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CHARACTERIZATION OF THE ORDER INDUCED
BY UNINORM WITH THE UNDERLYING DRASTIC
PRODUCT OR DRASTIC SUM

Zhi-qiang Liu

In this article, we investigate the algebraic structures of the partial orders induced by uni-
norms on a bounded lattice. For a class of uninorms with the underlying drastic product or
drastic sum, we first present some conditions making a bounded lattice also a lattice with respect
to the order induced by such uninorms. And then we completely characterize the distributivity
of the lattices obtained.
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Classification: 03B20, 06B05, 94D05

1. INTRODUCTION

Yager and Rybalov[31] introduced uninorms on the unit interval [0, 1], which are a special
kind of aggregation functions that generalize the notions of triangular norms (t-norms,
for short) and triangular conorms (t-conorms, for short). Uninorms are important from
a theoretical viewpoint and their potential applications like fuzzy logic, expert systems
and fuzzy system modeling [5, 8, 32], and the interest in uninorms had considerably
grown in the last decade [6, 14, 21, 22, 26].

The partial orders induced by logical operators are a very active research area in
recent years[7, 10, 12, 17, 18, 23, 24, 28, 29]. For instance, a T -partial order induced
by a t-norm on a bounded lattice was defined, and some conditions for the new partial
order to be a bounded lattice were obtained by Karaçal and Kesicioğlu [13]. Aşıcı
and Karaçal[1], Kesicioğlu et al. [16] studied the T -partial order and its properties.
An order induced by uninorms on bounded lattices was given and was discussed by
Ertuğrul et al. [9]. The orders induced by uninorms and its properties have been widely
investigated in[17]. An order induced by a nullnorm on a bounded lattice was defined
by Aşıcı [2]. Further, Aşıcı [3] discussed some properties of such partial orders obtained
from nullnorms. Kesicioğlu[19] studied the relationships between the orders induced by
uninorms and nullnorms. Moreover, some properties concerning the order induced by
uninorms and nullnorms are obtained[15], Recently, Mesiarová-Zemánková[27] studied
natural partial order induced by a commutative, associative and idempotent function.
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Gupta and Jayaram[11] discussed order based on associative operations, they raised
an open problem: how is the structure of the poset obtained from the order induced
by uninorms related in terms of the posets obtained from the order induced by the
underlying t-norm and t-conorm? Therefore, the characterization of the orders induced
by uninorms related to algebraic structures on bounded lattices has recently attracted
much attention. However, to the best of our knowledge, the lattice structures for the
partial orders induced by the uninorms on a bounded lattice are not known yet in the
current literatures. As a theoretical continuation and development of the partial orders
induced by uninorms, the main aim is to characterize the lattice structures of a partial
order induced by a uninorm on bounded lattices. From the mathematical point of view,
it is interesting to examine the change the underlying operators of uninorm on the lattice
changes. We aim to investigate the lattice structures for the partial orders induced by
uninorms U with divisible (resp. non-divisible) the underlying t-norms TU and t-conorms
SU , more precisely, (i) TU and SU are divisible, (ii) TU is the drastic product and SU is
divisible, (iii) TU is divisible and SU is the drastic sum, (iv) TU is the drastic product
and SU is the drastic sum.

The rest of this article is organized as follows. In Section 2 we provide the necessary
background material. In Section 3, we show some conditions for the order induced by
uninorm on bounded lattices to be a lattice. Also, we deal with the distributivity of
the lattices obtained by the order derived from uninorms. A conclusion is drawn in
Section 4.

2. PREVIOUS RESULTS

This section contains a short overview of the basic notions that are essential for the
presented research. For more detailed expositions about posets and lattices we recom-
mend [4].

A partially ordered set (poset) is a structure (P,⩽) where P is a nonempty set and
⩽ is an ordering (reflexive, antisymmetric and transitive) relation on P . Let (P,⩽) be
a poset and p, q ∈ P . If p < q and there is no element e ∈ P such that p < e < q, then
we say that p is covered by q (or q covers p), and we write p ◁ q (or q ▷ p). A lattice is
a poset (L,⩽) in which every two elements subset {x, y} has the greatest lower bound,
meet, denoted by x ∧ y, and the least upper bound, join, denoted by x ∨ y. Let L be a
lattice. x ∥ y denotes that x is incomparable with y, i. e., x ⩾̸ y and x ⩽̸ y, and x ∦ y
denotes that x ⩾ y or x ⩽ y. We denote the set of elements which are incomparable
with e by Ie, i. e. Ie = {x ∈ L | x ∥ e}.

Lemma 2.1. (Birkhoff [4]) A lattice L is distributive if and only if none of its sublattices
is isomorphic to M3 or N5.

Definition 2.2. (Klement et al. [20], Saminger [30]) Let (L,⩽, 0, 1) be a bounded
lattice. A t-norm T (resp. t-conorm S) is a binary operation on L which is commutative,
associative, non-decreasing in each variable, and has a neutral element 1 (resp. 0).

Definition 2.3. (Mayor and Torrens [25]) A t-norm T (resp. t-conorm S) on a bounded
lattice L is divisible if the following condition holds:

For any x, y ∈ L with x ⩽ y there is a z ∈ L such that x = T (y, z) (resp. y = S(x, z)).
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Example 2.4. Let (L,⩽, 0, 1) be a bounded lattice. The greatest t-norm TM (resp. the
smallest t-conorm SM ) and the smallest t-norm TD (resp. the greatest t-conorm SD)
are given as, respectively. For all x, y ∈ L,

TM (x, y) = x ∧ y, TD(x, y) =

 x y = 1,
y x = 1,
0 otherwise,

SM (x, y) = x ∨ y, SD(x, y) =

 x y = 0,
y x = 0,
1 otherwise.

TD and SD are the drastic product and the drastic sum, respectively. Clearly, both TM
and SM are divisible, neither TD nor SD is divisible.

Definition 2.5. (Karaçal and Mesiar [14]) Let (L,⩽, 0, 1) be a bounded lattice. An
operation U : L2 → L is called a uninorm on L, if it is commutative, associative,
non-decreasing in each variable and has a neutral element e ∈ L.

For convenience, the symbol U(e) will be used for the set of all uninorms on L with
neutral element e ∈ L.

Definition 2.6. (Ertuğrul et al. [9]) Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e).
Define the following relation, for x, y ∈ L, as

x ⊑U y :⇔

 if x, y ∈ [0, e] and there exists k ∈ [0, e] such that U(k, y) = x or,
if x, y ∈ [e, 1] and there exists ℓ ∈ [e, 1] such that U(x, ℓ) = y or,
if (x, y) ∈ L∗ and x ⩽ y,

(1)

where Ie = {x ∈ L | x ∥ e} and L∗ = [0, e]× [e, 1]∪ [0, e]×Ie ∪ [e, 1]×Ie ∪ [e, 1]× [0, e]∪
Ie × [0, e] ∪ Ie × [e, 1] ∪ Ie × Ie.

Ertuğrul et al.[9] verified that the relation ⊑U defined in (1) is a partial order on L.
We denote by A(e) = [0, e]× [e, 1] ∪ [e, 1]× [0, e] for e ∈ L \ {0, 1}.

For A ⊆ L, we denote by AU = {x ∈ L : x ⊑U y for all y ∈ A} and AU = {x ∈
L : y ⊑U x for all y ∈ A}, respectively. If there exist the greatest element of AU and
the least element of AU with respect to ⊑U , we will denote by infU A and supU A,
respectively.

Lemma 2.7. (Ertuğrul et al. [9]) Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e).
If x ⊑U y for any x, y ∈ L, then x ⩽ y.

Lemma 2.8. (Ertuğrul et al. [9]) Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e).
Then (L,⊑U ) is a bounded partially ordered set.

Lemma 2.9. (Karaçal and Mesiar [14]) Let (L,⩽, 0, 1) be a bounded lattice and U ∈
U(e) such that e ∈ L \ {0, 1}. Then

(i) TU : U | [0, e]2 : [0, e]2 → [0, e] is a t-norm on [0, e].
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(ii) SU : U | [e, 1]2 : [e, 1]2 → [e, 1] is a t-conorm on [e, 1].

TU and SU given in Lemma 2.9 are called the underlying t-norm and t-conorm of a
uninorm U on a bounded lattice L with the neutral element e, respectively.

Lemma 2.10. (Ertuğrul et al. [9]) Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e)
such that e ∈ L \ {0, 1}. Then the underlying t-norm and t-conorm of U are divisible if
and only if ⊑U=⩽.

Example 2.11. (Karaçal and Mesiar [14]) Let (L,⩽, 0, 1) be a bounded lattice and
e ∈ L \ {0, 1}. Then the following uninorms US∨ : L2 → L and UT∧ : L2 → L,
respectively, are the smallest and the greatest uninorm on L[14].

US∨(x, y) =



x ∨ y (x, y) ∈ [e, 1]2,
x ∧ y (x, y) ∈ [0, e)× [e, 1]

∪[e, 1]× (0, e],
y x ∈ [e, 1], y ∈ Ie,
x y ∈ [e, 1], x ∈ Ie,
0 otherwise,

UT∧(x, y) =



x ∧ y (x, y) ∈ [0, e]2,
x ∨ y (x, y) ∈ [0, e]× (e, 1]

∪(e, 1]× [0, e],
y x ∈ [0, e], y ∈ Ie,
x y ∈ [0, e], x ∈ Ie,
1 otherwise.

3. THE LATTICE STRUCTURES OF THE POSET (L,⊑U )

In this section, we deal with the lattice structures of the partial orders induced by
uninorms U .

3.1. TU and SU are divisible

Proposition 3.1. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e). If TU and SU are
divisible, then (L,⊑U , 0, 1) is a bounded lattice.

P r o o f . As an immediate consequence of Lemma 2.10 one gets that (L,⊑U , 0, 1) is a
bounded lattice. □

In particular, we have the following corollary when TU and SU are divisible.

Corollary 3.2. Let (L,⩽, 0, 1) be a bounded distributive lattice and U ∈ U(e). Then
so is (L,⊑U , 0, 1).

Example 3.3. Let (L,⩽, 0, 1) be a bounded distributive lattice and U an idempotent
uninorm on L. It is straightforward that (L,⊑U , 0, 1) is a bounded distributive lattice
from Lemma 2.10 and Proposition 3.1.
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3.2. TU = TD and SU is divisible

In this subsection, assume that TU = TD and SU is divisible, such the uninorm U is
common. In Example 2.11, Karaçal and Mesiar presented the smallest uninorm US∨

(resp. the greatest uninorm UT∧) on L which require that TU = TD and SU = SM (resp.
TU = TM and SU = SD).

Proposition 3.4. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that SU is
divisible and TU = TD.

(i) If (x, y) ∈ (0, e)2 with x ̸= y, then x ∥ y with respect to ⊑U .

(ii) If (x, y) ∈ (0, e)2 with x ̸= y, then supU{x, y} = e and infU{x, y} = 0.

(iii) If (x, y) ∈ [e, 1]2 ∪ L∗, then x ⊑U y if and only if x ⩽ y.

P r o o f . Inasmuch as TU = TD and SU is divisible.

(i) If (x, y) ∈ (0, e)2 with x ̸= y, assume that x ∦ y for some x, y ∈ (0, e) with respect
to ⊑U . Without loss of generality, let x ⊑U y. Then there exists an element
ℓ ∈ [0, e] such that x = U(y, ℓ). By TU = TD, if ℓ = e, then x = y, a contradiction;
If ℓ ∈ (0, e), then x = 0, contrary to the fact that x ∈ (0, e). Therefore, for x ̸= y,
x ∥ y with respect to ⊑U .

(ii) For any (x, y) ∈ (0, e)2 with x ̸= y, it follows from (i) that x ∥ y with respect to ⊑U
for any x, y ∈ (0, e). Furthermore, it is clear that 0 ⊑U x ⊑U e for any x ∈ (0, e).
Consequently, supU{x, y} = e and infU{x, y} = 0 for any (x, y) ∈ (0, e)2 with
x ̸= y.

(iii) If (x, y) ∈ [e, 1]2, inasmuch as SU is divisible, then x ⊑U y if and only if x ⩽ y by
Lemmas 2.9 and 2.10. Moreover, if (x, y) ∈ L∗, then it follows from Definition 2.6
that x ⊑U y if and only if x ⩽ y. Therefore, for any (x, y) ∈ [e, 1]2 ∪ L∗, x ⊑U y if
and only if x ⩽ y.

□

In what follows, we shall prove that (L,⊑U , 0, 1) is a bounded lattice and discuss
their distributivity when Ie = ∅.

Theorem 3.5. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that SU is
divisible and TU = TD. If Ie = ∅, then (L,⊑U , 0, 1) is a bounded lattice.

P r o o f . It follows from Lemma 2.8 that (L,⊑U , 0, 1) is a bounded partially ordered set.
Next, we only prove that both supU{x, y} and infU{x, y} always exist for any x, y ∈ L.
Due to Ie = ∅, we need consider the following three cases.

(i) If x, y ∈ [0, e], then 0 ⊑U x ⊑U e for any x ∈ L \ {0, e} and supU{x, y} = e and
infU{x, y} = 0 for any x, y ∈ (0, e) from Proposition 3.4 (ii).
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(ii) If x, y ∈ [e, 1], then supU{x, y} = x ∨ y and infU{x, y} = x ∧ y from Proposition
3.4 (iii), where ∧,∨ are obtained from ⩽ of the lattice (L,⩽, 0, 1). Consequently,
(L,⊑U , 0, 1) is a bounded lattice.

(iii) If (x, y) ∈ L∗, due to Ie = ∅, i. e., (x, y) ∈ A(e), then it follows that supU{x, y} =
x ∨ y and infU{x, y} = x ∧ y from Proposition 3.4 (iii).

Therefore, (L,⊑U , 0, 1) is a bounded lattice. □

For the sake of convenience, we denote the cardinality of the subset A ⊆ L by |A|.
In particular, if (L,⊑U ) is distributive and Ie = ∅, we have the following result.

Theorem 3.6. Let (L,⩽, 0, 1) be a bounded distributive lattice and U ∈ U(e) such that
SU is divisible and TU = TD, Ie = ∅.

(i) If |(0, e)| ⩽ 2, then (L,⊑U , 0, 1) is distributive.

(ii) If |(0, e)| ⩾ 3, then (L,⊑U , 0, 1) is nondistributive.

P r o o f . For any x, y ∈ L, because of x ⊑U y if and only if x ⩽ y for any (x, y) ∈
[e, 1]2 ∪ A(e) from Proposition 3.4 (iii). Thus, we only need to check the distributivity
of (L,⊑U ) when (x, y) ∈ [0, e]2.

(i) If |(0, e)| ⩽ 2, then we distinguish three cases as follows.

(a) If |(0, e)| = 0, then [0, e] = {0, e}. It is trivial to check that the order ⊑U coincides
with ⩽. Consequently, (L,⊑U , 0, 1) is distributive since (L,⩽, 0, 1) is distributive.

(b) If |(0, e)| = 1, then there exists a unique element ℓ ∈ (0, e) such that 0 ◁ ℓ ◁ e
with respect to ⩽, which means that 0 ⊑U ℓ ⊑U e. It is not difficult to check that
the order ⊑U coincides with ⩽. Consequently, (L,⊑U , 0, 1) is distributive since
(L,⩽, 0, 1) is distributive.

(c) If |(0, e)| = 2, then there exist two elements ℓ, ξ ∈ (0, e), we have either ℓ ∦ ξ or
ℓ ∥ ξ with respect to ⩽. Next, we consider the following two subcases.

• If ℓ ∦ ξ with respect to ⩽, then 0 ◁ ℓ ◁ ξ ◁ e or 0 ◁ ξ ◁ ℓ ◁ e. By
Proposition 3.4 (i), we have that ℓ ∥ ξ with respect to ⊑U , i. e., 0 ◁ ℓ ◁ e
and 0 ◁ ξ ◁ e with respect to ⊑U . Hence, the lattice L has no sublattice
isomorphic to M3 or N5 with respect to ⊑U since (L,⩽, 0, 1) is distributive.
Therefore, (L,⊑U , 0, 1) is distributive.

• If ℓ ∥ ξ with respect to ⩽, then 0 ◁ ℓ ◁ e and 0 ◁ ξ ◁ e with respect to
⩽. We obtain that the order ⊑U coincides with the order ⩽. Thus, it follows
from Definition 2.6 that x ⊑U y if and only if x ⩽ y. Therefore, (L,⊑U , 0, 1)
is distributive.

(ii) If |(0, e)| ⩾ 3, then it follows from Proposition 3.4 (i) that x ∥ y with respect to ⊑U
for any x, y ∈ (0, e) with x ̸= y. Due to 0 ◁ x ◁ e with respect to ⊑U for any x ∈ (0, e).
Consequently, the lattice (L,⊑U ) has a sublattice isomorphic to M3 (see Figure 1 for
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a sublattice (L|[0,e],⩽) with |(0, e)| = 5 and Figure 2 for the corresponding sublattice
(L|[0,e],⊑U ). Therefore, (L,⊑U , 0, 1) is nondistributive. □

0

p

q

t

e

s

r

Fig. 1. The order ⩽ on [0, e].

0

p q

e

r st

Fig. 2. The order ⊑U on [0, e].

In the following, we shall prove that (L,⊑U , 0, 1) is a bounded lattice under some
additional assumptions, and then discuss their distributivity when Ie ̸= ∅.

Notice that, for a bounded lattice (L,⩽, 0, 1), (L,⊑U , 0, 1) may not be a lattice when
Ie ̸= ∅ in general.

Example 3.7. Consider the lattice (L = {0, b, c, d, e, f, g, h, k, 1},⩽, 0, 1), whose lattice
diagram is presented in Figure 3. It is clear that Ie = {c, g}. Let us consider Ut on L
(see Theorem 1 in [6]) given as:

Ut(x, y) =


TU (x, y) (x, y) ∈ [0, e]2,
y x ∈ [0, e], y ∥ e,
x y ∈ [0, e], x ∥ e,
x ∨ y otherwise.

(2)

U t
e 0 b d e c f g h k 1
0 0 0 0 0 c f g h k 1

b 0 0 0 b c f g h k 1

d 0 0 0 d c f g h k 1

e 0 b d e c f g h k 1

c c c c c c f h h f 1

f f f f f f f h h f 1

g g g g g h h g h h 1

h h h h h h h h h h 1

k k k k k f g h h k 1

1 1 1 1 1 1 1 1 1 1 1

Tab. 1. The uninorm U on L = {0, b, c, d, e, f, g, h, k, 1}.
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Obviously, SU is divisible. If TU = TD, then Ut on L can be seen in detail in Table 1.
It is immediately that b ⩽ d but b ⪯̸Ut

d from Proposition 3.4 (i). Furthermore, one gets
that [b ◁ e and b ◁ g] and [d ◁ e and d ◁ g] with respect to ⊑Ut

, which implies that
supUt

{b, d} does not exist. On the other hand, one has that [g ▷ b and g ▷ c] and [e ▷ b
and e ▷ c] with respect to ⊑Ut , which implies that infUt{e, g} does not exist. Therefore,
(L,⊑Ut , 0, 1) is not lattice as given in Figure 4.

b

d

c e

k

f

0

h

g

1

Fig. 3. The order ⩽ on L.

0

b d

f

h

c

g

e
k

1

Fig. 4. The order ⊑Ut on L.

Therefore, an interesting problem is to discuss the conditions for (L,⊑U ) to be a
lattice when Ie ̸= ∅. We first have the following proposition.

Proposition 3.8. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that SU is
divisible and TU = TD. If 0 ◁ x∧ e ◁ e for any x ∈ Ie with respect to ⩽, then the order
⊑U coincides with the order ⩽.

P r o o f . It follows from Proposition 3.4 (iii) that x ⊑U y if and only if x ⩽ y for
(x, y) ∈ [e, 1]2 ∪ L∗. Thus, it only remains to prove that x ⊑U y if and only if x ⩽ y for
any x, y ∈ [0, e]. Since 0 ◁ x∧e ◁ e for any x ∈ Ie with respect to ⩽, then there exists a
unique element ℓ = x ∧ e in (0, e) such that 0 ◁ ℓ ◁ e with respect to ⩽. Consequently,
it follows from Definition 2.6 that 0 ⊑U ℓ ⊑U e if and only if 0 ⩽ ℓ ⩽ e. Therefore, the
order ⊑U coincides with the order ⩽. □

The following example illustrates Proposition 3.8.

Example 3.9. Consider the lattice (L = {0, b, e, c, a, d, f, 1},⩽, 0, 1) as shown in Fig-
ure 5. It is obvious that Ie = {c}. One can verify that 0 ◁ c ∧ e = b ◁ e with respect
to ⩽. Define Ut (see Example 3.7) on L with TU = TD and its lattice diagram is as in
Figure 6. It follows from Proposition 3.8 that ⊑Ut

=⩽ (see Figure 6).
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b

c e

d

a
f

1

0

Fig. 5. The order ⩽ on L.

b

c e

d

a
f

1

0

Fig. 6. The order ⊑Ut on L.

Fortunately, we have the following two propositions.

Proposition 3.10. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that SU is
divisible and TU = TD. If x ∧ e = 0 for any x ∈ Ie ̸= ∅, then (L,⊑U , 0, 1) is a bounded
lattice.

P r o o f . If (x, y) ∈ [e, 1]2 ∪ L∗, then it follows from Proposition 3.4 (iii) that x ⊑U y
if and only if x ⩽ y. Thus, supU{x, y} = x ∨ y and infU{x, y} = x ∧ y. If x ∧ e = 0
for any x ∈ Ie ̸= ∅, it only remains to prove that both supU{x, y} and infU{x, y} exist
for any (x, y) ∈ [0, e]2. As a matter of fact, it follows from Proposition 3.4 (ii) that
supU{x, y} = e and infU{x, y} = 0 for any x, y ∈ (0, e) with x ̸= y. Therefore, both
supU{x, y} and infU{x, y} exist for any x, y ∈ L. □

Proposition 3.11. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that SU
is divisible and TU = TD. If 0 ◁ x ∧ e for any x ∈ Ie ̸= ∅ with respect to ⩽, then
(L,⊑U , 0, 1) is a bounded lattice.

P r o o f . Because of 0 ◁ x ∧ e for any x ∈ Ie, it follows from Proposition 3.4 (ii) that
supU{x, y} = e and infU{x, y} = 0 for any x, y ∈ (0, e) with x ̸= y. Moreover, since
x ⊑U y if and only if x ⩽ y for any (x, y) ∈ [e, 1]2 ∪ L∗ from Proposition 3.4 (ii).
Consequently, both supU{x, y} and infU{x, y} exist for any x, y ∈ L. □

From Propositions 3.10 and 3.11, we immediately have the following theorem.

Theorem 3.12. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that SU is
divisible and TU = TD. Then x ∧ e = 0 or 0 ◁ x ∧ e for any x ∈ Ie ̸= ∅ with respect to
⩽ if and only if (L,⊑U , 0, 1) is a bounded lattice.

P r o o f . It follows from Propositions 3.10 and 3.11 that (L,⊑U , 0, 1) is a bounded lattice
since x ∧ e = 0 or 0 ◁ x ∧ e for any x ∈ Ie.

Reciprocally, assume that there exist ℓ ∈ (0, e) and λ ∈ Ie such that 0 ◁ ℓ ◁ λ∧e ◁ e
and 0 ◁ ℓ ◁ λ ∧ e ◁ λ with respect to ⩽. Due to ℓ, λ ∧ e ∈ (0, e), thus, it follows from
Proposition 3.4 (iii) that ℓ ∥ λ∧e with respect to ⊑U . Furthermore, we have 0 ⊑U ℓ ⊑U e
and 0 ⊑U λ ∧ e ⊑U e with respect to ⊑U , and 0 ⊑U ℓ ⊑U λ and 0 ⊑U λ ∧ e ⊑U λ with
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respect to ⊑U . Consequently, both supU{ℓ, λ ∧ e} and infU{e, λ} do not exist, contrary
to the fact that (L,⊑U , 0, 1) is a bounded lattice. Therefore, one concludes that x∧e = 0
or 0 ◁ x ∧ e with respect to ⩽ for any x ∈ Ie. □

Theorem 3.13. Let (L,⩽, 0, 1) be a bounded lattice and Ie ̸= ∅ such that (L,⊑U , 0, 1)
is a lattice.

(i) If |(0, e)| ⩽ 1, then (L,⩽, 0, 1) is distributive if and only if so is (L,⊑U , 0, 1).

(ii) If |(0, e)| = 2, then there are two situations as follows.

(a) If (L,⩽, 0, 1) is distributive, then (L,⊑U , 0, 1) is distributive.

(b) If (L,⩽, 0, 1) is nondistributive, then (L,⊑U , 0, 1) is nondistributive except
(L,⩽) contains exactly one nondistributive sublattice as presented in Fig-
ure 7 (a).

(iii) If |(0, e)| ⩾ 3, then (L,⊑U , 0, 1) has a sublattice isomorphic toM3, i. e., (L,⊑U , 0, 1)
is nondistributive.

e

0

(a)

0

e

(b)

Fig. 7. The order ⩽ on L and the corresponding order ⊑U on L.

P r o o f .

(i) If |(0, e)| ⩽ 1, then we claim that ⊑U=⩽. Indeed, for any (x, y) ∈ [e, 1]2 ∪ L∗, it
follows from Proposition 3.4 (ii) that x ⊑U y if and only if x ⩽ y. Therefore, it is
enough to prove that x ⊑U y if and only if x ⩽ y when x, y ∈ [0, e]. There are two
cases as follows.

(a) If |(0, e)| = 0, then [0, e] = {0, e}, and it is easy to see that 0 ⊑U e if and only
if 0 ⩽ e.

(b) If |(0, e)| = 1, then 0 ◁ x ∧ e ◁ e for any x ∈ Ie, thus, x ⊑U y if and only if
x ⩽ y for any x, y ∈ [0, e] by Proposition 3.8.

Therefore, ⊑U=⩽ when |(0, e)| ⩽ 1.

(ii) (a) If |(0, e)| = 2, say p, q ∈ (0, e), and (L,⩽, 0, 1) is distributive, then we claim
that p ∥ q with respect to ⩽ and ⊑U=⩽. Assume that p ∦ q, say p ◁ q
with respect to ⩽. Then 0 ◁ p ◁ q ◁ e with respect to ⩽. Thus we have
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either 0 = x ∧ e or 0 ◁ p = x ∧ e for any x ∈ Ie from Theorem 3.12, that
is, (L,⩽, 0, 1) has a sublattice isomorphic to N5, a contradiction. Now, we
prove ⊑U=⩽. As a matter of fact, we have that 0 ◁ p = x ∧ e ◁ e or
0 ◁ q = x∧ e ◁ e for any x ∈ Ie. As an immediate consequence of Definition
2.6 we get that ⊑U=⩽. Therefore, (L,⊑U , 0, 1) is distributive.

(b) If |(0, e)| = 2 and (L,⩽, 0, 1) is nondistributive, then we distinguish two cases
as follows.

• If (L,⩽) contains exactly one nondistributive sublattice as presented in
Figure 7, then from Definition 2.6 it is easy to verify that (L,⊑U , 0, 1) has
no sublattice isomorphic to M3 or N5 with respect to ⊑U . Consequently,
(L,⊑U , 0, 1) is distributive.

• Otherwise, from Definition 2.6 and Proposition 3.4 (i), we always obtain
that (L,⊑U , 0, 1) has a sublattice isomorphic to M3 or N5 with respect
to ⊑U . Therefore, (L,⊑U , 0, 1) is nondistributive.

(iii) It is straightforward to verify that (L,⊑U , 0, 1) is nondistributive.

□

Example 3.14. Consider the lattice (L = {0, b, d, e, c, f, a, 1},⩽, 0, 1) whose lattice di-
agram is displayed in Figure 8, it is obvious that Ie = {c, f} ≠ ∅. It is easy to check that
(L = {0, b, d, e, c, f, a, 1},⩽, 0, 1) is nondistributive since L has a sublattice isomorphic
to N5. Define Ut (see Example 3.7) on L with TU = TD and its lattice diagram is as in
Figure 9, one concludes that (L = {0, a, b, c, d, e, f, 1},⊑U , 0, 1) is nondistributive with
respect to ⊑U since (L = {0, b, d, e, c, f, a, 1},⊑U ) has a sublattice isomorphic to N5.

b

d

c

e

a

1

0

f

Fig. 8. The order ⩽ on L.

0

b d

a

1

c

f

e

Fig. 9. The order ⊑U on L.

3.3. TU is divisible and SU = SD

In this subsection, by the same token, the results will be listed without proof.

Proposition 3.15. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU is
divisible and SU = SD.
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(i) If (x, y) ∈ (e, 1)2 with x ̸= y, then x ∥ y with respect to ⊑U .

(ii) If (x, y) ∈ (e, 1)2 with x ̸= y, then supU{x, y} = 1 and infU{x, y} = e.

(iii) If (x, y) ∈ [0, e]2 ∪ L∗, then x ⊑U y if and only if x ⩽ y.

Theorem 3.16. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU is
divisible and SU = SD. If Ie = ∅, then (L,⊑U , 0, 1) is a bounded lattice.

Theorem 3.17. Let (L,⩽, 0, 1) be a bounded distributive lattice and U ∈ U(e) such
that TU is divisible and SU = SD, Ie = ∅.

(i) If |(e, 1)| ⩽ 2, then (L,⊑U , 0, 1) is distributive.

(ii) If |(e, 1)| ⩾ 3, then (L,⊑U , 0, 1) is nondistributive.

Proposition 3.18. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU is
divisible and SU = SD. If e ◁ x∨ e ◁ 1 for any x ∈ Ie with respect to ⩽, then the order
⊑U coincides with the order ⩽.

Proposition 3.19. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU is
divisible and SU = SD. If Ie ̸= ∅ and x ∨ e = 1 for any x ∈ Ie with respect to ⩽, then
(L,⊑U , 0, 1) is a bounded lattice.

Proposition 3.20. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU is
divisible and SU = SD. If Ie ̸= ∅ and x ∨ e ◁ 1 for any x ∈ Ie with respect to ⩽, then
(L,⊑U , 0, 1) is a bounded lattice.

Theorem 3.21. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU is
divisible and SU = SD. Then x ∨ e = 1 or x ∨ e ◁ 1 for any x ∈ Ie ̸= ∅ with respect to
⩽ if and only if (L,⊑U , 0, 1) is a bounded lattice.

Theorem 3.22. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that (L,⊑U
, 0, 1) is a lattice and TU is divisible, SU = SD, and Ie ̸= ∅.

(i) If |(e, 1)| ⩽ 1, then (L,⩽, 0, 1) is distributive if and only if so is (L,⊑U , 0, 1).

(ii) If |(e, 1)| = 2, then there are two situations as follows.

(a) If (L,⩽, 0, 1) is distributive, then (L,⊑U , 0, 1) is distributive.

(b) If (L,⩽, 0, 1) is nondistributive, then (L,⊑U , 0, 1) is nondistributive except
(L,⩽) contains exactly one nondistributive sublattice as presented in Fig-
ure 10 (a).

(iii) If |(e, 1)| ⩾ 3, then (L,⊑U , 0, 1) has a sublattice isomorphic toM3, i. e., (L,⊑U , 0, 1)
is nondistributive.
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e

1

(a)

e

1

(b)

Fig. 10. The order ⩽ on L and the corresponding order ⊑U on L.

3.4. TU = TD and SU = SD

In this subsection, the proofs of the following results are immediate from both Subsec-
tions 3.2 and 3.3 for TU = TD and SU = SD.

Proposition 3.23. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU =
TD and SU = SD.

(i) If x, y ∈ (0, e) with x ̸= y, then x ∥ y with respect to ⊑U .

(ii) If x, y ∈ (0, e) with x ̸= y, then supU{x, y} = e and infU{x, y} = 0.

(iii) If x, y ∈ (e, 1) with x ̸= y, then x ∥ y with respect to ⊑U .

(iv) If x, y ∈ (e, 1) with x ̸= y, then supU{x, y} = 1 and infU{x, y} = e.

Theorem 3.24. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU = TD
and SU = SD. If Ie = ∅, then (L,⊑U , 0, 1) is a bounded lattice.

Observe that Theorem 3.24 generalizes Corollary 14 in [9].

Theorem 3.25. Let (L,⩽, 0, 1) be a bounded distributive lattice and U ∈ U(e) such
that TU = TD and SU = SD, Ie = ∅.

(i) If |(0, e)| ⩽ 2 and |(e, 1)| ⩽ 2 on (L,⩽, 0, 1), then (L,⊑U , 0, 1) is distributive.

(ii) If |(0, e)| ⩾ 3 or |(e, 1)| ⩾ 3 on (L,⩽, 0, 1), then (L,⊑U , 0, 1) is nondistributive.

Theorem 3.26. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e) such that TU = TD
and SU = SD. Then [x∧ e = 0 or 0 ◁ x∧ e] and [x∨ e ◁ 1 or x∨ e ◁ 1] with respect to
⩽ for any x ∈ Ie ̸= ∅ if and only if (L,⊑U , 0, 1) is a bounded lattice.

Theorem 3.27. Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e), Ie ̸= ∅ such that
(L,⊑U , 0, 1) is a lattice.

(i) If |(0, e)| ⩽ 1 and |(e, 1)| ⩽ 1, then (L,⩽, 0, 1) is distributive if and only if so is
(L,⊑U , 0, 1).
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(ii) If |(0, e)| = 2 and |(e, 1)| = 2, then there are two situations as follows.

(a) If (L,⩽, 0, 1) is distributive, then (L,⊑U , 0, 1) is distributive.

(b) If (L,⩽, 0, 1) is nondistributive, then (L,⊑U , 0, 1) is nondistributive except
(L,⩽) contains exactly one nondistributive sublattice as presented in Fig-
ure 11.

(iii) If |(0, e)| ⩾ 3 or |(e, 1)| ⩾ 3, then (L,⊑U , 0, 1) has a sublattice isomorphic to M3.
Therefore, (L,⊑U , 0, 1) is nondistributive.

e

0

e

1

Fig. 11. The order ⩽ on L.

To better observe the relationship between the underlying operators of U and the
structure of (L,⊑U ), a summary is given in Table 2.

TU and SU

(L,⊑U ) The lattice structure of
(L,⊑U )

The distributivity of
(L,⊑U , 0, 1)

TU and SU are divisible Proposition 3.1 Corollary 3.2

TU = TD and SU is divisible
Theorem 3.5 (Ie = ∅)
Theorem 3.12 (Ie ̸= ∅)

Theorem 3.6 (Ie = ∅)
Theorem 3.13 (Ie ̸= ∅)

TU is divisible and SU = SD
Theorem 3.16 (Ie = ∅)
Theorem 3.21 (Ie ̸= ∅)

Theorem 3.17 (Ie = ∅)
Theorem 3.22 (Ie ̸= ∅)

TU = TD and SU = SD
Theorem 3.24 (Ie = ∅)
Theorem 3.26 (Ie ̸= ∅)

Theorem 3.25 (Ie = ∅)
Theorem 3.27 (Ie ̸= ∅)

Tab. 2. The lattice structures for the poset (L,⊑U ).

4. CONCLUSIONS

In [9], Ertuğrul et al. verified that (L,⊑U ) is a poset. In this work, we investigated
the lattice structures of (L,⊑U , 0, 1). In particular, we provided some sufficient and
necessary conditions for the poset (L,⊑U 0, 1) to be a lattice when the underlying t-
norm of U is either divisible or TD, and t-conorm of U is either divisible or SD, and
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characterized the distributivity of lattices (L,⊑U 0, 1). More precisely:

Let (L,⩽, 0, 1) be a bounded lattice and U ∈ U(e).

(i) If TU and SU are divisible, then (L,⊑U , 0, 1) is a bounded lattice.

(ii) If TU is the drastic product TD and SU is divisible, then (L,⊑U , 0, 1) is a bounded
lattice if and only if x ∧ e = 0 or 0 ◁ x ∧ e for any x ∈ Ie ̸= ∅ with respect to ⩽.
In addition, the distributivity of (L,⊑U , 0, 1) depends on the cardinality of (0, e).

(iii) If TU is divisible and SU is the drastic sum SD, then (L,⊑U , 0, 1) is a bounded
lattice if and only if x ∨ e = 1 or x ∨ e ◁ 1 for any x ∈ Ie ̸= ∅ with respect to ⩽.
In addition, the distributivity of (L,⊑U , 0, 1) depends on the cardinality of (e, 1).

(iv) If TU is the drastic product TD and SU is the drastic sum SD, then (L,⊑U , 0, 1) is
a bounded lattice if and only if [x∧ e = 0 or 0 ◁ x∧ e] and [x∨ e ◁ 1 or x∨ e ◁ 1]
with respect to ⩽ for any x ∈ Ie ̸= ∅.

The main contribution of this work is the investigation of lattice structures derived
from posets (L,⊑U ), and a study of the distributivity of lattices. Due to limitations on
the underlying operations of uninorms, our future works include studying the algebraic
structures of (L,⊑U , 0, 1) for uninorms with any underlying operations.
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