*) is compact. Therefore, the “only if” parts of
(a) and (b) follow from Propositions 1 and 2, respectively, and standard results.

Added in proof

1. Theorems 1 and 2 are already contained in [4], see Proposition 2 and
Theorem 3* thereof. Our proofs are, however, different from those of
S.J. Dilworth.

2. Lemma 3 also appears in [2, Lemma 4.1].
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