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Abstract. Let K be a septic number field generated by a root θ of an irreducible poly-
nomial F (x) = x7 + ax5 + b ∈ Z[x]. In this paper, we explicitly characterize the index
i(K) of K. More precisely, for all a and b, we show that i(K) ∈ {1, 2}. Our results answer
completely to Problem 22 of W.Narkiewicz’s book (2004) for these families of number fields.
In particular, we provide sufficient conditions for which K is not monogenic. We illustrate
our results by some computational examples.
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1. Introduction

Let K be a number field generated by θ, a root of a monic irreducible polynomial

F (x) ∈ Z[x] of degree n, and AK its ring of integers. It is well-known that AK is

a free Z-module of rank n. We say that the ring AK has a power integral basis if

it is generated by one element as a Z-module, that is AK = Z[η] for some primitive

element η of AK . In such a case, K is said to be monogenic. Otherwise, K is called

not monogenic. The familiar examples of monogenic number fields are quadratic and

cyclotomic fields.

Throughout this paper, for every η ∈ AK generating K, ind(η) denotes the index

of Z[η] in AK and i(K) denotes the index of K as defined by Dedekind:

(1.1) i(K) := gcd{ind(η) : η ∈ AK and K = Q(η)}.

So, i(K) = 1 for every monogenic number field K. However, if i(K) > 1, then K is

not monogenic. A prime p is called a common index divisor of K if p divides i(K).
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Dedekind was the first one to show the existence of a common divisor of indices.

He exhibited an example of a cubic number field in which 2 is a common divisor

of indices. He showed that 2 divides i(K), where K = Q(θ) and θ3 − θ2 − 2θ − 8

(cf. [30], page 64). In [11], Engstrom gave explicit formulas which compute νp(i(K)),

the highest power of p dividing i(K), according to the type of splitting of p in AK ,

and employed these results to compute νp(i(K)) for all number fields of degrees less

or equal 7. Nart in [31] determined νp(i(K)) in totally ramified cases. The problem

of determination of νp(i(K)) is referred as Problem 22 of Narkiewicz (see [30]).

The problem of testing the monogenity and non-monogenity of number fields

and constructing power integral bases have been the subject of extensive research.

To determine whether a number field K is monogenic or not, one must solve

the corresponding index form equations, see, e.g., [7], [13], [14], [17], [20], [21],

[33], where the authors develop efficient algorithms for a great number of classes

of number fields.

In [20], [21], [23], [24], Győry made a general breakthrough by proving in

full generality that for any I ∈ Z the index form equation I(x2, . . . , xn) = I

(in x2, x3, . . . , xn ∈ Z) associated to an integral basis of K can have only finitely

many integral solutions and gives effective bounds for the solutions. The best

known bounds for the solutions can be found in [13]. He also reduced index form

equations to the system of unit equations in [25] and gave effective results regard-

ing the monogenity of relative extensions in [22] and [24]. For more details, we

suggest consulting the books [12], [13] by Evertse and Győry which provide com-

prehensive studies regarding discriminant form and index form theory and their

practical applications, including relevant Diophantine equations and monogenity

of number fields.

In [17], Gaál and Schulte gave efficient algorithms for solving index form equations

in cubic number fields. In [16], Gaál, Pethő and Pohst provided algorithms for solving

index form equations in a quartic number field. In [34], Pethő and Ziegler gave an

efficient criterion to decide whether the maximal order of a biquadratic number field

has a unit power integral basis or not. For multiquadratic number fields, we refer

to [33] by Pethő and Pohst.

Combining the general approach of [21] and its refined version [25] with some other

technical results, Gaál and Győry [7] and Bilu et al. [15] described algorithms and

used them to solve index form equations in quintic, respectively, sextic number fields.

Nakahara’s research team based their method on the existence of relative power

integral bases of some special sub-fields. They studied the monogenity of several num-

ber fields: for example, under the assumption that m 6≡ ±1 (mod 9), Ahmad, Naka-

hara and Husnine [2], and Ahmad, Nakahara and Hameed [1] showed that the pure

sextic number field Q( 6
√
m) with square-freem is monogenic when m ≡ 2, 3 (mod 4),
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but it is not monogenic when m ≡ 1 (mod 4), respectively. For some results regard-

ing the monogenity of certain pure number fields see [5], [6] by Ben Yakkou et al.

For a survey on monogenity with a focus on efficient algorithms for several classes of

number fields, see the books [13] by Evertse and Győry and [14] by Gaál.

Recently, many authors have been interested in the study of indices, monogen-

ity and non-monogenity of the number field defined by roots of trinomials of type

xn + axm + b. Llorente and Nart (see [28]) proved that for a cubic number field

defined by x3 + ax+ b, i(K) = 1 or 2 and gave a necessary and sufficient condition

for i(K) = 2. In [9], Davis and Spearman showed that the index of a quartic number

field defined by x4 + ax+ b is contained in the set {1, 2, 3, 6}. Ben Yakkou and Bou-
dine [4] studied the index of the octic number field defined by x8 + ax + b. In [26],

Jakhar, Khanduja and Sangwan studied the problem of the integral closedness of

Z[θ]: they gave necessary and sufficient conditions for a prime p to be a divisor of

ind(θ). However, by the definition (1.1) of i(K), the divisibility of ind(θ) by p is

not sufficient to decide whether p is a common index divisor of K or not. There-

fore, their results do not characterize the prime divisors of indices of these number

fields. In [3], Ben Yakkou gave some sufficient conditions on coefficients of a trinomial

xn+ axm+ b for which K has an odd prime common index divisor which guarantees

the non-monogenity of the number field defined by such a trinomial. Also, in [27],

Jones and White identify infinite parametric families of monogenic trinomials with

a non square-free discriminant.

The aim of the present paper is to determine the index of any number field K

generated by a root θ of an irreducible trinomial of type F (x) = x7 + ax5 + b ∈ Z[x].

Note that all the available results cannot be applied to characterize the prime com-

mon index divisors and to answer the question of monogenity for these number

fields. So, we are motivated to study separately these families of number fields. To

reach our goal, we have based our method on prime ideal factorization via Newton

polygon techniques.

2. Main results

In what follows, let K be a septic number field generated by θ, a root of a monic

irreducible trinomial F (x) = x7 + ax5 + b ∈ Z[x], and AK its ring of integers. For

every prime p and any nonzero p-adic integer m, νp(m) denotes the p-adic valuation

ofm, the highest power of p dividingm, andmp := m/pνp(m). Scaling the coefficients

if necessary, we lose no generality in assuming

(2.1) νp(a) < 2 or νp(b) < 7.

247



For simplicity, if pAK = p
e1
1 . . . p

eg
g is the factorization of pAK into a product of pow-

ers of distinct prime ideals in AK with residue degrees f(pi/p) = [AK/pi : Z/pZ] = fi,

then we write pAK = [fe11 , . . . , f
eg
g ]. Also, if ei = 1 for some i, then we shortly write fi

instead of feii .

In this paper, we prove the following results.

Theorem 2.1. Let K = Q(θ) be a number field with θ being a root of a monic

irreducible polynomial F (x) = x7 + ax5 + b ∈ Z[x]. Then for any odd prime p, p is

not a common index divisor of K; p does not divide i(K).

From the above theorem, the only candidate prime to divide i(K) is 2. Thus,

either i(K) = 1 or i(K) = 2k for some positive integer k. The following result gives

the complete answer. Precisely, we prove that i(K) is either 1 or 2.

Theorem 2.2. Let K be a number field generated by a root θ of an irreducible

trinomial F (x) = x7+ax5+b ∈ Z[x]. Then Table 1 gives the form of the factorization

of the ideal 2AK into a product of powers of distinct prime ideals of AK and the

exact value of the index i(K) in every case. In particular, 2 is a common index

divisor of K if and only if one of the conditions C9, C10, C11, C17 holds.

Corollary 2.3. Let K = Q(θ) be a number field with θ being a root of a monic

irreducible polynomial F (x) = x7 + ax5 + b ∈ Z[x]. Then

(1) i(K) = 2 if and only if one of the conditions C9, C10, C11, C17 holds. Other-

wise, i(K) = 1.

(2) If any one of the conditions C9, C10, C11, C17 holds, then K is not monogenic;

ZK has no power integral basis.

R em a r k 2.4. The condition i(K) = 1 is not sufficient for K to be monogenic.

A number field K can have index 1, but AK has no power integral basis. Thanks to

the following example: K = Q( 3
√
175) (see [30], page 56).

3. Examples

To illustrate our results, we propose some examples. Let K = Q(θ) be a septic

number field with θ a root of an irreducible polynomial F (x) = x7 + ax5 + b ∈ Z[x].

(1) Let F (x) = x7 + 867x5 + 68. Since F (x) is a 17-Eisenstein polynomial, it is

irreducible over Q. By Case C9 of Table 1 of Theorem 2.2, i(K) = 2. So, K is

not monogenic.
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(2) Let F (x) = x7 + 45927x5 + 24. The polynomial F (x) is irreducible over Q as

it is a 3-Eisenstein polynomial. In view of Case C10 of Table 1 of Theorem 2.2,

i(K) = 2. Consequently, AK has no power integral basis.

(3) Let F (x) = x7 + 33x5 + 66. As F (x) is an 11-Eisenstein polynomial, it is

irreducible over Q. According to Case C17 of Table 1, K is not monogenic and

i(K) = 2.

(4) Let F (x) = x7 + prx5 + p, where p is an odd prime and r is a positive integer.

By Theorem 2.1 and Case C1 of Table 1, i(K) = 1.

Case Conditions Factorization of 2AK i(K)

C1 a ≡ 1 (mod 2) and b ≡ 1 (mod 2) [21, 51] 1

C2 a ≡ 0 (mod 2) and b ≡ 1 (mod 2) [1, 3, 3] 1

C3 7ν2(a) > 2ν2(b) and ν2(b) ∈ {1, 2, 3, 4, 5, 6} [17] 1

C4 ν2(a) = 1, ν2(b) > 4 and 5 ∤ ν2(b)− 1 [12, 15] 1

C5 ν2(a) = 1, ν2(b) > 4 and 5 | ν2(b)− 1 [1, 12, 4] 1

C6 a ≡ 3 (mod 8), b ≡ 0 (mod 8) and 5 ∤ ν2(b) [15, 2] 1

C7 a ≡ 3 (mod 8), b ≡ 0 (mod 8) and 5 | ν2(b) [1, 2, 4] 1

C8 a ≡ 7 (mod 8), b ≡ 4 (mod 8) [2, 15] 1

C9 a ≡ 3 (mod 8), b ≡ 4 (mod 8) [1, 1, 15] 2

C10 a ≡ 7 (mod 8), b ≡ 0 (mod 8) and 5 ∤ ν2(b) [1, 1, 15] 2

C11 a ≡ 7 (mod 8), b ≡ 0 (mod 8) and 5 | ν2(b) [1, 1, 1, 4] 2

C12 a ≡ 3 (mod 4) and b ≡ 2 (mod 4) [12, 15] 1

C13 a ≡ 1 (mod 4), b ≡ 0 (mod 4) and 5 ∤ ν2(b) [12, 15] 1

C14 a ≡ 1 (mod 4), b ≡ 0 (mod 4) and 5 | ν2(b) [1, 12, 4] 1

C15 (a, b) ∈ {(1, 10), (9, 2), (1, 6), (9, 14)} (mod 16) [12, 15] 1

C16 (a, b) ∈ {(1, 18), (17, 2), (1, 14), (17, 30)} (mod 32) [2, 15] 1

C17 (a, b) ∈ {(1, 2), (17, 18), (1, 30), (17, 14)} (mod 32) [1, 1, 15] 2

C18 (a, b) ∈ {(5, 2), (5, 14), (13, 6), (13, 10)} (mod 16) [12, 15] 1

Table 1. The factorization of 2AK and the value of i(K).

4. Preliminary results

Let K be a number field generated by θ, a root of a monic irreducible trinomial

F (x) = x7 + ax5 + b ∈ Z[x], and AK its ring of integers. Let p be a prime and Fp

denote the finite field with the p elements. The following result is one of the most

basic results on the index of a number field. It gives a necessary and sufficient

condition for a prime p to be a common index divisor of K. This lemma will play

an important role in the proof of our results (see [30], Theorems 4.33–4.34 and [10]).
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Lemma 4.1. Let p be a prime and K a number field. For every positive integer f ,

let Lp(f) denote the number of distinct prime ideals of AK lying above p with residue

degree f and Np(f) denote the number of monic irreducible polynomials of Fp[x] of

degree f . Then p is a common index divisor of K if and only if Lp(f) > Np(f) for

some positive integer f .

To apply Lemma 4.1, we need to determine the number of distinct prime ideals

of AK lying above p. We use Newton polygon techniques. So, let us shortly recall

some fundamental notions and results on this method on which the proof of our

results are based. For more details, we refer to [18], [19] by Guàrdia, Montes and

Nart, [29] by Montes and Nart and [32] by Ore.

Let p be a prime and νp denote the discrete valuation of Qp(x) defined on Zp[x] by

νp

( m
∑

i=0

aix
i

)

= min{νp(ai), 0 6 i 6 m}.

Let ϕ(x) ∈ Z[x] be a monic polynomial whose reduction modulo p is irreducible.

The polynomial F (x) ∈ Z[x] admits a unique ϕ-adic expansion

F (x) = a0(x) + a1(x)ϕ(x) + . . .+ an(x)ϕ(x)
n

with deg(ai(x)) < deg(ϕ(x)). For every 0 6 i 6 n, let ui = νp(ai(x)). The ϕ-Newton

polygon of F (x) with respect to νp is the lower boundary convex envelope of the set

of points {(i, ui), 0 6 i 6 n, ai(x) 6= 0} in the Euclidean plane, which we denote by
Nϕ(F ). The polygon Nϕ(F ) is the union of different adjacent sides S1, S2, . . . , Sg
with increasing slopes λ1, λ2, . . . , λg. We write Nϕ(F ) = S1+S2+. . .+Sg. The poly-

gon determined by the sides of negative slopes ofNϕ(F ) is called the ϕ-principal New-

ton polygon of F (x) with respect to νp (or p) and is denoted by N
+
ϕ (F ). The length of

N+
ϕ (F ) is l(N+

ϕ (F )) = νϕ(F (x)), the highest power of ϕ(x) dividing F (x) modulo p.

Let Fϕ be the finite field Z[x]/(p, ϕ(x)) ≃ Fp[x]/(ϕ(x)). We attach to any abscissa

0 6 i 6 l(N+
ϕ (F )) the following residual coefficient ci ∈ Fϕ:

ci =







0 if (i, ui) lies strictly above N
+
ϕ (F ),

ai(x)

pui
(mod(p, ϕ(x))) if (i, ui) lies on N

+
ϕ (F ).

Let S be one of the sides of N+
ϕ (F ). Then the length of S, denoted by l(S), is

the length of its projection to the horizontal axis and its height, denoted by h(S),

is the length of its projection to the vertical axis. Let λ = −h(S)/l(S) = −h/e
be its slope, where e and h are two positive coprime integers. The degree of S is

d(S) := gcd(h(S), l(S)) = l(S)/e; it is equal to the number of segments into which
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the integral lattices divide S. More precisely, if (s, us) is the initial point of S, then

the points with integer coordinates lying in S are exactly

(s, us), (s+ e, us − h), . . . , (s+ de, us − dh).

The positive integer e = l(S)/d(S) is called the ramification index of the side S and

denoted by e(S). We attach to S the residual polynomial

Rl(F )(y) = cs + cs+ey + . . .+ cs+(d−1)ey
d−1 + cs+dey

d ∈ Fϕ[y].

Now, we give some related definitions to this algorithm.

Definition 4.2. Let F (x) ∈ Z[x] be a monic irreducible polynomial. Let

F (x) ≡
t
∏

i=1

ϕi(x)
li (mod p) be the factorization of F (x) into a product of pow-

ers of distinct monic irreducible polynomials in Fp[x]. For every i = 1, . . . , t, let

N+
ϕi
(F ) = Si1 + . . .+ Siri , and for every j = 1, . . . , ri, let Rlij (F )(y) =

sij
∏

s=1
ψ
nijs

ijs (y)

be the factorization of Rlij (F )(y) in Fϕi
[y].

(1) For every i = 1, . . . , t, the ϕi-index of F (x), denoted by indϕi
(F ), is deg(ϕi)

multiplied by the number of points with natural integer coordinates that lie

below or on the polygon N+
ϕi
(F ), strictly above the horizontal axis and strictly

beyond the vertical axis.

(2) The polynomial F (x) is said to be ϕi-regular with respect to νp if for every

j = 1, . . . , ri, Rlij (F )(y) is separable, that is nijs = 1.

(3) The polynomial F (x) is said to be p-regular if it is ϕi-regular for every 1 6 i 6 t.

Now, we recall Ore’s Theorem which will be used in the proof of Theorems 2.1

and 2.2 (see [18], Theorems 1.13, 1.15 and 1.19, [29] and [32]).

Theorem 4.3 (Ore’s Theorem). Let K be a number field generated by θ, a root

of a monic irreducible polynomial F (x) ∈ Z[x]. Under the above notations, we have

(1)

νp(ind(θ)) >

t
∑

i=1

indϕi
(F ).

Moreover, the equality holds if F (x) is p-regular.

(2) If F (x) is p-regular, then

pAK =
t
∏

i=1

ri
∏

j=1

sij
∏

s=1

p
eij
ijs,

where eij is the ramification index of the side Sij and fijs = deg(ϕi)×deg(ψijs)

is the residue degree of pijs over p.
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The following result is an immediate consequence of the above theorem.

Corollary 4.4. Under the above hypotheses, the following hold:

(1) If li = 1 for some i = 1, . . . , t, then the factor ϕi(x) provides that a unique prime

ideal of AK lies above p of residue degree equals deg(ϕi(x)) and of ramification

index equals 1.

(2) If for some i = 1, . . . , t, N+
ϕi
(F ) has k distinct sides of degree 1 each, then the

factor ϕi(x) provides k distinct prime ideals of AK lying above p with the same

residue degree equals deg(ϕi(x)) with ramification indices e(pij1/p) = e(Sij),

j = 1, . . . , k.

The proof of the following example in the quartic case is based on the application

of Ore’s Theorem.

E x am p l e 4.5. Consider F (x) = x4 + 2312x3 + 119 ∈ Z[x]. Since F (x) is

a 17-Eisenstein polynomial, F (x) is irreducible over Q. Let θ be a root of F (x) and

K := Q(θ). We propose to determine i(K). It is known by Engstrom’s work (see [11])

that i(K) = 2u · 3v with u 6 2 and v 6 1. For p = 3, we have F (x) ≡ x4 − x3 − 1

(mod 3). By Corollary 4.4, 3AK is a prime ideal of AK . Therefore, by Lemma 4.1,

3 ∤ i(K), and so v = 0. For p = 2, we have F (x) ≡ (x− 1)4 (mod 2). Let ϕ1 = x− 1.

The ϕ1-adic expansion of F (x) is

F (x) = 2432 + 6940ϕ1(x) + 6942ϕ1(x)
2 + 2316ϕ1(x)

3 + ϕ1(x)
4.

Computing the 2-adic valuations of the coefficients in the above expansion, we see

that ν2(2432) = 7, ν2(6940) = 2, ν2(6942) = 1 and ν2(2316) = 2. Thus, N+
ϕ1
(F ) =

S11 + S12 + S13 has three distinct sides of degree 1, each with respective slopes

l11 = −5, l12 = −1 and l13 = − 1
2 . Precisely, N

+
ϕ1
(F ) is the lower convex hull

of the points (0, 7), (1, 2), (2, 1), (3, 2) and (4, 0) (see Figure 1). Further, we have

ind(ϕ1) = 3. The corresponding residual polynomials are the same: Rl1k(F )(y) =

y− 1 ∈ Fϕ1
[y] ≃ F2[y], k = 1, 2, 3. So, they are separable as they have degree 1 each.

Thus, F (x) is ϕ1-regular. So, it is 2-regular. Applying Theorem 4.3, we see that

ν2(ind(θ)) = ind(ϕ1) = 3,

and

2AK = p111p121p
2
131,

where p111, p121 and p131 are the three distinct prime ideals of AK of residue degree

f(p1k1/2) = deg(Rl1k(F ))×deg(ϕ1) = 1× 1 = 1 for k = 1, 2, 3. By Engstrom’s table

concerning indices of number fields of degree less than 7 (see [11], page 234), we have

u = 1. We conclude that i(K) = 2, and so K is not monogenic.
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S13

Figure 1. N+ϕ1
(F ) with respect to ν2.

Recall also the following useful result which is a special case of [8], Theorem 4.8.5

in the context of septic number fields.

Lemma 4.6. Let K = Q(θ) and F (x) be as in Theorems 2.1 and 2.2. Let p be

a prime. If pAK = p
e1
1 . . . p

eg
g is the factorization of pAK into a product of powers of

distinct prime ideals in AK with residue degrees f(pi/p) = fi, then
g
∑

i=1

eifi = 7.

5. Proofs of the main results

After recalling necessary preliminaries and results in the previous section, we are

now in the position to prove our main results. Let us begin by Theorem 2.1.

P r o o f of Theorem 2.1. Since the degree of K is 7, by the result of Żyliński

(see [35]), if p divides i(K), then p < 7, see also [11] by Engstrom. Therefore, the

candidate primes to be common index divisors of K are 2, 3 and 5. So, to prove this

theorem, it is sufficient to show that 3 ∤ i(K) and 5 ∤ i(K). On the other hand, by

[30], Proposition 2.13, for any η ∈ ZK , we have the index formula

(5.1) νp(D(η)) = 2νp(ind(η)) + νp(DK),

where D(η) is the discriminant of the minimal polynomial of η and DK is the dis-

criminant of K. It follows by the definition (1.1) of i(K) that if p divides i(K),

then p divides ∆(F ). Recall also that

(5.2) ∆(F ) = −b4(77b2 + 22 × 55a7).
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Let us first show that 3 ∤ i(K). By the relation (5.1) and formula (5.2), if

3 | i(K), then

(a, b) ∈ {(1, 0), (−1, 0), (1, 1), (1,−1), (0, 0)} (mod 3).

We distinguish several sub-cases. Table 2 gives the form of the factorization of the

ideal 3AK into a product of powers of distinct prime ideals of AK in all possible

cases. Note also that by (2.1), if 3 divides both a and b, then ν3(a) < 2 or ν3(b) < 7.

Case Conditions Factorization of 3AK

A1 a ≡ 1 (mod 3), b ≡ 0 (mod 3) and 5 ∤ ν3(b) [15, 2]

A2 a ≡ 1 (mod 3), b ≡ 0 (mod 3) and 5 | ν3(b) [1, 2, 4]

A3 a ≡ −1 (mod 3), b ≡ 0 (mod 3) and 5 ∤ ν3(b) [1, 1, 15]

A4 a ≡ −1 (mod 3), b ≡ 0 (mod 3) and 5 | ν3(b) [1, 1, 1, 4]

A5 a ≡ 1 (mod 3) and b ≡ ±1 (mod 3) [1, 1, 2, 3], [12, 2, 3] or [2, 2, 3]

A6 7ν3(a) > 2ν3(b) and ν3(b) ∈ {1, 2, 3, 4, 5, 6} [17]

A7 ν3(a) = 1, ν3(b) > 4 and 5 ∤ ν3(b)− 1 [12, 15]

A8 ν3(a) = 1, ν3(b) > 4 and 5 | ν3(b)− 1 [1, 12, 4]

Table 2. The factorization of 3AK .

We discuss each sub-case separately.

Sub-case A1: a ≡ 1 (mod 3), b ≡ 0 (mod 3) and 5 ∤ ν3(b). In this case, F (x) ≡
ϕ1(x)

5ϕ2(x) (mod 3), where ϕ1(x) = x and ϕ2(x) = x2 +1. Since 5 does not divide

ν3(b), N
+
ϕ1
(F ) = S11 has a single side of degree 1 joining the points (0, ν3(b)) and (5, 0)

with ramification index e11 = 5. Also, we have νϕ2
(F (x)) = 1. By Corollary 4.4,

we see that 3AK = p5111 · p211, where p111 and p211 are two prime ideals of AK with

respective residue degrees f(p111/3) = 1 and f(p211/3) = 2. In view of Lemma 4.1,

3 ∤ i(K).

Sub-case A2: a ≡ 1 (mod 3), b ≡ 0 (mod 3) and 5 | ν3(b). Here, the factorization
of F (x) modulo 3 and the polygons N+

ϕ1
(F ) and N+

ϕ2
(F ) are the same as in the above

case. Further, since ν3(b) is divisible by 5, we have

Rl11(F )(y) = b3 + ay5 =

{

(y + 1)(y4 − y3 + y2 − y + 1) if b3 ≡ 1 (mod 3),

(y − 1)(y4 + y3 + y2 + y + 1) if b3 ≡ −1 (mod 3).

Thus, F (x) is 3-regular. By Theorem 4.3, 3AK = [1, 2, 4]. Therefore, by Lemma 4.1,

3 ∤ i(K).
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Sub-case A3: a ≡ −1 (mod 3), b ≡ 0 (mod 3) and 5 ∤ ν3(b). In this case, F (x) ≡
ϕ1(x)

5ϕ2(x)ϕ3(x) (mod 3), where ϕ1(x) = x, ϕ2(x) = x − 1 and ϕ3(x) = x + 1.

Also, N+
ϕ1
(F ) = S11 and Rl11(F )(y) are the same as in Case A1. Using Corollary 4.3,

3AK = [1, 1, 15]. Hence, by Lemma 4.1, 3 ∤ i(K).

Sub-case A4: a ≡ −1 (mod 3), b ≡ 0 (mod 3) and 5 | ν3(b). Here, the factoriza-
tion of F (x) modulo 3 is the same as in the above case. Further, N+

ϕ1
(F ) = S11 and

Rl11(F )(y) are the same as in Case A2. Therefore, by Corollary 4.4, 3AK = [1, 1, 1, 4].

Consequently, by Lemma 4.1, 3 ∤ i(K).

Sub-case A5: a ≡ 1 (mod 3) and b ≡ ±1 (mod 3). If b ≡ 1 (mod 3), then

F (x) ≡ ϕ1(x)
2ϕ2(x)ϕ3(x) (mod 3), where ϕ1(x) = x − 1, ϕ2(x) = x2 − x − 1

and ϕ3(x) = x3 − x − 1. By Corollary 4.4 (1), the factor ϕ2(x) provides a unique

prime ideal p211 of AK of residue degree 2 and of ramification index 1. Also,

the factor ϕ3(x) provides a unique prime ideal p311 of AK of residue degree 3

and of ramification index 1. It follows that 3AK = p211 · p311 · a, where a is

a proper ideal of AK . By Lemma 4.6, the form of the factorization of a is ei-

ther [1, 1], [12] or [2]. Therefore, the form of the factorization of 3AK is either

[1, 1, 2, 3], [12, 2, 3] or [2, 2, 3]. Hence, by Lemma 4.1, 3 ∤ i(K). If b ≡ −1 (mod 3),

then F (x) ≡ (x + 1)2(x2 + x − 1)(x3 − x + 1) (mod 3). Similarly to the case b ≡ 1

(mod 3), we see that 3 ∤ i(K).

Note that by (2.1), if 3 divides both a and b, then ν3(a) < 2 or ν3(b) < 7. So,

the conditions A6–A8 cover all possible cases when a and b are both divisible by 3.

On the other hand, F (x) ≡ ϕ1(x)
7 (mod 3), where ϕ1(x) = x. Thus, N+

ϕ1
(F ) is the

lower convex hull of the points (0, ν3(b)), (5, ν3(a)) and (7, 0).

Sub-case A6: 7ν3(a) > 2ν3(b) and ν3(b) ∈ {1, 2, 3, 4, 5, 6}. In this case,

N+
ϕ1
(F ) = S11 has a single side of degree 1 and of ramification index 7. By

Corollary 4.4, 3AK = [17]. By Lemma 4.1, 3 ∤ i(K).

Sub-case A7: ν3(a) = 1, ν3(b) > 4 and 5 ∤ ν3(b) − 1. Here, N+
ϕ1
(F ) = S11 + S12

has two distinct sides of degree 1, each joining the points (0, ν3(b)), (5, 1) and (7, 0).

Their respective ramification indices are e11 = 5 and e12 = 2. Therefore, by Corol-

lary 4.4 (2), 3AK = [12, 15]. Thus, 3 ∤ i(K).

Sub-case A8: ν3(a) = 1, ν3(b) > 4 and 5 | ν3(b) − 1. In this case, N+
ϕ1
(F ) =

S11+S12 has two distinct sides joining the points (0, ν3(b)), (5, 1) and (7, 0). Further,

we have d(S12) = 5, e12 = 1 and Rl11(F )(y) is the same as in Case A2. So, F (x) is

3-regular. Using Theorem 4.3, we get 3AK = [1, 12, 4]. So, by Lemma 4.1, 3 ∤ i(K).

We conclude that in every case, 3 is not a common index divisor of K.

Now, we prove that 5 does not divide i(K). By (5.1) and (5.2), if 5 divides i(K),

then 5 divides b. We distinguish seven cases which cover all the possibilities. Table 3

gives the form of the factorization of 5AK in AK .
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Case Conditions Factorization of 5AK

B1 7ν5(a) > 2ν5(b) and ν5(b) ∈ {1, 2, 3, 4, 5, 6} [17]

B2 ν5(a) = 1, ν5(b) > 4 and 5 ∤ ν5(b)− 1 [12, 15]

B3 ν5(a) = 1, ν5(b) > 4 and 5 | ν5(b)− 1 [12, 15] or [1, 14, 12]

B4 a ≡ ±2 (mod 5), b ≡ 0 (mod 5) and 5 ∤ ν5(b) [15, 2]

B5 a ≡ ±2 (mod 5), b ≡ 0 (mod 5) and 5 | ν5(b) [2, 15] or [1, 14, 2]

B6 a ≡ ±1 (mod 5), b ≡ 0 (mod 5) and 5 ∤ ν5(b) [1, 1, 15]

B7 a ≡ ±1 (mod 5), b ≡ 0 (mod 5) and 5 | ν5(b) [1, 1, 15] or [1, 1, 1, 14]

Table 3. The factorization of 5AK .

Cases B1–B2: These cases are, respectively, similar to Cases A6, A7 of Table 2.

Case B3: ν5(a) = 1, ν5(b) > 4 and 5 | ν5(b) − 1. In this case F (x) ≡ ϕ1(x)
7

(mod 5), where ϕ1(x) = x. Here, N+
ϕ1
(F ) = S11 + S12 has two distinct sides joining

the points (0, ν5(b)), (5, 1) and (7, 0). Further, we have d(S11) = 5 and Rl11(F )(y) =

b5 + a5y
5 = a5(y + b5/a5)

5 which is not separable in Fϕ1
[y]. Set ν5(b) = 5k + 1 for

some positive integer k. In order to apply Ore’s Theorem (Theorem 4.3), we replace

the lifting ϕ1(x) = x of ϕ1(x) = x ∈ F5[x] by ψ1(x) = x − 5kc with c ≡ −b5a−1
5

(mod 5) which allows to the polynomial F (x) to be ψ1-regular. For any prime p,

it is important to note that Theorem 4.3 does not depend on the monic irreducible

liftings of the monic irreducible factors of F (x) modulo p. The ψ1-adic expansion of

F (x) is

(5.3) F (x) = 57kc7 + 55kac5 + b+ 54k+1c4(7 · 52k−1c2 + a)ψ1(x)

+ 53k+1c3(21 · 5k−1c+ 2a)ψ1(x)
2 + 52k+1c2(7 · 52kc2 + 2a)ψ1(x)

3

+ 5k+1(7 · 52k + a)ψ1(x)
4 + (21 + 55kc2 + a)ψ1(x)

5

+ 7 · 5kcψ1(x)
6 + ψ1(x)

7.

Let A0 = 57kc7 + 55kac5 + b, A1 = 54k+1c4(7 · 52k−1c2 + a), A2 = 53k+1c3 ×
(21 · 52k−1c + 2a), A3 = 52k+1c2(7 · 52kc2 + 2a), A4 = 5k+1c(7 · 52kc2 + a), A5 =

21 · 52kc2 + a, A6 = 7 · 5kc and µi = ν5(Ai) for i = 1, . . . , 6. Note that µ5 = 1,

because ν5(a) = 1. We distinguish two cases according to k > 2 or k = 1.

Case 1: If k > 2, then µ0 = ν5(5
5k+1(52k−1c7 + a5c

5 + b5)) > 5k+2, µ1 = 4k+2,

µ2 = 3k+2, µ3 = 2k+2 and µ4 = k+2. Then we have the following two sub-cases:

Sub-case 1.1: If ν5(a5c
5 + b5) = 1, then µ0 = 5k + 2. Thus, by (5.3), N+

ψ1
(F ) =

S11 + S12 has two distinct sides of degree 1, each joining the points (0, 5k+2), (5, 1)

and (7, 0) with e11 = 5 and e12 = 2. Therefore, by Corollary 4.4, 5AK = [15, 12].

Sub-case 1.2: If ν5(a5c
5+b5) > 2, then µ0 > 5k+3. So, N+

ψ1
(F ) = S11+S12+S13

has three distinct sides of degree 1, each joining the points (0, µ0), (1, 4k + 2), (5, 1)

and (7, 0) with e11 = 1, e12 = 4 and e13 = 2. Consequently, 5AK = [1, 14, 12].
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Case 2: If k = 1 (that is ν5(b) = 6), then µ0 = 6 + ν5(5c
7 + a5c

5 + b5) > 7.

Moreover, we have µ1 = ν5(5
6c4(7c2 + a5)) > 6, µ2 > 5, µ3 > 4 and µ4 > 3. We

proceed as in case when k > 2 and obtain that 5AK = [12, 15] or [1, 14, 12] according

to ν5(5c
7 + a5c

5 + b5) = 1 or > 2.

Case B4: a ≡ ±2 (mod 5), b ≡ 0 (mod 5) and 5 ∤ ν5(b). Here, F (x) ≡
ϕ1(x)

5ϕ2(x) (mod 5), where ϕ1(x) = x and ϕ2(x) = x2 + a. By Corollary 4.4 (1),

ϕ2(x) provides that a unique prime ideal of AK lies above 5 of residue de-

gree 2 with the ramification index 1, say p211. Since 5 ∤ ν5(b), N
+
ϕ1
(F ) = S11

has a single side of degree 1 joining the points (0, ν5(b)) and (5, 0). By Corol-

lary 4.4 (2), ϕ1(x) provides that a unique prime ideal of AK lies above 5 of

residue degree 1 with ramification index 5, say p111. Therefore, 5AK = [15, 2].

Hence, 5 ∤ i(K).

Case B5: a ≡ ±2 (mod 5), b ≡ 0 (mod 5) and 5 | ν5(b). Set ν5(b) = 5k for some

positive integer k. Let Aa,b5 ∈ Z such that 5 divides aA5
a,b5

+ b5. To treat this case,

we use ψ1(x) = x− 5kAa,b5 as in Case B3. Write A0 = 57kA7
a,b5

+ 55k(aA5
a,b5

+ b5).

According to (5.3), we have µ1 = 4k + 1, µ2 = 3k + 1, µ3 = 2k + 1 and µ4 = k + 1.

We distinguish two sub-cases.

Sub-case 1.1: If ν5(aA
5
a,b5

+ b5) = 1, then µ0 = 5k+ 1. Thus, by (5.3), N+
ψ1
(F ) =

S11 has a single side of degree 1 joining the points (0, 5k+1) and (5, 0). Its ramifica-

tion index equals 5. By Corollary 4.4 (2), the factor ψ1(x) (or ϕ1(x)) provides that

a unique prime ideal of AK lies above 5 of residue degree 1 with the ramification

index 5. Therefore, 5AK = [2, 15]. Hence, 5 ∤ i(K).

Sub-case 1.2: If ν5(aA
5
a,b5

+ b5) > 2, then µ0 > 5k+ 2. Thus, by (5.3), N+
ψ1
(F ) =

S11 + S11 has two sides of degree 1, each joining the points (0, µ0), (1, 4k + 1) and

(5, 0). Their respective ramification indices are e11 = 1 and e12 = 4. By Theorem 4.3,

the factor ψ1(x) (or ϕ1(x)) provides two distinct prime ideals of AK lying above 5

of residue degree 1 each. Therefore, 5AK = [1, 14, 2]. So, 5 ∤ i(K).

Cases B6–B7: We proceed analogously as in Cases B4, B5.

Since the factorization of 5AK does not satisfy the inequality L5(f) > N5(f) for

any positive integer f , we conclude by Lemma 4.1 that 5 ∤ i(K). This completes the

proof of the theorem. �

From Theorem 2.1, no prime p > 3 can be a common index divisor ofK. Therefore,

i(K) = 2ν2(i(K)). Now, let us prove Theorem 2.2. In every case, we give the form

of the factorization of 2AK and by using Egstrom’s results (see [11]) we deduce the

exact value of i(K).

P r o o f of Theorem 2.2. Case C1: a ≡ 1 (mod 2) and b ≡ 1 (mod 2). In this

case, F (x) ≡ (x2 + x + 1)(x5 + x4 + x3 + x + 1) (mod 2). By Corollary 4.4 (1),

2AK = [2, 5]. In view of Lemma 4.1, 2 ∤ i(K). So, i(K) = 1.
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Case C2: a ≡ 0 (mod 2) and b ≡ 1 (mod 2). Here, F (x) ≡ (x+ 1)(x3 + x + 1)×
(x3+x2+1) (mod 2). By Corollary 4.4 (1), 2AK = [1, 3, 3]. Therefore, ν2(i(K)) = 0.

Hence, i(K) = 1.

In Cases C3, C4, C5, 2 divides both a and b. These cases are similar to Cases A6,

A7, A8, respectively, when we consider p = 3. Therefore we omit their proofs. In

these cases, we have i(K) = 1.

From Case C6, 2 divides b, but does not divide a. It follows that F (x) ≡
ϕ1(x)

5ϕ2(x)
2 (mod 2), where ϕ1(x) = x and ϕ2(x) = x− 1. For ϕ1(x), the polyno-

mial F (x) is ϕ1-regular. Moreover, by using Theorem 4.3, we have the following:

(1) If 5 does not divide ν2(b), then ϕ1(x) provides that a unique prime ideal lies

above 2AK of residue degree 1 with the ramification index 5. So, 2AK = p5111 ·a,
where f(p111/2) = 1 and a is a nonzero ideal of AK .

(2) If 5 does divide ν2(b), then ϕ1(x) provides two distinct prime ideals lying above

2AK with the ramification index 1 each. One of them has a residue degree 1 and

the other has a residue degree 4. Thus, 2AK = p111 ·p121 ·a, where f(p111/2) = 1,

f(p112/2) = 4 and a is a nonzero ideal of AK .

Thus, the number of prime ideals of AK that divide 2AK which are provided by

ϕ1(x) are determined with their residue degrees. On the other hand, the ideal a is

provided by the factor ϕ2(x). To factorize it, we analyze N
+
ϕ2
(F ), the ϕ2-principal

Newton polygon of F (x). The ϕ2-adic expansion of F (x) is

(5.4) F (x) = 1 + a+ b+ (7 + 5a)ϕ2(x) + (21 + 10a)ϕ2(x)
2 + . . .+ ϕ2(x)

7.

Let ν = ν2(1+a+ b) and µ = ν2(7+5a). It follows by (5.4) that N+
ϕ2
(F ) is the lower

convex hull of the points (0, ν), (1, µ) and (2, 0). Note also that the finite residual

field Fϕ2
is isomorphic to F2.

Cases C6–C8: In all these cases, we have ν = 2 and µ = 1. Thus, N+
ϕ2
(F ) = S11

has a single side of degree 2 joining the points (0, 2), (1, 1) and 2, 0. Further, we have

e11 = 1 and Rl11(F )(y) = 1 + y + y2 which is separable in Fϕ2
[y]. Therefore, by

Theorem 4.3, the form of the factorization of a is [2]. Thus, we conclude the form of

the factorization of 2AK in these cases is as given in Table 1.

Cases C9–C11: In all these cases, ν > 2 and µ = 1. Thus, N+
ϕ2
(F ) = S11 + S12

has two sides of degree 1, each joining the points (0, ν), (1, 1) and (2, 0). Their

ramification indices equal 1. Their attached residual polynomial are separable as they

are of degree 1. By Theorem 4.3, the form of factorization of a is [1, 1]. Therefore,

we conclude the form of factorization of 2AK in these cases is as given in Table 1.

Since L2(1) = 3 > 2 = N2(1), by Lemma 4.1, 2 | i(K). In Case C11, we have

2AK = [1, 1, 1, 4], then according to above mentioned Engstrom’s table, we see that

ν2(i(K)) = 1. On the other hand, in Cases C9 and C10, we have 2AK = [1, 1, 15].

In view of [11], Corollary on p. 230, ν2(i(K)) = 1. Consequently, i(K) = 2.
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Cases C12–C14: In all these cases, ν = 1. Thus, N+
ϕ2
(F ) = S11 has a single

side of degree 1 with the ramification index 2. By Corollary 4.4 (2), the form of the

factorization of a is [12]. Therefore, 2AK = [12, 15] or 2AK = [1, 12, 4]. Hence, by

Lemma 4.1, 2 ∤ i(K).

From Case C15, we have ν2(1 + a) = ν2(b) = 1. It follows that min{ν, µ} > 2.

Then we cannot control their values. To apply Ore’s Theorem (Theorem 4.3), we

replace the lifting ϕ2(x) = x − 1 of ϕ2(x) by ψ2(x) = x − s for an adequate odd

rational integer s which allows the polynomial F (x) to be ψ2-regular. The ψ2-adic

expansion of F (x) is

(5.5) F (x) = s7+as5+ b+(7s6+5as4)ψ2(x)+(21s5+10as3)ψ2(x)
2+ . . .+ψ2(x)

7.

Let ω = ν2(s
7 + as5 + b) and δ = ν2(7s

6 + 5as4). Thus, by (5.5), N+
ψ2
(F ) is the

lower convex hull of the points (0, ω), (1, δ) and (2, 0). In the next cases, we give s

explicitly and the form of the factorization of a in AK . Remark in these cases that

the factor ϕ1(x) provides a unique prime ideal of residue degree 1 with ramification

index 5, because ν2(b) = 1.

Case C15: (a, b) ∈ {(1, 10), (9, 2), (1, 6), (9, 14)} (mod 16). When

(a, b) ∈ {(1, 10), (9, 2)} (mod 16),

we choose any s such that s ≡ 3, 7, 11, or 15 (mod 16), and if

(a, b) ∈ {(1, 6), (9, 14)} (mod 16),

consider any s satisfying s ≡ 1, 5, 9, or 13 (mod 16). Then, we get ω = 3 and δ = 2.

It follows by (5.5) that N+
ψ2
(F ) = S11 has a single side of degree 1 joining the points

(0, 3) and (2, 0). Its ramification index equals 2. By Corollary 4.4 (2), the form of

the factorization of a is [12]. Therefore, 2AK = [12, 15]. So, 2 ∤ i(K).

Case C16: (a, b) ∈ {(1, 18), (17, 2), (1, 14), (17, 30)} (mod 32). For

(a, b) ∈ {(1, 18), (17, 2)} (mod 16),

we choose s ≡ 3, 7, 11, 15, 19, 23, 27, 31 (mod 32), and for

(a, b) ∈ {(1, 14), (17, 30)} (mod 32),

we choose any s ≡ 1, 5, 9, 13, 17, 21, 25, 29 (mod 32). Then, we have ω = 4 and δ = 2.

It follows by (5.5) that N+
ψ2
(F ) = S11 has a single side of degree 2 joining the points

(0, 4), (1, 2) and (2, 0). Its attached residual polynomial is Rl11(F )(y) = y2 + y + 1

which is separable in Fψ2
[y]. So, F (x) is ψ2-regular. By Theorem 4.3, the form of the

factorization of a is [2]. Therefore, 2AK = [2, 15]. Hence, by Lemma 4.1, 2 ∤ i(K).
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Case C17: (a, b) ∈ {(1, 2), (17, 18), (1, 30), (17, 14)} (mod 32). When

(a, b) ∈ {(1, 2), (17, 18)} (mod 32),

let s ≡ 3, 7, 11, 15, 19, 23, 27, 31 (mod 32), and for(a, b) ∈ {(1, 30), (17, 14)} (mod 32),

let s ≡ 1, 5, 9, 13, 17, 21, 25, 29 (mod 32). Under these considerations, we have ω > 5

and δ = 2. Thus,N+
ψ2
(F ) = S11+S12 has two sides of degree 1, each joining the points

(0, ω), (1, 2) and (2, 0). Their ramification indices equal 1. Using Theorem 4.3, the

form of the factorization of a is [1, 1]. So, 2AK = [1, 1, 15]. Therefore, by using [11],

Corollary p. 230, we have ν2(i(K)) = 1. So, i(K) = 2.

Case C18: (a, b) ∈ {(5, 2), (5, 14), (13, 6), (13, 10)} (mod 16). For

(a, b) ∈ {(5, 2), (13, 10)} (mod 16),

we choose any s ≡ 1, 5, 9, 13 (mod 16), and for (a, b) ∈ {(5, 14), (13, 6)} (mod 16),

we consider any s ≡ 3, 7, 11, 15 (mod 16). Then, we get ω = 3 and δ > 3. It follows

that N+
ψ2
(F ) = S11 has a single side of degree 1 joining the points (0, 3) and (2, 0).

As in Case C15, 2AK = [12, 15]. Consequently, 2 ∤ i(K), and so i(K) = 1. This

completes the proof of the theorem. �
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[20] K.Győry: Sur les polynômes á coefficients entiers et de discriminant donné. Acta Arith.
23 (1973), 419–426. (In French.) zbl MR doi

[21] K.Győry: Sur les polynômes á coefficients entiers et de discriminant donné. III. Publ.
Math. Debr. 23 (1976), 141–165. (In French.) zbl MR doi
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