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KYBERNET IKA — VOLUME 6 0 ( 2 0 2 4 ) , NUMBER 6 , PAGES 7 4 0 – 7 5 3

ADDITIVE GENERATORS
OF DISCRETE SEMI-UNINORMS

Ya-Ming Wang, Hang Zhan and Yuan-Yuan Zhao

This work explores commutative semi-uninorms on finite chains by means of strictly increas-
ing unary functions and the usual addition. In this paper, there are three families of additively
generated commutative semi-uninorms. We not only study the structures and properties of
semi-uninorms in each family but also show the relationship among these three families. In ad-
dition, this work provides the characterizations of uninorms in Umin and Umax that are generated
by additive generators.

Keywords: aggregation operations, semi-uninorms, additive generators, semi-t-norms,
semi-t-conorms, finite chains

Classification: 46F10, 62E86

1. INTRODUCTION

The general evaluation scale in fuzzy set theory and fuzzy logic is the real unit interval
[0, 1], which is equipped with a rich algebraic structure. However, practical applications
supported by computer implementations are often based on arguments that take values
in a finite chain Ln = {0, 1, 2, · · · , n} [4]. Since several types of associative aggregation
operations (t-norms, t-conorms, uninorms and nullnorms, etc.) play a key role in many
aspects, it is important to study the corresponding operations on finite chains. Therefore,
the study of increasing operations on a finite chain Ln that are associative has received
great attention. For instance, t-norms and t-conorms were characterized in [3, 4, 20, 21],
uninorms were studied in [5, 12, 15, 17, 24], t-operators were introduced in [15] and
smooth associative operations were discussed in [7, 18]. The researchers also studied
increasing operations that are not necessarily associative, such as copulas [11, 22] and
bisymmetric operators [16]. Known from these literatures, a discrete copula is associative
if and only if its associated matrix is an ordinal sum of  Lukasiewicz matrices, and a
bisymmetric aggregation operation on a finite chain is associative if it is commutative
and smooth.

As introduced in [9], uninorms are associative, commutative, increasing binary oper-
ations on [0, 1] that have a neutral element e in [0, 1]. They can be seen as a special kind
of binary aggregation operations generalizing both t-norms and t-conorms. On finite
chains, discrete uninorms in the common classes of Umin and Umax were characterized

DOI: 10.14736/kyb-2024-6-0740

http://doi.org/10.14736/kyb-2024-6-0740


Additive generators of discrete semi-uninorms 741

in [15] and a non-commutative version of these uninorms were discussed in [17]. The
class of idempotent uninorms was studied in [5, 14] and the characterization of all dis-
crete uninorms with a smooth underlying t-norm and a smooth underlying t-conorm
was given in [12, 24]. In addition to the above research about the common operations
on finite chains, Mayor and Monreal [19, 20] studied the additive generators of discrete
conjunctive and disjunctive aggregation operations. They proposed: the general form
of the representable operations is as F (i, j) = h(−1)(h(i) + h(j)), where i, j ∈ Ln, h is a
strictly monotone function, and h(−1) is a pseudo-inverse of h. If h is strictly decreasing
with h(n) = 0 and h(−1) is defined by h(−1)(t) = min{i ∈ Ln | h(i) ≤ t}, then F is a
commutative aggregation operation with a neutral element n. If h is strictly increas-
ing with h(0) = 0 and h(−1) is defined by h(−1)(t) = max{i ∈ Ln | h(i) ≤ t}, then
F is a commutative aggregation operation with a neutral element 0. Based on this,
they studied several properties of these discrete binary operations generated by addi-
tive generators. Keeping on the idea of generating a binary operation by a monotone
unary functions with the usual addition, we are going to focus on studying commutative
semi-uninorms on finite chains. Firstly, we define a strictly increasing unary function
h from Ln to [−∞,+∞] such that h(e) = 0, where e ∈ Ln. In this work, there are
three families of commutative semi-uninorms generated by strictly increasing functions
with the usual addition. Then we discuss the structures and several basic properties
of commutative semi-uninorms in each family. Moreover, we show the relationship be-
tween the three families of these representable aggregation operations. In addition, this
work provides the characterizations of uninorms in Umin and Umax that are generated
by additive generators.

The paper is organized as follows. In Section 2, we present some preliminary notions
and results that are necessary for the rest of the paper. In Section 3, we study com-
mutative semi-uninorms on finite chains by strictly increasing unary functions and the
usual addition. Section 4 is the conclusion of this work.

2. PRELIMINARIES

We begin with some basic definitions and results that will be used throughout this paper.
From now on, Ln will denote a finite chain Ln = {0, 1, 2, . . . , n}. In order to distinguish
this symbol from the standard notations for real intervals, we will use indistinctly the
interval notation Ln = [0, n]Ln

and also the usual notations [p, q]Ln
= {p, p + 1, . . . , q},

[p, q[Ln= {p, p+1, . . . , q−1}, ]p, q]Ln = {p+1, . . . , q} and ]p, q[Ln= {p+1, . . . , q−1} for
the corresponding subsets of Ln with p, q ∈ Ln. Note that in case there is no subscript
Ln when we refer to the usual real intervals. In addition, a binary operation is increasing
meaning that it is increasing with respect to each variable.

Definition 2.1. (Beliakov et al. [1], Calvo et al. [2], Sander [25]) A binary aggregation
operation on Ln is an increasing function A : Ln × Ln → Ln such that A(0, 0) = 0 and
A(n, n) = n.

Definition 2.2. (Durante et al. [6], Fodor and Keresztfalvi [8], Pradera et al. [23]) Let
A be a binary increasing operation on Ln. Then:

(i) A is conjunctive if A(i, j) ≤ min(i, j) for any i, j ∈ Ln.
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(ii) A is disjunctive if A(i, j) ≥ max(i, j) for any i, j ∈ Ln.

(iii) A is commutative if A(i, j) = A(j, i) for any i, j ∈ Ln.

(iv) A is associative if A(i, A(j, k)) = A(A(i, j), k) for any i, j, k ∈ Ln.

(v) A has a neutral element e ∈ Ln if A(i, e) = A(e, i) = i for any i ∈ Ln.

Definition 2.3. (Liu [13]) A semi-t-norm T on Ln is a binary aggregation operation
with a neutral element n. A semi-t-conorm S on Ln is a binary aggregation operation
with a neutral element 0. A semi-uninorm U on Ln is a binary aggregation operation
with a neutral element e ∈ Ln.

Definition 2.4. (Li et al. [12], Mayor and Torrens [21]) An associative and commu-
tative semi-t-norm on Ln is called a t-norm. An associative and commutative semi-t-
conorm on Ln is called a t-conorm. An associative and commutative semi-uninorm on
Ln is called a uninorm.

Obviously, any semi-t-norm or t-norm is a conjunctive aggregation operation, any
semi-t-conorm or t-conorm is a disjunctive aggregation operation.

It is clear that a semi-uninorm U becomes a semi-t-norm when e = n and a semi-t-
conorm when e = 0. From Definition 2.3, we can get the structure of semi-uninorms on
Ln. In fact, U |[0,e]2Ln

is a semi-t-norm on [0, e]Ln
, U |[e,n]2Ln

is a semi-t-conorm on [e, n]Ln

and min ≤ U |A(e) ≤ max, where A(e) = [0, e[Ln
×]e, n]Ln

∪]e, n]Ln
× [0, e[Ln

. If U is a
uninorm on Ln with a neutral element e, then U |[0,e]2Ln

is a t-norm on [0, e]Ln
, U |[e,n]2Ln

is a t-conorm on [e, n]Ln
and min ≤ U |A(e) ≤ max. Besides, we have U(n, 0) ∈ {0, n}

for any uninorm U on Ln.
The notation U denotes the set of all uninorms defined on Ln. In addition, we denote

by Umin the class of uninorms on Ln that in A(e) behave as the minimum, and by Umax

the class of uninorms on Ln that in A(e) behave as the maximum. In other words,

Umin = {U ∈ U | U(i, j) = min(i, j) for all (i, j) ∈ A(e)},

Umax = {U ∈ U | U(i, j) = max(i, j) for all (i, j) ∈ A(e)}.

At the end of this section, let us review the knowledge about additive generators of
aggregation operations.

Definition 2.5. (Mayor and Monreal [19]) An additive generator f : Ln → [0,+∞[
of a conjunctive aggregation operation C on Ln is a strictly decreasing function with
f(n) = 0 such that

C(i, j) = f (−1)(f(i) + f(j)) for all i, j ∈ Ln,

where f (−1) : [0,+∞[→ Ln is the pseudo-inverse of f , defined by f (−1)(t) = min{i ∈
Ln | f(i) ≤ t}, t ∈ [0,+∞[.

If C : L2
n → Ln is a conjunctive aggregation operation of the form in Definition 2.5

for some f , we say that C is additively generated by f . We can write C = ⟨f⟩.
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Definition 2.6. (Mayor and Monreal [20]) An additive generator g : Ln → [0,+∞[
of a disjunctive aggregation operation D on Ln is a strictly increasing function with
g(0) = 0 such that

D(i, j) = g(−1)(g(i) + g(j)) for all i, j ∈ Ln,

where g(−1) : [0,+∞[→ Ln is the pseudo-inverse of g, defined by g(−1)(t) = max{i ∈
Ln | g(i) ≤ t}, t ∈ [0,+∞[.

If D : L2
n → Ln is a disjunctive aggregation operation of the form in Definition 2.6

for some g, we say that D is additively generated by g. We also can write D = ⟨g⟩.

3. ADDITIVE GENERATORS OF DISCRETE SEMI-UNINORMS

In this section, we will study commutative semi-uninorms on finite chains by means of
strictly increasing unary functions and the usual addition. First, we will introduce a
family of commutative semi-uninorms on Ln generated by the usual addition, strictly
increasing unary functions and their pseudo-inverses. The notation H denotes the set
of all strictly increasing functions from Ln to [−∞,+∞].

Theorem 3.1. Let e ∈ Ln and h ∈ H with h(e) = 0. If the binary operation U : L2
n →

Ln is given by

U(i, j) = h(−1)(h(i) + h(j)) for all i, j ∈ Ln, (1)

then U is a commutative semi-uninorm with a neutral element e on Ln, where h(−1) is
the pseudo-inverse of h and given by

h(−1)(t) =

{
min{k ∈ Ln | h(k) ≥ t} if t ∈ [−∞, 0],

max{k ∈ Ln | h(k) ≤ t} if t ∈]0,+∞].
(2)

P r o o f . It is obvious that U is commutative. From Equation (2) and the fact that h is
strictly increasing, it follows that h(−1) is an increasing function. Thus, U is increasing
with respect to each variable. Moreover, U(i, e) = h(−1)(h(i)+h(e)) = h(−1)(h(i)+0) =
h(−1)(h(i)) = i for any i ∈ Ln. That is, e is a neutral element of U . □

If U : L2
n → Ln is a semi-uninorm of the form (1) for some h, we say that U is

additively generated by h and h is an additive generator of U . We can write U = ⟨h⟩.
Additionally, we denote the family of these commutative semi-uninorms in Theorem 3.1
by F1.

Han and Liu [10] proposed two families of commutative semi-uninorms on Ln gener-
ated by strictly increasing unary functions and the usual addition (shown as Theorem
3.2 and Theorem 3.3).
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Theorem 3.2. (Han and Liu [10]) Let e ∈ Ln and h ∈ H with h(e) = 0. Then, the
operation U : L2

n → Ln given by

U(i, j) =

{
min{k ∈ Ln | h(k) ≥ h(i) + h(j)} if max(i, j) ≤ e,

max{k ∈ Ln | h(k) ≤ h(i) + h(j)} if max(i, j) > e,
(3)

is a commutative semi-uninorm on Ln with a neutral element e.

Although the semi-uninorms in Theorem 3.2 do not conform to the form (1), we
still write it as U = ⟨h⟩ for convenience in this work. We denote the family of these
commutative semi-uninorms in Theorem 3.2 by F2.

Theorem 3.3. (Han and Liu [10]) Let e ∈ Ln and h ∈ H with h(e) = 0. Then, the
operation U : L2

n → Ln given by

U(i, j) =

{
min{k ∈ Ln | h(k) ≥ h(i) + h(j)} if min(i, j) < e,

max{k ∈ Ln | h(k) ≤ h(i) + h(j)} if min(i, j) ≥ e,
(4)

is a commutative semi-uninorm on Ln with a neutral element e.

Similarly, for the sake of convenience, we also write the semi-uninorm U from The-
orem 3.3 as U = ⟨h⟩. In addition, we denote by F3 the family of these commutative
semi-uninorms in Theorem 3.3.

The following theorem shows the structure of semi-uninorms in F1, F2 and F3.

Theorem 3.4. Let U be a binary operation on Ln. If U ∈ F1 (resp. U ∈ F2 or U ∈ F3)
with a neutral element e ∈ Ln, then there exist a commutative semi-t-norm T on [0, e]Ln

,
a commutative semi-t-conorm S on [e, n]Ln and a commutative and increasing binary
operation C : A(e) → Ln such that

U(i, j) =


T (i, j) if (i, j) ∈ [0, e]Ln ,

S(i, j) if (i, j) ∈ [e, n]Ln
,

C(i, j) if (i, j) ∈ A(e),

(5)

where min(i, j) < C(i, j) < max(i, j) (resp. min(i, j) ≤ C(i, j) < max(i, j) or min(i, j) <
C(i, j) ≤ max(i, j)) for any (i, j) ∈ A(e).

P r o o f . If U ∈ F1 with a neutral element e ∈ Ln, then there is at least one function h ∈
H0 with h(e) = 0 such that U(i, j) = h(−1)(h(i)+h(j)) for all i, j ∈ Ln. Let h1 = h|[0,e]Ln

and h2 = h|[e,n]Ln
, then h1 : [0, e]Ln → [−∞, 0] is a strictly increasing function with

h1(e) = 0 and h2 : [e, n]Ln → [0,+∞] is a strictly increasing function with h2(e) = 0.

Besides, h
(−1)
1 (t) = min{k ∈ Ln | h(k) ≥ t} for t ∈ [−∞, 0] and h

(−1)
2 (t) = max{k ∈ Ln |

h(k) ≤ t} for t ∈ [0,+∞]. Then, it is evident that T (i, j) = h
(−1)
1 (h1(i) + h1(j)) is a

commutative semi-t-norm on the finite chain [0, e]Ln and S(i, j) = h
(−1)
2 (h2(i) + h2(j))
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is a commutative semi-t-conorm on the finite chain [e, n]Ln . In addition, it is easy for
us to know that min(i, j) ≤ U(i, j) ≤ max(i, j) for any (i, j) ∈ A(e).

Suppose that there exist a point (i0, j0) ∈ A(e) such that U(i0, j0) = min(i0, j0),
then h(−1)(h(i0) + h(j0)) = min(i0, j0). Without loss of generality, we assume that
i0 < j0, that is, i0 ∈ [0, e[Ln

and j0 ∈]e, n]Ln
. Then we have h(j0) > 0 and h(−1)(h(i0) +

h(j0)) = i0. There are two cases that need to be discussed. If h(i0) + h(j0) ≤ 0,
then min{k ∈ Ln | h(k) ≥ h(i0) + h(j0)} = i0. Thus, h(i0) ≥ h(i0) + h(j0), which
means, h(j0) ≤ 0. This contradicts the fact h(j0) > 0. If h(i0) + h(j0) > 0, then
max{k ∈ Ln | h(k) ≤ h(i0)+h(j0)} = i0. Thus, 0 = h(e) ≥ h(i0+1) > h(i0)+h(j0) > 0,
which is a contradiction. Therefore, U(i, j) > min(i, j) for any (i, j) ∈ A(e). In an
analogous way, we can also obtain that U(i, j) < max(i, j) for any (i, j) ∈ A(e). As a
result, the fact that min(i, j) < C(i, j) < max(i, j) for any (i, j) ∈ A(e) is true.

If U ∈ F2 with a neutral element e ∈ Ln, then we have U |[0,e]2Ln
(i, j) = min{k ∈ Ln |

h(k) ≥ h(i) + h(j)} = h(−1)(h(i) + h(j)), where h(−1)(t) = min{k ∈ Ln | h(k) ≥ t}.
Thus, T = U |[0,e]2Ln

is a commutative semi-t-norm on the finite chain [0, e]Ln . Similarly,

U |[e,n]2Ln
(i, j) = max{k ∈ Ln | h(k) ≤ h(i)+h(j)} = h(−1)(h(i)+h(j)), where h(−1)(t) =

max{k ∈ Ln | h(k) ≤ t}. Thus, S = U |[e,n]2Ln
is a commutative semi-t-conorm on the

finite chain [e, n]Ln
. It is clear that min ≤ C = U |A(e) ≤ max. Suppose that there

exist a point (i0, j0) ∈ A(e) such that U(i0, j0) = max(i0, j0), then max{k ∈ L | h(k) ≤
h(i0) + h(j0)} = max(i0, j0). Without loss of generality, we assume that i0 < j0, that
is, i0 ∈ [0, e[Ln

and j0 ∈]e, n[Ln
. Then we have j0 = max{k ∈ L | h(k) ≤ h(i0) + h(j0)}.

Thus, h(j0) ≤ h(i0)+h(j0), which means, h(i0) ≥ 0. This contradicts the fact h(i0) < 0.
The proof of case U ∈ F3 is similar to that of case U ∈ F2. □

Here we also emphasize that there may be a point (i0, j0) ∈ A(e) such that U(i0, j0) =
min(i0, j0) for U ∈ F2. Without loss of generality, we assume that i0 ∈ [0, e[Ln

and
j0 ∈]e, n]Ln

. Then, i0 = min(i0, j0) = U(i0, j0) = max{k ∈ Ln | h(k) ≤ h(i) + h(j)}.
Thus, we have h(i0 + 1) > h(i0) + h(j0). Alternatively, if there exists some point
(i0, j0) ∈ [0, e[Ln×]e, n]Ln such that h(j0) < h(i0+1)−h(i0), then U(i0, j0) = min(i0, j0).
Furthermore, we provide the characterization of discrete uninorms in Umin that are
generated by additive generators.

Theorem 3.5. Let e ∈ Ln, h ∈ H with h(e) = 0 satisfying h(i) + h(j) ∈ [−∞, h(0)] ∪
Ran(h) for any i, j ∈ [0, e]Ln

and h(i)+h(j) ∈ [h(n),+∞]∪Ran(h) for any i, j ∈ [e, n]Ln
.

If U = ⟨h⟩ ∈ F2, then U ∈ Umin if and only if h(n) < min{h(i + 1) − h(i) | i ∈ [0, e[Ln}.

P r o o f . If U ∈ Umin, then max{k ∈ Ln | h(k) ≤ h(i) + h(j)} = U(i, j) = min(i, j) = i
for any i ∈ [0, e[Ln

and j ∈]e, n]Ln
. So we have h(i) ≤ h(i)+h(j) and h(i+1) > h(i)+h(j)

for any i ∈ [0, e[Ln
and j ∈]e, n]Ln

. Now let j = n, then we get h(i + 1) − h(i) > h(n)
for any i ∈ [0, e[Ln

. Thus, h(n) < min{h(i + 1) − h(i) | i ∈ [0, e[Ln
}.

If h(n) < min{h(i + 1) − h(i) | i ∈ [0, e[Ln}, then h(j) < h(i + 1) − h(i) for any
i ∈ [0, e[Ln and j ∈]e, n]Ln because h is strictly increasing on Ln. For any i ∈ [0, e[Ln

and j ∈]e, n]Ln
, we have U(i, j) = max{k ∈ Ln | h(k) ≤ h(i) + h(j)} = i = min(i, j)

since h(i) ≤ h(i) +h(j) and h(i+ 1) > h(i) +h(j). Next, let us verify that T = U |[0,e]2Ln

is a t-norm. Before starting, we assume that i, j, k are any three elements in [0, e]Ln
.
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Case 1. If h(i) + h(j) ∈ [−∞, h(0)] and h(j) + h(k) ∈ [−∞, h(0)], then U(i, j) =
min{r ∈ Ln | h(r) ≥ h(i) + h(j)} = 0 and U(j, k)=min{r∈Ln | h(r)≥h(j)+h(k)}=0.
Thus,

U(i, U(j, k)) = min{r ∈ Ln | h(r) ≥ h(i) + h(U(j, k))}
= min{r ∈ Ln | h(r) ≥ h(i) + h(0)}
= 0

= min{r′ ∈ Ln | h(r) ≥ h(0) + h(k)}
= min{r′ ∈ Ln | h(r) ≥ h(U(i, j)) + h(k)}
= U(U(i, j), k).

Case 2. If h(i) + h(j) ∈ [−∞, h(0)] and h(j) + h(k) ∈ Ran(h), then h(U(j, k)) =
h ◦ min{r ∈ Ln | h(r) ≥ h(j) + h(k)} = min{h(r) ∈ Ran(h) | h(r) ≥ h(j) + h(k)} =
h(j) + h(k). Thus,

U(i, U(j, k)) = min{r ∈ Ln | h(r) ≥ h(i) + h(U(j, k))}
= min{r ∈ Ln | h(r) ≥ h(i) + h(j) + h(k)}
= 0

= min{r′ ∈ Ln | h(r) ≥ h(0) + h(k)}
= min{r′ ∈ Ln | h(r) ≥ h(U(i, j)) + h(k)}
= U(U(i, j), k).

Case 3. If h(i) + h(j) ∈ Ran(h) and h(j) + h(k) ∈ Ran(h), then

U(i, U(j, k)) = min{r ∈ Ln | h(r) ≥ h(i) + h(U(j, k))}
= min{r ∈ Ln | h(r) ≥ h(i) + h(j) + h(k)}
= min{r′ ∈ Ln | h(r) ≥ h(i) + h(j) + h(k)}
= min{r′ ∈ Ln | h(r) ≥ h(U(i, j)) + h(k)}
= U(U(i, j), k).

From Theorem 3.4, we know that T = U |[0,e]2Ln
is a commutative semi-t-norm on

[0, e]Ln
. Therefore, T = U |[0,e]2Ln

is a t-norm on [0, e]Ln
. Finally, let us prove that

S = U |[e,n]2Ln
is a t-conorm on [e, n]Ln

. Assume that i, j, k are any three elements in

[e, n]Ln
.

Case (1). If h(i) + h(j) ∈ [h(n),+∞] and h(j) + h(k) ∈ [h(n),+∞], then U(i, j) =
max{r ∈ Ln | h(r) ≤ h(i) + h(j)} = n and U(j, k)=max{r∈Ln | h(r)≤h(j)+h(k)}=n.
Thus,

U(i, U(j, k)) = max{r ∈ Ln | h(r) ≤ h(i) + h(U(j, k))}
= max{r ∈ Ln | h(r) ≤ h(i) + h(n)}
= n

= max{r′ ∈ Ln | h(r) ≤ h(n) + h(k)}
= max{r′ ∈ Ln | h(r) ≤ h(U(i, j)) + h(k)} = U(U(i, j), k).
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Case (2). If h(i) + h(j) ∈ [h(n),+∞] and h(j) + h(k) ∈ Ran(h), then h(U(j, k)) =
h ◦ max{r ∈ Ln | h(r) ≤ h(j) + h(k)} = max{h(r) ∈ Ran(h) | h(r) ≤ h(j) + h(k)} =
h(j) + h(k). Thus,

U(i, U(j, k)) = max{r ∈ Ln | h(r) ≤ h(i) + h(U(j, k))}
= max{r ∈ Ln | h(r) ≤ h(i) + h(j) + h(k)}
= n

= max{r′ ∈ Ln | h(r) ≤ h(n) + h(k)}
= max{r′ ∈ Ln | h(r) ≤ h(U(i, j)) + h(k)}
= U(U(i, j), k).

Case (3). If h(i) + h(j) ∈ Ran(h) and h(j) + h(k) ∈ Ran(h), then

U(i, U(j, k)) = max{r ∈ Ln | h(r) ≤ h(i) + h(U(j, k))}
= max{r ∈ Ln | h(r) ≤ h(i) + h(j) + h(k)}
= max{r′ ∈ Ln | h(r) ≤ h(i) + h(j) + h(k)}
= max{r′ ∈ Ln | h(r) ≤ h(U(i, j)) + h(k)}
= U(U(i, j), k).

It follows from Theorem 3.4 that S = U |[e,n]2Ln
is a t-conorm on [e, n]Ln

. In summary,

we get U ∈ Umin. □

The following theorem shows the characterization of discrete uninorms in Umax that
are generated by additive generators.

Theorem 3.6. Let e ∈ Ln, h ∈ H with h(e) = 0 satisfying h(i) + h(j) ∈ [−∞, h(0)] ∪
Ran(h) for any i, j ∈ [0, e]Ln and h(i)+h(j) ∈ [h(n),+∞]∪Ran(h) for any i, j ∈ [e, n]Ln .
If U = ⟨h⟩ ∈ F3, then U ∈ Umax if and only if h(0) > max{h(j− 1)−h(j) | j ∈]e, n]Ln

}.

P r o o f . The proof is similar to that of Theorem 3.5. □

The following example shows two additively generated uninorms U ′ and U ′′ on the
finite chain L7, where U ′ is in Umin and U ′′ is in Umax.

U ′ 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 1 1 1

2 0 0 1 2 2 2 2 2

3 0 1 2 3 4 5 6 7

4 0 1 2 4 5 7 7 7

5 0 1 2 5 7 7 7 7

6 0 1 2 6 7 7 7 7

7 0 1 2 7 7 7 7 7

U ′′ 0 1 2 3 4 5 6 7

0 0 0 0 0 4 5 6 7

1 0 0 0 1 4 5 6 7

2 0 0 1 2 4 5 6 7

3 0 1 2 3 4 5 6 7

4 4 4 4 4 6 7 7 7

5 5 5 5 5 7 7 7 7

6 6 6 6 6 7 7 7 7

7 7 7 7 7 7 7 7 7

(a) U ′ ∈ Umin (b) U ′′ ∈ Umax

Tab. 1. There are two uninorms U ′ and U ′′ on L7.



748 Y.M. WANG, H. ZHAN AND Y.Y. ZHAO

Example 3.7. Let h1, h2 ∈ H with Ran(h1) = {−50,−40,−20, 0, 3, 6, 8, 9} and
Ran(h2) = {−9,−7,−3, 0, 25, 40, 50, 65}. The operations U ′ = ⟨h1⟩ ∈ F2 and U ′′ =
⟨h2⟩ ∈ F3 shown in Table 1 are two commutative semi-uninorms with the neutral ele-
ment e = 3 on L7. Let R11 = {h1(i) + h1(j) | i, j ∈ [0, e]Ln

} and R12 = {h1(i) + h1(j) |
i, j ∈ [e, n]Ln}, then R11 = {0,−20,−40,−50,−60,−70,−80,−90,−100} ⊂ [−∞,−50]∪
Ran(h1) and R12 = {0, 3, 6, 8, 9, 11, 12, 14, 15, 16, 17, 18} ⊂ [9,+∞] ∪ Ran(h1). Be-
sides, h1(1) − h1(0) = 10, h1(2) − h1(1) = 20, h1(3) − h1(2) = 20 and h7 = 9 <
10 = min{10, 20}. Thus, we know that U ′ ∈ Umin from Theorem 3.5. Similarly, let
R21 = {h2(i) + h2(j) | i, j ∈ [0, e]Ln

} and R22 = {h2(i) + h2(j) | i, j ∈ [e, n]Ln
},

then R21 = {0,−3,−6,−7,−9,−10,−12,−14,−16,−18} ⊂ [−∞,−9] ∪ Ran(h2) and
R22 = {0, 25, 40, 50, 65, 75, 80, 90, 100, 105, 115, 130} ⊂ [65,+∞] ∪ Ran(h2). Moreover,
h2(6) − h2(7) = −15, h2(5) − h2(6) = −10, h2(4) − h2(5) = −15, h2(3) − h2(4) = −25
and h2(0) = −9 > −10 = max{−15,−10,−25}. Thus, we know that U ′′ ∈ Umax from
Theorem 3.6.

Now we show some basic properties of additively generated commutative semi-uninorms
on finite chains. We indicate h = (a0, a1, . . . , an−1, an), where ai = h(i) for all i ∈ Ln.
Of course, a0 < a1 < . . . < an−1 < an.

Proposition 3.8. Let e ∈ Ln, h ∈ H with h(e) = 0. If U = ⟨h⟩ ∈ F1, then the
following statements are true.

(i) U(i, j) = k ∈]0, e[Ln
if and only if ak−1 < ai + aj ≤ ak;

U(i, j) = k ∈]e, n[Ln
if and only if ak ≤ ai + aj < ak+1.

(ii) U(i, j) = e if and only if ae−1 < ai + aj < ae+1.

(iii) U(i, j) = 0 if and only if a0 ≥ ai + aj ; U(i, j) = n if and only if an ≤ ai + aj .

P r o o f . (i) If U(i, j) = k ∈]0, e[Ln
, then we have h(i) + h(j) ≤ 0. Otherwise, suppose

h(i)+h(j) > 0, then k = U(i, j) = h(−1)(h(i)+h(j)) = max{r ∈ Ln | h(r) ≤ h(i)+h(j)}.
Thus, 0 = h(e) ≥ h(k+1) > h(i)+h(j) since k ∈]0, e[Ln

, which is a contradiction. From
the fact h(i) + h(j) ≤ 0, it follows that k = U(i, j) = min{r ∈ Ln | h(r) ≥ h(i) + h(j)}.
Therefore, we have h(k − 1) < h(i) + h(j) ≤ h(k), that is, ak−1 < ai + aj ≤ ak.

If ak−1 < ai+aj ≤ ak when k ∈]0, e[Ln
, then h(k−1) < h(i)+h(j) ≤ h(k) < h(e) = 0.

Thus, it is obvious that U(i, j) = min{r ∈ Ln | h(r) ≥ h(i) + h(j)} = k from Theorem
3.1.

Similarly, we can obtain the conclusion that U(i, j) = k ∈]e, n[Ln
if and only if

ak ≤ ai + aj < ak+1.

(ii) If h(i) + h(j) ≤ 0, then e = U(i, j) = h(−1)(h(i) + h(j)) = min{r ∈ Ln | h(r) ≥
h(i) + h(j)} if and only if h(e − 1) < h(i) + h(j) ≤ h(e). If h(i) + h(j) > 0, then
e = U(i, j) = h(−1)(h(i) + h(j)) = max{r′ ∈ Ln | h(r′) ≤ h(i) + h(j)} if and only if
h(e) ≤ h(i)+h(j) < h(e+1). So, U(i, j) = e if and only if h(e−1) < h(i)+h(j) < h(e+1).
That is, U(i, j) = e if and only if ae−1 < ai + aj < ae+1.
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(iii) Similar to the proof of (i), we know h(i)+h(j) ≤ 0 if U(i, j) = 0 and h(i)+h(j) >
0 if U(i, j) = n. So it is easily to obtain that U(i, j) = 0 if and only if a0 ≥ ai + aj and
U(i, j) = n if and only if an ≤ ai + aj from Theorem 3.1. □

Proposition 3.9. Let e ∈ Ln, h ∈ H with h(e) = 0. If U = ⟨h⟩ ∈ F2, then the
following statements are true.

(i) When max(i, j) > e:

• U(i, j) = k ∈]0, n[Ln if and only if ak ≤ ai + aj < ak+1;

• U(i, j) = 0 if and only if a0 ≤ ai + aj < a1;

• U(i, j) = n if and only if an ≤ ai + aj .

(ii) When max(i, j) ≤ e:

• U(i, j) = k ∈]0, n[Ln if and only if ak−1 < ai + aj ≤ ak;

• U(i, j) = 0 if and only if a0 ≥ ai + aj ;

• U(i, j) = n if and only if an−1 < ai + aj ≤ an.

P r o o f . (i) When max(i, j) > e. It is clear that k = U(i, j) = max{r ∈ Ln | h(r) ≤
h(i) +h(j)} if and only if h(k) ≤ h(i) +h(j) < h(k + 1). That is, U(i, j) = k if and only
if ak ≤ ai + aj < ak+1.

(ii) When max(i, j) ≤ e. It is evident that k = U(i, j) = min{r ∈ Ln | h(r) ≥
h(i) + h(j)} if and only if h(k) ≥ h(i) + h(j) > h(k− 1). That is U(i, j) = k if and only
if ak ≥ ai + aj > ak−1.

The other situations can be obtained in a similar way. □

Proposition 3.10. Let e ∈ Ln, h ∈ H with h(e) = 0. If U = ⟨h⟩ ∈ F3, then the
following statements are true.

(i) When min(i, j) ≥ e:

• U(i, j) = k ∈]0, n[Ln
if and only if ak ≤ ai + aj < ak+1;

• U(i, j) = 0 if and only if a0 ≤ ai + aj < a1;

• U(i, j) = n if and only if an ≤ ai + aj .

(ii) When min(i, j) < e:

• U(i, j) = k ∈]0, n[Ln
if and only if ak−1 < ai + aj ≤ ak;

• U(i, j) = 0 if and only if a0 ≥ ai + aj ;

• U(i, j) = n if and only if an−1 < ai + aj ≤ an.

P r o o f . The proof is similar to that of Proposition 3.9. □

Next we will discuss the relationship between F1, F2 and F3. Before that, we will
use an example to illustrate that there exists some function h ∈ H0 with h(e) = 0 such
that the semi-uninorms U1 = ⟨h⟩ ∈ F1, U2 = ⟨h⟩ ∈ F2 and U3 = ⟨h⟩ ∈ F3 are different
from each other.
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Example 3.11. Let h = (−2,−1, 0, 0.5, 3). The operations U1 = ⟨h⟩ ∈ F1, U2 = ⟨h⟩ ∈
F2 and U3 = ⟨h⟩ ∈ F3 shown in Table 2 are three different commutative semi-uninorms
with the neutral element e = 2 on L4.

U1 0 1 2 3 4

0 0 0 0 1 3

1 0 0 1 2 3

2 0 1 2 3 4

3 1 2 3 3 4

4 3 3 4 4 4

U2 0 1 2 3 4

0 0 0 0 0 3

1 0 0 1 1 3

2 0 1 2 3 4

3 0 1 3 3 4

4 3 3 4 4 4

U3 0 1 2 3 4

0 0 0 0 1 4

1 0 0 1 2 4

2 0 1 2 3 4

3 1 2 3 3 4

4 4 4 4 4 4

(a) U1 = ⟨h⟩ ∈ F1 (b) U2 = ⟨h⟩ ∈ F2 (c) U3 = ⟨h⟩ ∈ F3

Tab. 2. Three different commutative semi-uninorms U1, U2 and U3 on L4.

Theorem 3.12. Let e ∈ Ln and h ∈ H with h(e) = 0. If U1 = ⟨h⟩ ∈ F1 and U2 =
⟨h⟩ ∈ F2, then U1(i, j) = U2(i, j) for all i, j ∈ Ln if and only if h satisfies one of the
following two conditions:

(i) h(0) + h(e + 1) > 0;

(ii) h(i) + h(j) ∈ Ran(h) when (i, j) ∈ A(e) and h(i) + h(j) ≤ 0.

P r o o f . If U1 = U2, then we have U1(i, j) = U2(i, j) for any (i, j) ∈ A(e). Suppose that
there exists i0 ∈ [0, e[Ln and j0 ∈]e, n]Ln such that h(i0) +h(j0) ≤ 0 and h(i0) +h(j0) /∈
Ran(h). Then, there is an element k ∈]0, e]Ln

such that h(i0)+h(j0) ∈]h(k−1), h(k)[Ln
.

Thus, U1(i0, j0) = h(−1)(h(i0) + h(j0)) = min{r ∈ Ln | h(r) ≥ h(i0) + h(j0)} = k and
U2(i0, j0) = max{r ∈ Ln | h(r) ≤ h(i0) + h(j0)} = k − 1. That is, U1(i0, j0) = k ̸=
k − 1 = U2(i0, j0), which is a contradiction. Therefore, there are only two possibilities
for h(i) + h(j) when (i, j) ∈ A(e). One is that h(i) + h(j) > 0, which is equivalent to
h(0) + h(e + 1) > 0. The other is that h(i) + h(j) ∈ Ran(h) if h(i) + h(j) ≤ 0.

If h(0)+h(e+1) > 0, then h(i)+h(j) > h(e)+h(e+1) > 0 for any (i, j) ∈ A(e). Thus,
we have U1(i, j) = h(−1)(h(i) + h(j)) = max{r ∈ Ln | h(r) ≤ h(i) + h(j)} = U2(i, j) for
any (i, j) ∈ A(e). If h(i) + h(j) ∈ Ran(h) when (i, j) ∈ A(e) and h(i) + h(j) ≤ 0, then
h(U1(i, j)) = h ◦ h(−1)(h(i) + h(j)) = h(i) + h(j) = max{h(r) ∈ Ran(h) | h(r) ≤ h(i) +
h(j)} = h ◦ max{r ∈ Ln | h(r) ≤ h(i) + h(j)} = h(U2(i, j)). Thus, we have U1(i, j) =
U2(i, j) for (i, j) ∈ A(e) and h(i) + h(j) ≤ 0 because h is a strictly increasing function.
From Theorem 3.4, it follows that U1(i, j) = U2(i, j) for any i, j ∈ [0, e]Ln ∪ [e, n]Ln . In
summary, U1 = U2 holds. □

Theorem 3.13. Let e ∈ Ln and h ∈ H with h(e) = 0. If U1 = ⟨h⟩ ∈ F1 and U3 =
⟨h⟩ ∈ F3, then U1(i, j) = U3(i, j) for all i, j ∈ Ln if and only if h satisfies one of the
following two conditions:
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(i) h(e− 1) + h(n) ≤ 0;

(ii) h(i) + h(j) ∈ Ran(h) when (i, j) ∈ A(e) and h(i) + h(j) > 0.

P r o o f . The proof is similar to that of Theorem 3.12. □

Theorem 3.14. Let e ∈ Ln and h ∈ H with h(e) = 0. If U2 = ⟨h⟩ ∈ F2 and U3 =
⟨h⟩ ∈ F3, then U2(i, j) = U3(i, j) for all i, j ∈ Ln if and only if h(i) + h(j) ∈ Ran(h) for
any (i, j) ∈ A(e).

P r o o f . Suppose that there exists (i0, j0) ∈ A(e) such that h(i0) + h(j0) /∈ Ran(h).
Then, there is an element k′ ∈]0, n]Ln

such that h(i0) + h(j0) ∈]h(k′ − 1), h(k′)[Ln
.

Thus, U2(i0, j0) = max{r ∈ Ln | h(r) ≤ h(i0) + h(j0)} = k′ − 1 and U3(i0, j0) =
min{r ∈ Ln | h(r) ≥ h(i0) + h(j0)} = k′. That is, U2(i0, j0) = k′ − 1 ̸= k′ = U3(i0, j0),
which is a contradiction. Therefore, we have h(i) + h(j) ∈ Ran(h) for any (i, j) ∈ A(e).
Conversely, h(U2(i, j)) = h ◦ max{r ∈ Ln | h(r) ≤ h(i) + h(j)} = max{h(r) ∈ Ran(h) |
h(r) ≤ h(i) + h(j)} = h(i) + h(j) = min{h(r) ∈ Ran(h) | h(r) ≥ h(i) + h(j)} =
h ◦ min{r ∈ Ln | h(r) ≥ h(i) + h(j)} = h(U3(i, j)) for any (i, j) ∈ A(e). So we have
U2(i, j) = U3(i, j) for any (i, j) ∈ A(e) since h is a strictly increasing function. From
Theorem 3.4, it follows that U2(i, j) = U3(i, j) for any i, j ∈ [0, e]Ln ∪ [e, n]Ln . In a
word, we obtain that U2 = U3 holds. □

By combining Theorems 3.12, 3.13 and 3.14, we can obtain the relationship among
the families F1, F2 and F3.

Theorem 3.15. Let e ∈ Ln and h ∈ H with h(e) = 0. If U1 = ⟨h⟩ ∈ F1, U2 = ⟨h⟩ ∈ F2

and U3 = ⟨h⟩ ∈ F3, then U1(i, j) = U2(i, j) = U3(i, j) for all i, j ∈ Ln if and only if
h(i) + h(j) ∈ Ran(h) for any (i, j) ∈ A(e).

4. CONCLUSION

In this work, we have studied semi-uninorms on finite chains generated by strictly in-
creasing functions with the usual addition. Firstly, we introduced a family of commu-
tative semi-uninorms generated by a strictly increasing function h, its pseudo-inverse
h(−1) and the usual addition. Then, we recalled other two families of additively gener-
ated commutative semi-uninorms proposed by Han and Liu. Furthermore, we not only
studied the structures and properties of semi-uninorms in each family but also presented
the relationship among these three families. We also characterized uninorms in Umin and
Umax that are generated by additive generators.
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