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LINEARIZATION TECHNIQUE FOR OSCILLATION OF
PERTURBED HALF-LINEAR DIFFERENTIAL EQUATIONS

Manabu Naito

Abstract. It is shown that oscillation of perturbed second order half-linear
differential equations can be derived from oscillation of second order linear
differential equations associated with modified Riccati equations. In the main
result of the present paper, some of technical assumptions in the known results
of this type are removed.

1. Introduction

In this paper we consider the second order half-linear ordinary differential
equation

(1.1)
(
p(t)Φα(x′)

)′ + q(t)Φα(x) = 0 , t ≥ t0 ,
where Φα(x) = |x|αsgn x with α > 0, p(t) and q(t) are real-valued continuous
functions on [t0,∞), and p(t) > 0 for t ≥ t0. If α = 1, then (1.1) reduces to the
linear equation

(1.2)
(
p(t)x′

)′ + q(t)x = 0 , t ≥ t0 .
The half-linear equation (1.1) can be seen as a natural generalization of the linear
equation (1.2).

It is well-known that all solutions of (1.1) exist on the entire interval [t0,∞)
and that if (1.1) has a nontrivial oscillatory [or nonoscillatory] solution, then any
other nontrivial solution is also oscillatory [or nonoscillatory]. Equation (1.1) is
said to be oscillatory [or nonoscillatory] if (1.1) has a nontrivial oscillatory [or
nonoscillatory] solution. Clearly, if x(t) is a solution of (1.1), then so is −x(t).
Therefore we can suppose without loss of generality that a nonoscillatory solution
of (1.1) is eventually positive.

In the last three decades, many results have been obtained in the theory of
oscillatory and asymptotic behavior of solutions of half-linear differential equations.
It is known that basic results for the second order linear equations can be generalized
to the second order half-linear equations. The important works are summarized in
the book of Došlý and Řehák [8]. For the recent results to half-linear equations
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we refer the reader to, for example, [1, 2, 3, 5, 6, 7, 12, 13, 14, 16, 17, 18, 19]. The
present paper is strongly motivated by oscillatory and nonoscilaltory results in
[5, 7, 11, 16].

Together with (1.1), we consider the equation of the same type

(1.3)
(
p(t)Φα(x′)

)′ + q0(t)Φα(x) = 0 , t ≥ t0 ,
where q0(t) is a real-valued continuous function on [t0,∞). Equation (1.1) is
regarded as a perturbation of (1.3).

An important oscillatory result is the following theorem.
Theorem 1.1 (Došlý and Lomtatidze [7, Theorem 1]). Suppose that equation (1.3)
is nonoscillatory and let x = x0(t) be the principal solution of (1.3) satisfying
x0(t) > 0 for t ≥ T . If

(1.4)
∫ ∞
T

x0(t)α+1 [q(t)− q0(t)] dt =∞ ,

then equation (1.1) is oscillatory.
For the concept of the principal solution, see Došlý and Řehák [8, Section 4.2].

In general, it is difficult to know whether a nonoscillatory solution x0(t) of (1.3) is
principal or not.

In what follows, it will be assumed that (1.3) has a nonoscillatory solution
x = x0(t) such that
(1.5) x0(t) > 0 , x′0(t) 6= 0 for t ≥ T ,

(1.6)
∫ ∞
T

1
p(t)x0(t)2|x′0(t)|α−1 dt =∞ ,

(1.7) lim inf
t→∞

p(t)x0(t)|x′0(t)|α > 0 ,

and

(1.8)
∫ ∞
T

x0(t)α+1 [q(t)− q0(t)] dt is convergent.

Condition (1.6) is closely related to an integral characterization of the principal
solution of (1.3) (see Došlý and Elbert [4] and Došlá and Došlý [1, Proposition 2]).
Condition (1.8) is a typical counterpart of (1.4).

For brevity, we set
(1.9) P (t) = p(t)x0(t)2|x′0(t)|α−1 and Q(t) = x0(t)α+1 [q(t)− q0(t)] .
Conditions (1.6) and (1.8) are rewritten as∫ ∞

T

1
P (t) dt =∞

and ∫ ∞
T

Q(t) dt is convergent,

respectively.
The next theorem is known.
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Theorem 1.2 (Došlý and Fišnarová [5, Theorem 3]). Suppose that equation (1.3)
has a nonoscillatory solution x = x0(t) satisfying (1.5)–(1.8). If there exists ε > 0
such that the linear equation

(1.10)
(
P (t)x′

)′ + (1 + ε)α+ 1
2α Q(t)x = 0

is nonoscillatory, then equation (1.1) is nonoscillatory.

Corollary 1.3 (Došlý and Fišnarová [5, Corollary 1 (i)]). Suppose that (1.3) has
a nonoscillatory solution x = x0(t) satisfying (1.5)–(1.8). If

− 3α
2(α+ 1) < lim inf

t→∞

(∫ t

T

1
P (s) ds

)(∫ ∞
t

Q(s) ds
)

≤ lim sup
t→∞

(∫ t

T

1
P (s) ds

)(∫ ∞
t

Q(s) ds
)
<

α

2(α+ 1) ,

then (1.1) is nonoscillatory.

Corollary 1.3 is obtained by applying the classical Hille–Nehari nonoscillation
criterion to the linear equation (1.10).

In this paper we will prove the following theorem.

Theorem 1.4. Suppose that (1.3) has a nonoscillatory solution x = x0(t) satisfying
(1.5)–(1.8). If there exists a number ε with 0 < ε < 1 such that the linear equation

(1.11)
(
P (t)x′

)′ + (1− ε)α+ 1
2α Q(t)x = 0

is oscillatory, then equation (1.1) is oscillatory.

Theorem 1.4 has been proved under various additional conditions. For example,
see Theorems 4 and 5 in [5] and Theorem 1.6 in [16]. Applying the classical
Hille–Nehari oscillation criterion to the linear equation (1.11), we get the next
result.

Corollary 1.5. Suppose that (1.3) has a nonoscillatory solution x = x0(t) satis-
fying (1.5)–(1.8). If

lim inf
t→∞

(∫ t

T

1
P (s) ds

)(∫ ∞
t

Q(s) ds
)
>

α

2(α+ 1) ,

then (1.1) is oscillatory.

Combining Theorem 1.4 with the classical Zlámal’s oscillation criterion (for a
half-linear extension, see Lemma 2.4 below), we obtain the next corollary.

Corollary 1.6. Suppose that (1.3) has a nonoscillatory solution x = x0(t) satis-
fying (1.5)–(1.8). If there is a number λ such that λ < 1 and∫ ∞

T

(∫ t

T

1
P (s) ds

)λ
Q(t) dt =∞ ,

then (1.1) is oscillatory.
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In Corollary 1.6 we cannot take λ = 0 because of (1.8).
In the next section we state several basic (non)oscillatory results for the half-linear

differential equation (1.1). Except for the last Lemma 2.4, the proofs are contained
in the book of Došlý and Řehák [8]. Lemma 2.4 is due to Dosoudilová, Lomtatidze
and Šremr [10]. In Section 3, we present a (non)oscillatory result for a specific
half-linear equation with α > 1. The result in Section 3 is used for the proof of
Theorem 1.4. For the proof of Theorem 1.4 we also need some estimates for the
function F (u, v) which appears in the modified Riccati equation associated with
(1.1). The estimates for F (u, v) are stated in Section 4. The proof of Theorem 1.4
is given in Section 5. We present a few examples illustrating Corollaries 1.5 and
1.6 in Section 6.

2. Basic results

For the convenience of the reader we summarize basic (non)oscillatory results
for the half-linear differential equation (1.1).

Lemma 2.1. Equation (1.1) is nonoscillatory if and only if there is a function
y ∈ C1[T,∞), T ≥ t0, such that

y′ + q(t) + αp(t)−1/α|y|(α+1)/α ≤ 0 , t ≥ T .

Let us consider equation (1.1) under the conditions

(2.1)
∫ ∞
t0

p(t)−1/αdt =∞

and

(2.2)
∫ ∞
t0

q(t) dt is convergent.

Lemma 2.2. Suppose that (2.1) and (2.2) hold. Equation (1.1) is nonoscillatory
if and only if there is a function y ∈ C[T,∞), T ≥ t0, such that∫ ∞

T

p(t)−1/α|y(t)|(α+1)/α dt <∞

and
y(t) =

∫ ∞
t

q(s) ds+ α

∫ ∞
t

p(s)−1/α|y(s)|(α+1)/α ds , t ≥ T .

Lemma 2.3. Consider equation (1.1) under conditions (2.1) and (2.2).
(I) If

−2α+ 1
α+ 1

( α

α+ 1

)α
< lim inf

t→∞

(∫ t

t0

p(s)−1/α ds
)α(∫ ∞

t

q(s) ds
)

≤ lim sup
t→∞

(∫ t

t0

p(s)−1/α ds
)α(∫ ∞

t

q(s) ds
)

<
1

α+ 1

( α

α+ 1

)α
,
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then (1.1) is nonoscillatory.
(II) If

lim inf
t→∞

(∫ t

t0

p(s)−1/α ds
)α(∫ ∞

t

q(s) ds
)
>

1
α+ 1

( α

α+ 1

)α
,

then (1.1) is oscillatory.

The results mentioned above are half-linear extensions of the classical results
for the linear equation (1.2). For the proofs, see [8].

Lemma 2.4. Consider equation (1.1) under condition (2.1). If there is a number
λ such that λ < α and∫ ∞

t0

(∫ t

t0

p(s)−1/α ds
)λ
q(t) dt =∞ ,

then (1.1) is oscillatory.

For the case α = 1, Lemma 2.4 can be derived from Theorem 1 in the paper of
Zlámal [20]. For the general case, Lemma 2.4 is a direct consequence of Corollary
2.7 in [10] (see also Corollary 3.1 in [15]).

3. An oscillatory result

In this section we suppose that α > 1 and p(t) satisfies

(3.1)
∫ ∞
t0

p(s)−1 ds =∞

and q(t) satisfies (2.2).

Theorem 3.1. Let α > 1. Suppose that (2.2) and (3.1) hold. If there exists a
function y ∈ C1[T,∞), T ≥ t0, such that
(3.2) y′(t) + q(t) + αp(t)−1|y(t)|(α+1)/α ≤ 0 , t ≥ T ,
then, for any constant M > 0, there exists a function w ∈ C1[T1,∞), T1 ≥ T , such
that
(3.3) w′(t) +Mq(t) + p(t)−1w(t)2 ≤ 0 , t ≥ T1 .

Proof. Suppose that there is a function y ∈ C1[T,∞), T ≥ t0, satisfying (3.2). By
Lemma 2.1, the half-linear equation(

p(t)αΦα(x′)
)′ + q(t)Φα(x) = 0

is nonoscillatory. Note that (3.1) implies∫ ∞
t0

(
p(t)α

)−1/α
dt =

∫ ∞
t0

p(t)−1 dt =∞ .

Since (2.2) is assumed to hold, Lemma 2.2 implies that there is a function v ∈
C1[T0,∞), T0 ≥ t0, such that∫ ∞

T0

p(t)−1|v(t)|(α+1)/α dt <∞
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and
v(t) =

∫ ∞
t

q(s) ds+ α

∫ ∞
t

p(s)−1|v(s)|(α+1)/α ds, t ≥ T0 .

Then we have limt→∞ v(t) = 0 and

v′(t) + q(t) + αp(t)−1|v(t)|(α+1)/α = 0 , t ≥ T0 .

Let M > 0 be an arbitrary constant. Since α > 1 and limt→∞ v(t) = 0, we have

α|v(t)|(α+1)/α ≥Mv(t)2

for sufficiently large t, say t ≥ T1. Then it is easy to see that the function

w(t) = Mv(t) , t ≥ T1 ,

satisfies (3.3). The proof is complete. �

The next corollary is a restatement of Theorem 3.1.

Corollary 3.2. Let α > 1. Suppose that (2.2) and (3.1) hold. If the half-linear
equation

(3.4)
(
p(t)αΦα(x′)

)′ + q(t)Φα(x) = 0

is nonoscillatory, then the linear equation

(3.5)
(
p(t)x′

)′ +Mq(t)x = 0

is nonoscillatory for any M > 0. Equivalently, if the linear equation (3.5) is
oscillatory for some M > 0, then the half-linear equation (3.4) is oscillatory.

4. Lemmas

It is known that the function

(4.1) F (u, v) = |u+ v|(α+1)/α − |v|(α+1)/α − α+ 1
α

Φ1/α(v)u , u, v ∈ R ,

plays a crucial role in the study of the oscillation and nonoscillation of (1.1).

Lemma 4.1 (see, e.g., Došlý and Fišnarová [5, Lemma 4]). Let x = x(t) and
x = x0(t) be nonoscillatory solutions of (1.1) and (1.3), respectively. Suppose that
x(t) > 0 and x0(t) > 0 for t ≥ T (≥ t0). Then the function

(4.2) u(t) = p(t)x0(t)α+1
[
Φα
(x′(t)
x(t)

)
− Φα

(x′0(t)
x0(t)

)]
, t ≥ T ,

is a solution of the modified Riccati differential equation
u′(t) + x0(t)α+1[q(t)− q0(t)

]
+ αp(t)−1/αx0(t)−(α+1)/αF

(
u(t), p(t)x0(t)Φα

(
x′0(t)

))
= 0 , t ≥ T ,

(4.3)

where F (u, v) is defined by (4.1).

Lemma 4.2. Let F (u, v) be the function which is defined by (4.1).
(i) F (u, v) ≥ 0 for all u, v ∈ R; F (u, v) = 0 if and only if u = 0.
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(ii) Let k1 and k2 be constants satisfying 0 < k1 < k2. Then there is a constant
L(k1, k2) > 0 such that F (u, v) can be expressed in the following form

F (u, v) = α+ 1
2α2 |v|

−(α−1)/αu2(1 +R(u, v)
)

with ∣∣R(u, v)
∣∣ ≤ |α− 1|

3α L(k1, k2)|u|

for |u| ≤ k1 < k2 ≤ |v|.

Proof. For the proofs of the part (i) and the part (ii) of the case v > 0, see Lemma
3.2 (i) and (iii) in [16]. In general, we have

F (−u,−v) = F (u, v) , u, v ∈ R .

Therefore the part (ii) of the case v < 0 can be derived from the case v > 0. The
proof is complete. �

The function F (u, v) is closely related to the function

P (u, v) = 1
α+ 1 |u|

α+1 − uv + α

α+ 1 |v|
(α+1)/α , u, v ∈ R .

In fact, it is shown (Došlý and Fišnarová [5, the proof of Lemma 6]) that

(4.4) F (u, v) = α+ 1
α

P (Φ1/α(v), u+ v) , u, v ∈ R .

The following lemma is well-known (see Došlý and Elbert [4, Lemma 2.4]).

Lemma 4.3. We have

P (u, v) ≥ 1
2 |u|

−α+1(v − Φα(u)
)2 (0 < α ≤ 1) ,

P (u, v) ≤ 1
2 |u|

−α+1(v − Φα(u)
)2 (α > 1)

for all u, v ∈ R, u 6= 0.

The following lemma was proved by Došlý and Řezníčková [9, Lemma 4].

Lemma 4.4. Let M > 0 be an arbitrary number. Then there exists a constant
K = K(M) > 0 such that

P (u, v) ≤ K|u|−α+1(v − Φα(u)
)2 (0 < α ≤ 1) ,

P (u, v) ≥ K|u|−α+1(v − Φα(u)
)2 (α > 1)

for all u, v ∈ R satisfying

(4.5) u 6= 0,
∣∣∣ v

Φα(u)

∣∣∣ ≤M .

Combining Lemma 4.3 with Lemma 4.4, we have the next corollary.
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Corollary 4.5. Let M > 0 be an arbitrary number. Then there exist constants
K1 = K1(M) > 0 and K2 = K2(M) > 0 such that

K1|u|−α+1(v − Φα(u))2 ≤ P (u, v) ≤ K2|u|−α+1(v − Φα(u))2

for all u, v ∈ R satisfying (4.5).

Lemma 4.6. Let F (u, v) be the function defined by (4.1). Then,

F (u, v) ≥ α+ 1
2α |v|

−(α−1)/αu2 (0 < α ≤ 1),(4.6)

F (u, v) ≤ α+ 1
2α |v|

−(α−1)/αu2 (α > 1)(4.7)

for all u, v ∈ R with v 6= 0.

Moreover, for every M > 0, there are constants L1 = L1(M) > 0 and L2 =
L2(M) > 0 such that

(4.8) L1|v|−(α−1)/αu2 ≤ F (u, v) ≤ L2|v|−(α−1)/αu2 for v 6= 0,
∣∣∣u
v

∣∣∣ ≤M .

Proof. The idea of the proof is due to Došlý and Fišnarová [5, Lemma 6]. We
have the formula (4.4). Therefore, (4.6) and (4.7) follow from Lemma 4.3, and (4.8)
follows from Corollary 4.5. �

Lemma 4.7. Let α > 1, and let F (u, v) be the function defined by (4.1). Let c > 0
be an arbitrary number. Then there is a constant L = L(c) > 0 such that, for all
u, v ∈ R satisfying u ≤ −c and |v| ≥ c,

(4.9) F (u, v) ≥ L|v|−(α−1)/α|u|(α+1)/α .

Proof. The idea of the proof is due to Došlý and Fišnarová [6, Lemma 3.4]. Fix
v 6= 0, and put

ϕ(u) = F (u, v)
|u|(α+1)/α for u < 0 .

Then,

(4.10) ϕ′(u) = α+ 1
α

1
u2Φ1/α(u)ψ(u) ,

where
ψ(u) = −vΦ1/α(u+ v) + 1

α
Φ1/α(v)u+ |v|(α+1)/α .

If u+ v 6= 0, then

ψ′(u) = − v
α

[
|u+ v|−(α−1)/α − |v|−(α−1)/α

]
.

In what follows we distinguish the cases v ≤ −c and v ≥ c. First consider the
case v ≤ −c. Since u < 0, we have u + v < 0 and |u + v| > |v|. Then, by the
condition α > 1, we see that ψ′(u) < 0 for u < 0. Since limu→0− ψ(u) = 0, this
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shows that ψ(u) > 0 for u < 0. Hence, by (4.10), we have ϕ′(u) < 0 for u < 0.
Therefore, if u ≤ −c, then ϕ(u) ≥ ϕ(−c), that is,

(4.11) F (u, v)
|u|(α+1)/α ≥

F (−c, v)
c(α+1)/α , u ≤ −c .

Since v ≤ −c, we have |− c/v| ≤ 1. An application of Lemma 4.6 to the case M = 1
implies that there is a positive constant L1 such that

F (−c, v) ≥ L1|v|−(α−1)/αc2 .

Thus, by (4.11), we see that

(4.12) F (u, v) ≥ L1c
(α−1)/α|v|−(α−1)/α|u|(α+1)/α for u ≤ −c and v ≤ −c .

Next consider the case v ≥ c. Then, −2v < −c. We examine the function ϕ(u) on
the intervals [−2v,−c] and (−∞,−2v), separately. If u ∈ [−2v,−c], then |u/v| ≤ 2.
Applying Lemma 4.6 to the case M = 2, we deduce that there is a positive constant
L̂1 such that

F (u, v) ≥ L̂1|v|−(α−1)/αu2 .

Therefore, by the condition α > 1,

(4.13) F (u, v) ≥ L̂1c
(α−1)/α|v|−(α−1)/α|u|(α+1)/α (−2v ≤ u ≤ −c, v ≥ c) .

If u ∈ (−∞,−2v), then |u + v| > |v|. Hence, because of α > 1, we see that
ψ′(u) > 0 for u < −2v. This implies that ψ(u) is increasing on (−∞,−2v). We
have

ψ(−2v) = 2
(

1− 1
α

)
|v|(α+1)/α > 0

and
lim

u→−∞

ψ(u)
u

= 1
α

Φ1/α(v) > 0 .

Therefore, there is a number u1 < −2v such that ψ(u) < 0 for u < u1, ψ(u) = 0 for
u = u1, and ψ(u) > 0 for u1 < u < −2v. This implies that ϕ′(u) > 0 for u < u1,
ϕ′(u) = 0 for u = u1, and ϕ′(u) < 0 for u1 < u < −2v. The function ϕ(u) has the
local maximum at u = u1. We have

lim
u→−∞

ϕ(u) = 1

and, since α > 1,
ϕ(−2v) = α+ 1

α

1
21/α > 1 .

Therefore it is found that
ϕ(u) > 1, i.e., F (u, v) > |u|(α+1)/α for u < −2v .

Hence the condition v ≥ c yields
(4.14) F (u, v) ≥ c(α−1)/α|v|−(α−1)/α|u|(α+1)/α (u < −2v, v ≥ c) .
By (4.13) and (4.14), we see that

F (u, v) ≥ min{L̂1, 1}c(α−1)/α|v|−(α−1)/α|u|(α+1)/α

for u ≤ −c and v ≥ c .
(4.15)
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From (4.12) and (4.15) it is concluded that there is a constant L > 0 such that
(4.9) holds for u ≤ −c and |v| ≥ c. The proof of Lemma 4.7 is complete. �

5. Proof of Theorem 1.4

Proof of Theorem 1.4. Let x = x0(t) be a nonoscillatory solution of (1.3) which
satisfies (1.5)–(1.8). By (1.5) and (1.7), there is a constant c > 0 such that

(5.1) p(t)x0(t)|x′0(t)|α ≥ c , t ≥ T .

Suppose that there is ε ∈ (0, 1) such that (1.11) is oscillatory. Assume that
equation (1.1) has a nonoscillatory solution x(t). We may suppose that x(t) > 0
for t ≥ T . Then, by Lemma 4.1, the function u(t) defined by (4.2) satisfies (4.3).
Integrating (4.3) from T to t, we obtain

u(t)− u(T ) +
∫ t

T

x0(s)α+1[q(s)− q0(s)] ds

+ α

∫ t

T

p(s)−1/αx0(s)−(α+1)/αF
(
u(s), p(s)x0(s)Φα

(
x′0(s)

))
ds = 0

(5.2)

for t ≥ T . Since the integrand of the last integral in the left-hand side of (5.2) is
nonnegative for t ≥ T (see Lemma 4.2 (i)), we have either

(5.3)
∫ ∞
T

p(s)−1/αx0(s)−(α+1)/αF
(
u(s), p(s)x0(s)Φα

(
x′0(s)

))
ds =∞

or

(5.4)
∫ ∞
T

p(s)−1/αx0(s)−(α+1)/αF
(
u(s), p(s)x0(s)Φα

(
x′0(s)

))
ds <∞ .

Suppose first that (5.3) holds. Since (1.8) is assumed to hold, it follows from
(5.2) that

(5.5) lim
t→∞

u(t) = −∞ .

Let α > 1. By (5.5) we may suppose that u(t) ≤ −c for t ≥ T . Here, the number
c is a constant satisfying (5.1). Then, applying Lemma 4.7 to the case u = u(t)
and v = p(t)x0(t)Φα(x′0(t)), we find that there is a constant L > 0 such that

F
(
u(t), p(t)x0(t)Φα

(
x′0(t)

))
≥ Lp(t)−(α−1)/αx0(t)−(α−1)/α|x′0(t)|−α+1|u(t)|(α+1)/α , t ≥ T .

Therefore, (4.3) yields

u′(t) +Q(t) + αLP (t)−1|u(t)|(α+1)/α ≤ 0 , t ≥ T ,

where P (t) and Q(t) are given by (1.9). Then the function y(t) = Lαu(t) (t ≥ T )
satisfies

y′(t) + LαQ(t) + αP (t)−1|y(t)|(α+1)/α ≤ 0 , t ≥ T .
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Let M > 0 be an arbitrary number. By Theorem 3.1, there is a function
w ∈ C1[T1,∞), T1 ≥ T , such that

(5.6) w′(t) +MQ(t) + P (t)−1w(t)2 ≤ 0 , t ≥ T1 .

Hence, by the linear version of Lemma 2.1, the equation

(5.7)
(
P (t)x′

)′ +MQ(t)x = 0 (M > 0)

is nonoscillatory. This is a contradiction to the condition that (1.11) is oscillatory.

Let 0 < α ≤ 1. Then, using (4.6) in Lemma 4.6, we see that

F
(
u(t), p(t)x0(t)Φα

(
x′0(t)

))
≥ α+ 1

2α p(t)−(α−1)/αx0(t)−(α−1)/α|x′0(t)|−α+1u(t)2 , t ≥ T .

It follows from (4.3) that

u′(t) +Q(t) + α+ 1
2 P (t)−1u(t)2 ≤ 0 , t ≥ T ,

where P (t) and Q(t) are given by (1.9). Let β be a fixed number satisfying β > 1.
By (5.5) we see that

α+ 1
2 u(t)2 ≥ β|u(t)|(β+1)/β

for sufficiently large t. We may suppose that this inequality is satisfied for t ≥ T .
Then we have

u′(t) +Q(t) + βP (t)−1|u(t)|(β+1)/β ≤ 0 , t ≥ T .

The rest of the proof is similar to the case α > 1. Let M > 0 be an arbitrary
number. By Theorem 3.1 with α replaced by β, there is a function w ∈ C1[T1,∞),
T1 ≥ T , such that (5.6) holds. By the linear version of Lemma 2.1, equation (5.7)
is nonoscillatory. This is a contradiction to the condition that (1.11) is oscillatory.
Thus we find that (5.3) does not hold.

Suppose next that (5.4) holds. Using (1.8), (5.2) and (5.4), we see that limt→∞ u(t)
exists and is finite. Put limt→∞ u(t) = ` (∈ R). Integrating the equality (4.3) from
t to τ (T ≤ t ≤ τ) and letting τ →∞, we obtain

u(t) = `+
∫ ∞
t

x0(s)α+1[q(s)− q0(s)] ds

+ α

∫ ∞
t

p(s)−1/αx0(s)−(α+1)/αF
(
u(s), p(s)x0(s)Φα

(
x′0(s)

))
ds

for t ≥ T . Since u(t) has a finite limit as t → ∞, it is bounded on [T,∞). Let
C = supt≥T |u(t)|. By (5.1), we have∣∣∣ u(t)

p(t)x0(t)Φα(x′0(t))

∣∣∣ ≤ C

c
, t ≥ T .

Applying the latter part of Lemma 4.6 to the case

u = u(t) , v = p(t)x0(t)Φα
(
x′0(t)

)
and M = C/c ,
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we see that there is a constant L1 > 0 such that

L1
∣∣p(t)x0(t)Φα

(
x′0(t)

)∣∣−(α−1)/α
u(t)2 ≤ F

(
u(t), p(t)x0(t)Φα

(
x′0(t)

))
for t ≥ T . Thus we get

L1P (t)−1u(t)2 ≤ p(t)−1/αx0(t)−(α+1)/αF
(
u(t), p(t)x0(t)Φα

(
x′0(t)

))
for t ≥ T , and so (5.4) gives∫ ∞

T

P (t)−1u(t)2 dt <∞ .

If limt→∞ u(t) = ` 6= 0, then the above fact contradicts (1.6). Therefore we deduce
that ` = 0.

Since

(5.8) lim
t→∞

u(t) = ` = 0 ,

we find that

(5.9) |u(t)| ≤ c

2 < c ≤ p(t)x0(t)|x′0(t)|α

for sufficiently large t. Here, c is a positive constant satisfying (5.1). We may suppose
that (5.9) holds for t ≥ T . Then, applying Lemma 4.2 (ii) to the case k1 = c/2, k2 =
c, u = u(t) and v = p(t)x0(t)Φα(x′0(t)), we deduce that F (u(t), p(t)x0(t)Φα(x′0(t)))
is expressed as

F
(
u(t), p(t)x0(t)Φα

(
x′0(t)

))
= α+ 1

2α2 |p(t)x0(t)Φα(x′0(t))|−(α−1)/αu(t)2(1 +R(t)
)

with

(5.10) |R(t)| ≤ |α− 1|
3α L

(
c/2, c

)∣∣u(t)
∣∣

for t ≥ T . Here, L
(
c/2, c

)
is a positive constant. Therefore we get

p(t)−1/αx0(t)−(α+1)/αF
(
u(t), p(t)x0(t)Φα

(
x′0(t)

))
= α+ 1

2α2 P (t)−1u(t)2(1 +R(t)
)
, t ≥ T .

(5.11)

Remember that ε ∈ (0, 1) is the number such that (1.11) is oscillatory. By (5.8)
and (5.10), we have limt→∞R(t) = 0, and hence

(5.12) R(t) ≥ −ε

for sufficiently large t, say t ≥ T1. Then, by (4.3), (5.11) and (5.12), we find that

u′(t) +Q(t) + (1− ε)α+ 1
2α P (t)−1u(t)2 ≤ 0 , t ≥ T1 .

Therefore the function

y(t) = (1− ε)α+ 1
2α u(t) , t ≥ T1 ,
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satisfies
y′(t) + (1− ε)α+ 1

2α Q(t) + P (t)−1y(t)2 ≤ 0 , t ≥ T1 .

Hence, the linear version of Lemma 2.1 implies that equation (1.11) is nonoscillatory.
This is a contradiction. Thus we find that (5.4) also does not hold. Consequently,
equation (1.1) does not have nonoscillatory solutions. The proof of Theorem 1.4 is
complete. �

6. Examples

In this section we provide a few examples illustrating our results.

Example 6.1. Let

(6.1) γα =
( α

α+ 1

)α+1
,

and let p(t) be a continuous function on [0,∞) such that p(t) > 0 for t ≥ 0 and∫ ∞
0

p(t)−1/α dt =∞ .

For simplicity of notation, we put

Ip(t) =
∫ t

0
p(s)−1/α ds .

Then, let us consider the half-linear differential equation

(6.2)
(
p(t)Φα(x′)

)′ + (γαp(t)−1/αIp(t)−α−1 + c(t)
)

Φα(x) = 0 , t ≥ t0 ,

where c(t) is a continuous function on [t0,∞), t0 > 0. Equation (6.2) is regarded
as a perturbation of the Euler type equation
(6.3)

(
p(t)Φα(x′)

)′ + γαp(t)−1/αIp(t)−α−1Φα(x) = 0 , t ≥ t0 .
Equations (6.2) and (6.3) are the special cases of (1.1) and (1.3) with

q(t) = γαp(t)−1/αIp(t)−α−1 + c(t)
and

q0(t) = γαp(t)−1/αIp(t)−α−1 ,

respectively.

Equation (6.3) has the exact solution
x0(t) = Ip(t)α/(α+1) , t ≥ t0 .

It is clear that this solution x0(t) satisfies (1.5) with T = t0. The functions P (t)
and Q(t) defined by (1.9) are equal to

P (t) =
( α

α+ 1

)α−1
p(t)1/αIp(t) and Q(t) = Ip(t)αc(t) ,

respectively. We have∫ t

t0

1
P (s) ds ∼

( α

α+ 1

)−α+1
log Ip(t) (t→∞)
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and
p(t)x0(t)

∣∣x′0(t)
∣∣α =

( α

α+ 1

)α
, t ≥ t0 .

Therefore, all the conditions (1.5)–(1.7) are satisfied. By Corollary 1.5 we can
conclude that if c(t) satisfies∫ ∞

t0

Ip(t)αc(t) dt is convergent

and
lim inf
t→∞

(log Ip(t))
(∫ ∞

t

Ip(s)αc(s) ds
)
>

1
2

( α

α+ 1

)α
,

then (6.2) is oscillatory.

Example 6.2. Let γα be the constant given by (6.1), and let p(t) be a continuous
function on [t0,∞) such that p(t) > 0 for t ≥ t0 and∫ ∞

t0

p(t)−1/α dt <∞ .

For simplicity of notation, we put

Jp(t) =
∫ ∞
t

p(s)−1/α ds, t ≥ t0 .

Consider the half-linear equations

(6.4)
(
p(t)Φα(x′)

)′ + (γαp(t)−1/αJp(t)−α−1 + c(t)
)
Φα(x) = 0 , t ≥ t0 ,

and
(6.5)

(
p(t)Φα(x′)

)′ + γαp(t)−1/αJp(t)−α−1Φα(x) = 0 , t ≥ t0 .
Here, c(t) is a continuous function on [t0,∞). Equations (6.4) and (6.5) are the
special cases of (1.1) and (1.3) with

q(t) = γαp(t)−1/αJp(t)−α−1 + c(t)

and

q0(t) = γαp(t)−1/αJp(t)−α−1 ,

respectively.

Equation (6.5) has the exact solution

x0(t) = Jp(t)α/(α+1) , t ≥ t0 .
It can be checked that all the conditions (1.5)–(1.7) are satisfied. By Corollary 1.5
we can conclude that if c(t) satisfies∫ ∞

t0

Jp(t)αc(t) dt is convergent

and
lim inf
t→∞

| log Jp(t)|
(∫ ∞

t

Jp(s)αc(s) ds
)
>

1
2

( α

α+ 1

)α
,
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then (6.4) is oscillatory. The details are left to the reader.

Example 6.3. Consider the half-linear differential equation

(6.6)
(
Φα(x′)

)′ + (γαt−α−1 + c(t)
)

Φα(x) = 0 , t ≥ t0 (> 1) ,

where γα is the positive constant given by (6.1) and the function c(t) is given by

(6.7) c(t) = −t−α d
dt

(1 + cos (log t)
(log t)1/2

)
, t ≥ t0 .

Equation (6.6) is regarded as a perturbation of the equation

(6.8)
(
Φα(x′)

)′ + γαt
−α−1Φα(x) = 0 , t ≥ t0 .

Equation (6.8) has the exact solution

x0(t) = tα/(α+1) , t ≥ t0 .

It is clear that this solution x0(t) satisfies (1.5) with T = t0. The functions P (t)
and Q(t) defined by (1.9) are equal to

P (t) =
( α

α+ 1

)α−1
t and Q(t) = tαc(t) ,

respectively. Therefore we have∫ t

t0

1
P (s) ds =

( α

α+ 1

)−α+1
(log t− log t0)

and

Q(t) = − d

dt

(1 + cos (log t)
(log t)1/2

)
= 1

2
1 + cos (log t)
t(log t)3/2 + sin (log t)

t(log t)1/2 .

It is easy to see that (1.6)–(1.8) are satisfied. We apply Zlámal type oscillation
criterion (Corollary 1.6, λ = 1/2). Since∫ t

t0

(log s)1/2Q(s) ds = 1
2

∫ t

t0

1
s log s ds+ 1

2

∫ t

t0

cos (log s)
s log s ds

+
∫ t

t0

sin (log s)
s

ds

= 1
2[log (log t)− log (log t0)] + 1

2

∫ log t

log t0

cosσ
σ

dσ

+
∫ log t

log t0
sin σdσ ,

we get

(6.9)
∫ t

t0

(log s)1/2Q(s) ds ∼ 1
2 log (log t) (t→∞) .
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Integration by parts yields∫ t

t0

(log s− log t0)1/2Q(s) ds =
∫ t

t0

(
1− log t0

log s

)1/2
(log s)1/2Q(s) ds

=
(

1− log t0
log t

)1/2 ∫ t

t0

(log s)1/2Q(s) ds

−
∫ t

t0

(∫ s

t0

(log σ)1/2Q(σ) dσ
) d
ds

(
1− log t0

log s

)1/2
ds .

Since
d

ds

(
1− log t0

log s

)1/2
= O

( 1
s(log s)2

)
(s→∞) ,

it follows from (6.9) that∫ t

t0

(log s− log t0)1/2Q(s) ds ∼ 1
2 log (log t) (t→∞) ,

and so ∫ ∞
t0

(∫ t

t0

1
P (s) ds

)1/2
Q(t) dt =∞ .

Thus, by Corollary 1.6 of the case λ = 1/2, equation (6.6) with (6.7) is oscillatory.

Note that Hille–Nehari type oscillation criterion (Corollary 1.5) cannot be applied
to equation (6.6) with (6.7), because

lim inf
t→∞

(∫ t

t0

1
P (s) ds

)(∫ ∞
t

Q(s) ds
)

=
( α

α+ 1

)−α+1
lim inf
t→∞

(log t− log t0)1 + cos (log t)
(log t)1/2 = 0 .
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